1
|
Lee SY, Cho SS, Han KM, Lee MJ, Ahn T, Han B, Bae CS, Park DH. Korean Red Ginseng Ameliorates the Level of Serum Uric Acid via Downregulating URAT1 and Upregulating OAT1 and OAT3. Biol Pharm Bull 2024; 47:1876-1882. [PMID: 39551525 DOI: 10.1248/bpb.b24-00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hyperuricemia is caused by an imbalance of uric acid and is associated with many diseases. Although gout which is one of hyperuricemia-related diseases is curable with anti-hyperuricemic drugs some medications have side effects, such as hypersensitivity in patients with circulatory system disorders, flare reoccurrences, and increased cardiac risk. This study consisted of test tube (xanthine oxidase's inhibition) and animal study. Animal study using with ICR mice was composed of control, potassium oxonate-induced hyperuricemia, allopurinol, and 3 Korean red ginseng water extract (KRGWE) treatment groups (62.5; 125, and 500 mg/kg). We orally administered KRGWE once a day for 7 d to induce hyperuricemia and injected PO 2 h before the final KRGWE administration. We measured serum uric acid, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen, and creatinine and analyzed the genes such as organic anion transport (OAT)-1, OAT-3, and urate transport (URAT)-1. KRGWE dose-dependently controlled xanthine oxidase activity in the serum and completely inhibited serum uric acid. KRGWE affected both uric acid excretion-related and uric acid reabsorption-related gene expression. KRGWE stimulated uric acid excretion-related gene expressions, such as OAT-1 and OAT-3, but inhibited uric acid reabsorption-related gene expression, such as URAT-1. KRGWE improved liver and kidney functioning. KRGWE improved liver/kidney functioning and is promising anti-hyperuricemic agent which can control serum uric acid via downregulating URAT1 and upregulating OAT1 and OAT3.
Collapse
Affiliation(s)
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University
| | | | - Min-Jae Lee
- College of Veterinary Medicine, Kangwon National University
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University
| | | | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University
| | | |
Collapse
|
2
|
Huo R, Wang M, Wei X, Qiu Y. Research Progress on Anti-Inflammatory Mechanisms of Black Ginseng. Chem Biodivers 2023; 20:e202200846. [PMID: 36789670 DOI: 10.1002/cbdv.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.
Collapse
Affiliation(s)
- Ran Huo
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengyuan Wang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xu Wei
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ye Qiu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
3
|
Meinita MDN, Harwanto D, Choi JS. A concise review of the bioactivity and pharmacological properties of the genus Codium (Bryopsidales, Chlorophyta). JOURNAL OF APPLIED PHYCOLOGY 2022; 34:2827-2845. [PMID: 36259048 PMCID: PMC9559154 DOI: 10.1007/s10811-022-02842-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The genus Codium is one of the most important genera of marine green macroalgae. Its distribution is widespread worldwide and it has a high degree of diversity in species and characteristics. This genus plays an important ecological role in marine ecosystems as it is a primary producer. However, some species in the genus Codium are invasive species and may disturb the functioning of the ecosystem. Economically, Codium has promising potential as a source of diverse nutritional and pharmacological compounds. Codium is edible, has a high nutrient value, and is rich in bioactive compounds. Hence, some species of Codium have been consumed as food and used as herbal medicines in some Asian countries. In recent decades, studies of the bioactivity and pharmacological properties of the genus Codium have attracted the attention of scientists. This review aims to identify gaps in studies analyzing Codium that have been conducted in the past three decades by assessing published research articles on its bioactivity and pharmacological properties. Compounds obtained from Codium have demonstrated significant biological activities, such as immunostimulatory, anticoagulant, anticancer, anti-inflammatory, antioxidant, antiviral, antibacterial, antifungal, antitumor, anti-angiogenic, osteoprotective, and anti-obesity activities. This review provides information that can be used as a future guideline for sustainably utilizing the genus Codium.
Collapse
Affiliation(s)
- Maria Dyah Nur Meinita
- Seafood Research Center, Industry Academy Cooperation Foundation (IACF), Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan, 49277 Korea
- Faculty of Fisheries and Marine Science, Jenderal Soedirman University, Purwokerto, 53123 Indonesia
- Center for Maritime Bioscience Studies, Jenderal Soedirman University, Purwokerto, 53123 Indonesia
| | - Dicky Harwanto
- Seafood Research Center, Industry Academy Cooperation Foundation (IACF), Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan, 49277 Korea
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, 50275 Indonesia
| | - Jae-Suk Choi
- Seafood Research Center, Industry Academy Cooperation Foundation (IACF), Silla University, 606, Advanced Seafood Processing Complex, Wonyang-ro, Amnam-dong, Seo-gu, Busan, 49277 Korea
- Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, 53064 Gyeongsangnam-do Korea
| |
Collapse
|
4
|
Park SJ, Lee M, Kim D, Oh DH, Prasad KS, Eun S, Lee J. Echinacea purpurea Extract Enhances Natural Killer Cell Activity In Vivo by Upregulating MHC II and Th1-type CD4 + T Cell Responses. J Med Food 2021; 24:1039-1049. [PMID: 34668764 DOI: 10.1089/jmf.2021.k.0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There are a number of factors that cause immune system disruption, including infection caused by foreign antigens and decreased immunity due to excessive exercise, and public interest in improving immunity is growing. In this study, we investigate the immunomodulatory effects of Echinacea purpurea (E) extract in C57BL/6N mice that were exposed to a forced swimming exercise. There were six experimental groups as follows: wild-type, forced swimming exercise control, positive control (red ginseng, 300 mg/kg), and E (50, 100, and 200 mg/kg b.w.) groups. The mice were administered the E extract for 2 weeks. We detected chicoric acid, the active substance of E, through high-performance liquid chromatography and evaluated changes in the following laboratory values in response to forced swimming exercise using flow cytometry and ELISA: the major histocompatibility complex (MHC), CD4+ and CD8+ T cells, Th1 and Th2 cytokines, natural killer (NK) cell activity, and number of leukocytes. Oral E intake increased levels of MHC II, CD4+ T cells, Th1 cytokines, and NK cell activity. In addition, E treatment increased B cell proliferation, leukocyte counts, and immunoglobulin levels. Taken together, these results suggest that the chicoric acid of E can improve immune response by controlling NK cell activity, which may be a useful function for immunomodulation systems.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | - Dong Hwan Oh
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| | | | - Sangwon Eun
- R&D Division, Daehan Chemtech Co., Ltd., Seoul, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Yongin, Korea
| |
Collapse
|
5
|
Chen J, Li Z, Hua M, Sun Y. Protection by ginseng saponins against cyclophosphamide-induced liver injuries in rats by induction of cytochrome P450 expression and mediation of the l-arginine/nitric oxide pathway based on metabolomics. Phytother Res 2021; 35:3130-3144. [PMID: 33905145 DOI: 10.1002/ptr.6951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/29/2022]
Abstract
Ginseng saponins (GS) are the main active compounds in Panax ginseng and have been proven to be highly effective in attenuating the side effects of chemotherapy. However, there have been no reports on the mechanism of action of GS. Treatment with GS has certain benefits, including decreasing the toxicity levels in the liver [alanine aminotransferase (ALT), albumin (ALB), alkaline phosphatase (ALP), aspartate transaminase (AST)], reducing oxidative stress [malondialdehyde (MDA), nitric oxide (NO)], diminishing inflammatory factors [interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) levels], and augmenting the levels of glutathione (GSH) and superoxide dismutase (SOD). The pharmacokinetics study showed that the area under the curve from 0 to 24 hr (AUC 0-24 hr) of 4-ketocyclophosphamide (4-KetoCTX) and carboxyphosphamide (CPM) was significantly increased after GS treatment. This study found that GS treatment can reduce chloroacetaldehyde (CAA) production by affecting CYP3A4, CYP2B6, and CYP2C9 protein expression in the liver. For the metabolomics study, GS attenuated the abnormalities of amino acid metabolic pathways in CP-induced liver injuries of rats and significantly enhanced the l-arginine level while reducing the serum nitric oxide (NO) level. This outcome was confirmed by the inhibition of the activities of NO synthase in the liver of rats.
Collapse
Affiliation(s)
- Jianbo Chen
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Zhiman Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Mei Hua
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| | - Yinshi Sun
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agriculture Sciences, Changchun, China
| |
Collapse
|
6
|
Ratan ZA, Youn SH, Kwak YS, Han CK, Haidere MF, Kim JK, Min H, Jung YJ, Hosseinzadeh H, Hyun SH, Cho JY. Adaptogenic effects of Panax ginseng on modulation of immune functions. J Ginseng Res 2021; 45:32-40. [PMID: 33437154 PMCID: PMC7790873 DOI: 10.1016/j.jgr.2020.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Traditional medicinal practices have used natural products such as adaptogens to treat inflammatory, autoimmune, neurodegenerative, bacterial, and viral diseases since the early days of civilization. Panax ginseng Myer is a common herb used in East Asian countries for millennia, especially in Korea, China, and Japan. Numerous studies indicate that ginseng can modulate the immune system and thereby prevent diseases. Although the human immune system comprises many different types of cells, multiple studies suggest that each type of immune cell can be controlled or stimulated by ginseng or its derivatives. Provisional lists of ginseng's potential for use against viruses, bacteria, and other microorganisms suggest it may prove to be a valuable pharmaceutical resource, particularly if higher-quality evidence can be found. Here, we reviewed the role of ginseng as an immune-modulating agent in attempt to provide a valuable starting point for future studies on the herb and the human immune system.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- School of Health and Society, University of Wollongong, NSW, Australia
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Soo Hyun Youn
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Chang-Kyun Han
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | | | - Jin Kyeong Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - You-Jung Jung
- Biological Resources Utilization Department, National Institute of Biological Resources, Incheon, Republic of Korea
| | | | - Sun Hee Hyun
- R&D Headquarters, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
7
|
Lee SY, Kim MH, Kim SH, Ahn T, Kim SW, Kwak YS, Cho IH, Nah SY, Cho SS, Park KM, Park DH, Bae CS. Korean Red Ginseng affects ovalbumin-induced asthma by modulating IL-12, IL-4, and IL-6 levels and the NF-κB/COX-2 and PGE 2 pathways. J Ginseng Res 2020; 45:482-489. [PMID: 34295208 PMCID: PMC8282494 DOI: 10.1016/j.jgr.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 11/29/2022] Open
Abstract
Background Asthma is an incurable hyper-responsive disease of the pulmonary system that is caused by various allergens, including indoor and outdoor stimulators. According to the Global Asthma Network, 339 million people suffered from asthma in 2018, with particularly severe forms in children. Numerous treatments for asthma are available; however, they are frequently associated with adverse effects such as growth retardation, neurological disorders (e.g., catatonia, poor concentration, and insomnia), and physiological disorders (e.g., immunosuppression, hypertension, hyperglycemia, and osteoporosis). Methods Korean Red Ginseng has long been used to treat numerous diseases in many countries, and we investigated the anti-asthmatic effects and mechanisms of action of Korean Red Ginseng. Eighty-four BALB/c mice were assigned to 6 treatment groups: control, ovalbumin-induced asthma group, dexamethasone treatment group, and 3 groups treated with Korean Red Ginseng water extract (KRGWE) at 5, 25, or 50 mg/kg/day for 5 days. Anti-asthmatic effects of KRGWE were assessed based on biological changes, such as white blood cell counts and differential counts in the bronchoalveolar lavage fluid, serum IgE levels, and histopathological changes in the lungs, and by examining anti-asthmatic mechanisms, such as the cytokines associated with Th1, Th2, and Treg cells and inflammation pathways. Results KRGWE affected ovalbumin-induced changes, such as increased white blood cell counts, increased IgE levels, and morphological changes (mucous hypersecretion, epithelial cell hyperplasia, inflammatory cell infiltration) by downregulating cytokines such as IL-12, IL-4, and IL-6 via GATA-3 inactivation and suppression of inflammation via NF-κB/COX-2 and PGE2 pathways. Conclusion KRGWE is a promising drug for asthma treatment.
Collapse
Affiliation(s)
- Soon-Young Lee
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Min-Hee Kim
- College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Seung-Hyun Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Taeho Ahn
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Won Kim
- Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Yi-Seong Kwak
- Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Ik-Hyun Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University, Jeonnam, Republic of Korea
| | - Kyung Mok Park
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
| | - Dae-Hun Park
- College of Korean Medicine, Dongshin University, Naju, Jeonnam, Republic of Korea
- Corresponding author. College of Korean Medicine, Dongshin University, 67 Donsghindae-gil, Naju, Jeonnam, 58245, Republic of Korea.
| | - Chun-Sik Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
- Corresponding author. College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|