1
|
Jang S, Kim S, Kim SJ, Kim JY, Gu DH, So BR, Ryu JA, Park JM, Yoon SR, Jung SK. Innate Immune-Enhancing Effect of Pinus densiflora Pollen Extract via NF-κB Pathway Activation. J Microbiol Biotechnol 2024; 34:644-653. [PMID: 38213288 PMCID: PMC11016773 DOI: 10.4014/jmb.2309.09026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
Considering the emergence of various infectious diseases, including the coronavirus disease 2019 (COVID-19), people's attention has shifted towards immune health. Consequently, immune-enhancing functional foods have been increasingly consumed. Hence, developing new immune-enhancing functional food products is needed. Pinus densiflora pollen can be collected from the male red pine tree, which is commonly found in Korea. P. densiflora pollen extract (PDE), obtained by water extraction, contained polyphenols (216.29 ± 0.22 mg GAE/100 g) and flavonoids (35.14 ± 0.04 mg CE/100 g). PDE significantly increased the production of nitric oxide (NO) and reactive oxygen species (ROS) but, did not exhibit cytotoxicity in RAW 264.7 cells. Western blot results indicated that PDE induced the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. PDE also significantly increased the mRNA and protein levels of cytokines and the phosphorylation of IKKα/β and p65, as well as the activation and degradation of IκBα. Additionally, western blot analysis of cytosolic and nuclear fractions and immunofluorescence assay confirmed that the translocation of p65 to the nucleus after PDE treatment. These results confirmed that PDE increases the production of cytokines, NO, and ROS by activating NF-κB. Therefore, PDE is a promising nutraceutical candidate for immune-enhancing functional foods.
Collapse
Affiliation(s)
- Sehyeon Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - San Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Jeong Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun Young Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Da Hye Gu
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo Ram So
- COSMAX NBT, INC., Seongnam 13486, Republic of Korea
| | - Jung A Ryu
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Jeong Min Park
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Ran Yoon
- Division of Agricultural Environment Research, Gyeongsangbuk-do Agricultural Research & Extension services, Daegu 41404, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Chun A, Paik SJ, Park J, Kim R, Park S, Jung SK, Kim SR. Physicochemical and Functional Properties of Yeast-Fermented Cabbage. J Microbiol Biotechnol 2023; 33:1329-1336. [PMID: 37463863 PMCID: PMC10619550 DOI: 10.4014/jmb.2302.02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023]
Abstract
Microbial fermentation is often used to improve the functionality of plant-based food materials. Herein, we investigated changes in the physicochemical and functional properties of cabbage during yeast fermentation to develop new products using fermented cabbage. Among the 8 types of food-grade yeast, both Saccharomyces cerevisiae and Saccharomyces boulardii fermented 10% cabbage powder solution (w/w) the most effectively, leaving no soluble sugars after 12 h of fermentation. In addition, the yeast fermentation of cabbage resulted in functionally positive outcomes in terms of sulforaphane content, antioxidant properties, and anti-inflammatory activity. Specifically, the yeast-fermented cabbages contained about 500% more sulforaphane. The soluble fraction (5 μg/ml) of yeast-fermented cabbage had no cytotoxicity in murine RAW 264.7 cells, and the radical-scavenging capacity was equivalent to 1 μg/ml of ascorbic acid. Moreover, cabbage fermented with S. boulardii significantly suppressed both lipopolysaccharides (LPS)-induced nitric oxide production and LPS-induced reactive oxygen species production in RAW 264.7 cells, suggesting a potential anti-inflammatory effect. These results support the idea that yeast fermentation is promising for developing functionally improved cabbage products.
Collapse
Affiliation(s)
- Ahhyeon Chun
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - So Jeong Paik
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongbeom Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ryeongeun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sujeong Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Keun Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Espinoza-Hernández FA, Moreno-Vargas AD, Andrade-Cetto A. Diabetes-Related Mechanisms of Action Involved in the Therapeutic Effect of Croton Species: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:2014. [PMID: 37653931 PMCID: PMC10223760 DOI: 10.3390/plants12102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/13/2023] [Indexed: 09/02/2023]
Abstract
Over the years, ethnopharmacological and phytochemical investigations have been conducted to understand the potential effects of the Croton genus on several diseases. It has been revealed that these terpenoid-rich species traditionally used to treat gastrointestinal diseases, heal wounds, and relieve pain have a wide range of therapeutic effects; however, those used to treat diabetes, as well as their action mechanisms, have not been reviewed so far. Therefore, the main objective of this review was to compile all Croton species that have shown pharmacological effects against diabetes and describe their action mechanisms. Through a search of the literature, 17 species with hypoglycemic, antihyperglycemic, antilipidemic, antihypertensive, antioxidant, and anti-inflammatory effects were found. Among the mechanisms by which they exerted these effects were the inhibition of α-glucosidases, the promotion of insulin secretion, and the increase in glucose uptake. Interestingly, it was found that some of them may have antihyperglycemic properties, although there were no ethnopharmacological reports that support their traditional use. Moreover, others only presented studies on their hypoglycemic effect in fasting, so further works are encouraged to describe the mechanisms involved in lowering fasting blood glucose levels, such as hepatic glucose production, especially for C. cajucara, C. cuneatus, C. gratissimus var. gratissimus, C. guatemalensis, and C. membranaceus. It is expected that this review contributes to the plant science knowledge of the genus, and it can be used in future references on the identification and development of new molecules/phytomedicines that help in the treatment of diabetes.
Collapse
Affiliation(s)
- Fernanda Artemisa Espinoza-Hernández
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
| | - Angelina Daniela Moreno-Vargas
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
| | - Adolfo Andrade-Cetto
- Laboratorio de Etnofarmacología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX C.P. 04510, Mexico
| |
Collapse
|
4
|
Wang L, Cui YR, Wang K, Fu X, Xu J, Gao X, Jeon YJ. Anti-inflammatory effect of fucoidan isolated from fermented Sargassum fusiforme in in vitro and in vivo models. Int J Biol Macromol 2022; 222:2065-2071. [PMID: 36208806 DOI: 10.1016/j.ijbiomac.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
Fucoidans possess potent anti-inflammatory effects. In the present study, the anti-inflammatory effect of the fucoidan (SFF-PS-F5) isolated from fermented Sargassum fusiforme was evaluated in vitro in RAW 264.7 macrophages and in vivo in zebrafish. The in vitro test results demonstrate that SFF-PS-F5 effectively inhibited nitric oxide (NO) production induced by lipopolysaccharides (LPS) in RAW 264.7 cells. SFF-PS-F5 effectively and concentration-dependently improved the viability of LPS-stimulated RAW 264.7 cells, and reduced the level of prostaglandin E2, interleukin-1 beta, tumor necrosis factor-alpha, and interleukin-6. Further results display that these effects were actioned by suppressing the expression of inducible nitric oxide synthase and cyclooxygenase-2 via regulating the nuclear factor kappa-B signaling pathway. The in vivo test results indicate that SFF-PS-F5 remarkably reduced reactive oxygen species, cell death, and NO levels in LPS-treated zebrafish. These results indicate that SFF-PS-F5 could inhibit both in vitro and in vivo inflammatory responses and suggest it is a functional ingredient in the functional food and cosmetic industries.
Collapse
Affiliation(s)
- Lei Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Yong Ri Cui
- Kangmaichen Biotechnology Co., Ltd., Qingdao 266114, China
| | - Kaiqiang Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaoting Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xin Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
5
|
Pang Y, Wu D, Ma Y, Cao Y, Liu Q, Tang M, Pu Y, Zhang T. Reactive oxygen species trigger NF-κB-mediated NLRP3 inflammasome activation involvement in low-dose CdTe QDs exposure-induced hepatotoxicity. Redox Biol 2021; 47:102157. [PMID: 34614473 PMCID: PMC8489155 DOI: 10.1016/j.redox.2021.102157] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cadmium telluride (CdTe) quantum dots (QDs) can be employed as imaging and drug delivery tools; however, the toxic effects and mechanisms of low-dose exposure are unclear. Therefore, this pioneering study focused on hepatic macrophages (Kupffer cells, KCs) and explored the potential damage process induced by exposure to low-dose CdTe QDs. In vivo results showed that both 2.5 μM/kg·bw and 10 μM/kg·bw could both activate KCs to cause liver injury, and produce inflammation by disturbing antioxidant levels. Abnormal liver function further verified the risks of low-dose exposure to CdTe QDs. The KC model demonstrated that low-dose CdTe QDs (0 nM, 5 nM and 50 nM) can be absorbed by cells and cause severe reactive oxygen species (ROS) production, oxidative stress, and inflammation. Additionally, the expression of NF-κB, caspase-1, and NLRP3 were decreased after pretreatment with ROS scavenging agent N-acetylcysteine (NAC, 5 mM pretreated for 2 h) and the NF-κB nuclear translocation inhibitor Dehydroxymethylepoxyquinomicin (DHMEQ, 10 μg/mL pretreatment for 4 h) respectively. The results indicate that the activation of the NF-κB pathway by ROS not only directly promotes the expression of inflammatory factors such as pro-IL-1β, TNF-α, and IL-6, but also mediates the assembly of NLRP3 by ROS activation of NF-κB pathway, which indirectly promotes the expression of NLRP3. Finally, a high-degree of overlap between the expression of the NF-κB and NLRP3 and the activated regions of KCs, further support the importance of KCs in inflammation induced by low-dose CdTe QDs.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
6
|
Structural, antioxidant, prebiotic and anti-inflammatory properties of pectic oligosaccharides hydrolyzed from okra pectin by Fenton reaction. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106779] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Analysis of the Chemical, Antioxidant, and Anti-Inflammatory Properties of Pink Pepper ( Schinus molle L.). Antioxidants (Basel) 2021; 10:antiox10071062. [PMID: 34209199 PMCID: PMC8300677 DOI: 10.3390/antiox10071062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Here, we compared the chemical properties and antioxidant effects of black pepper (Piper nigrum L.) and pink pepper (Schinus molle L.). Additionally, the antioxidant and anti-inflammatory capacities of pink pepper were measured to determine nutraceutical potential. Pink peppers from Brazil (PPB), India (PPI), and Sri Lanka (PPS) had higher Hunter a* (redness) values and lower L* (lightness) and b* (yellowness) values than black pepper from Vietnam (BPV). Fructose and glucose were detected in PPB, PPI, and PPS, but not in BPV. PPB, PPI, and PPS had greater 2,2-diphenyl-1-picrylhydrazyl and 3-ethylbenzothiazoline-6-sulphonic acid radical scavenging stabilities and higher total phenolic contents than BPV. BPV had higher levels of piperine than the pink peppers. Gallic acid, protocatechuic acid, epicatechin, and p-coumaric acid were detected only in the three pink peppers. PPB significantly suppressed lipopolysaccharide-induced reactive oxygen species production with increased Nrf2 translocation from cytosol to nucleus and heme oxygenase-1 expression. PPB and PPS significantly suppressed lipopolysaccharide-induced nitrite production and nitric oxide synthase expression by suppressing phosphorylation of p38 without affecting cell viability. Additionally, PPB and PPS significantly suppressed ultraviolet B-induced cyclooxygenase-2 expression by affecting the phosphorylation of ERK1/2 without cell cytotoxicity. These results suggest that pink pepper is a potential nutraceutical against oxidative and inflammatory stress.
Collapse
|
8
|
Dall’Acqua S, Sinan KI, Sut S, Ferrarese I, Etienne OK, Mahomoodally MF, Lobine D, Zengin G. Evaluation of Antioxidant and Enzyme Inhibition Properties of Croton hirtus L'Hér. Extracts Obtained with Different Solvents. Molecules 2021; 26:1902. [PMID: 33800622 PMCID: PMC8038089 DOI: 10.3390/molecules26071902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Croton hirtus L'Hér methanol extract was studied by NMR and two different LC-DAD-MSn using electrospray (ESI) and atmospheric pressure chemical ionization (APCI) sources to obtain a quali-quantitative fingerprint. Forty different phytochemicals were identified, and twenty of them were quantified, whereas the main constituents were dihydro α ionol-O-[arabinosil(1-6) glucoside] (133 mg/g), dihydro β ionol-O-[arabinosil(1-6) glucoside] (80 mg/g), β-sitosterol (49 mg/g), and isorhamnetin-3-O-rutinoside (26 mg/g). C. hirtus was extracted with different solvents-namely, water, methanol, dichloromethane, and ethyl acetate-and the extracts were assayed using different in vitro tests. The methanolic extracts presented the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) values. All the tested extracts exhibited inhibitory effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), with a higher activity observed for dichloromethane (AChE: 5.03 and BChE: 16.41 mgGALAE/g), while the methanolic extract showed highest impact against tyrosinase (49.83 mgKAE/g). Taken together, these findings suggest C. hirtus as a novel source of bioactive phytochemicals with potential for commercial development.
Collapse
Affiliation(s)
- Stefano Dall’Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; (K.I.S.); (G.Z.)
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Irene Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy; (S.S.); (I.F.)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, 00225 Abidjan, Côte d’Ivoire;
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius;
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius;
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42130 Konya, Turkey; (K.I.S.); (G.Z.)
| |
Collapse
|