1
|
Kim YK, Cho M, Kang DJ. Anti-Inflammatory Response of New Postbiotics in TNF-α/IFN-γ-Induced Atopic Dermatitis-like HaCaT Keratinocytes. Curr Issues Mol Biol 2024; 46:6100-6111. [PMID: 38921035 PMCID: PMC11203040 DOI: 10.3390/cimb46060364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
This study examines the synergistic interaction between the immunomodulatory functions of lactic acid bacteria postbiotics and the anti-inflammatory properties of Smilax china L. extract through a combined fermentation process. Using atopic dermatitis (AD) as a model, characterized by an immune imbalance that leads to skin inflammation, we developed a fermented product, MB-2006, and compared its effects to those of the heat-killed probiotics Lactobacillus acidophilus (LAC) and Lactobacillus rhamnosus (LRH). Our experiments focused on elucidating the mechanism of action of MB-2006 in AD-like HaCaT keratinocyte cells, particularly its impact on the NF-κB pathway, a pivotal regulator of inflammation. MB-2006 proved more effective in reducing inflammation markers, such as IL-4 and thymic stromal lymphopoietin (TSLP), and in inhibiting NF-κB activation compared to LAC and LRH. Significantly, MB-2006 also reduced the expression of thymus- and activation-regulated chemokine (TARC), highlighting a synergistic effect that enhances its therapeutic potential. These results suggest that the combined fermentation of Smilax china L. extract with lactic acid bacteria enhanced both the anti-inflammatory and immunomodulatory effects, presenting a promising integrative approach to treating conditions like AD. Further studies are needed to validate these results in clinical settings and fully explore the potential of this synergistic fermentation process.
Collapse
Affiliation(s)
| | | | - Dae-Jung Kang
- MNH Bio Co., Ltd., Dongtan-Biz-Tower 609, Dongtancheomdansaneop 1-ro, Hwaseong-si 18469, Gyeonggi-do, Republic of Korea; (Y.-K.K.); (M.C.)
| |
Collapse
|
2
|
Xie H, Liang B, Zhu Q, Wang L, Li H, Qin Z, Zhang J, Liu Z, Wu Y. The role of PANoptosis in renal vascular endothelial cells: Implications for trichloroethylene-induced kidney injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116433. [PMID: 38714087 DOI: 10.1016/j.ecoenv.2024.116433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Trichloroethylene (TCE), a widely distributed environmental chemical contaminant, is extensively dispersed throughout the environment. Individuals who are exposed to TCE may manifest occupational medicamentose-like dermatitis due to trichloroethylene (OMDT). Renal impairment typically manifests in the initial phase of OMDT and is intricately linked to the disease progression and patient outcomes. Although recombinant human tumor necrosis factor-α receptor II fusion protein (rh TNFR:Fc) has been employed in the clinical management of OMDT, there was no substantial improvement in renal function observed in patients following one week of treatment. This study primarily examined the mechanism of TNFα- and IFNγ-induced endothelial cells (ECs) PANoptosis in TCE-induced kidney injury and hypothesized that the synergistic effect of TNFα and IFNγ could be the key factor affecting the efficacy of rh TNFR:Fc therapy in OMDT patients. A TCE-sensitized mouse model was utilized in this study to investigate the effects of TNFα and IFNγ neutralizing antibodies on renal vascular endothelial cell PANoptosis. The gene of interferon regulatory factor 1 (IRF1) in human umbilical vein endothelial cells (HUVEC) was silenced by using small interfering RNA (siRNA), and the cells were then treated with TNFα and IFNγ recombinant protein to investigate the mechanism of TNFα combined with IFNγ-induced PANoptosis in HUVEC. The findings indicated that mice sensitized to TCE exhibited increased levels of PANoptosis-related markers in renal endothelial cells, and treatment with TNFα and IFNγ neutralizing antibodies resulted in a significant reduction in PANoptosis and improvement in renal function. In vitro experiments demonstrated that silencing IRF1 could reverse TNFα and IFNγ-induced PANoptosis in endothelial cells. These results suggest that the efficacy of rh TNFR:Fc may be influenced by TNFα and IFNγ-mediated PANoptosis in kidney vascular endothelial cells. The joint application of TNFα and IFNγ neutralizing antibody represented a solid alternative to existing therapeutics.
Collapse
Affiliation(s)
- Haibo Xie
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China
| | - Bo Liang
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Qixing Zhu
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032 Anhui China; Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Lin Wang
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Hui Li
- Department of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518022, China
| | - Zhuohui Qin
- Department of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong 518022, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhibing Liu
- Department of Blood Transfusion, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yonggui Wu
- Department of Nephropathy, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Huang WC, Liou CJ, Shen SC, Hu S, Chao JCJ, Huang CH, Wu SJ. Punicalagin from pomegranate ameliorates TNF-α/IFN-γ-induced inflammatory responses in HaCaT cells via regulation of SIRT1/STAT3 axis and Nrf2/HO-1 signaling pathway. Int Immunopharmacol 2024; 130:111665. [PMID: 38367463 DOI: 10.1016/j.intimp.2024.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Punicalagin (PUN) was isolated from the peel of pomegranate (Punica granatum L.), is a polyphenol with anti-inflammatory, hepatoprotective, and antioxidant activities. However, it remains unclear whether PUN alleviates the inflammation and anti-inflammatory mechanisms in pro-inflammatory cytokines-induced human keratinocyte HaCaT cells. Here, we investigated that tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) mixture-stimulated HaCaT cells were treated with various concentrations of PUN, followed by analyzed the expression of inflammation-related mediators and evaluate anti-inflammatory-related pathways. Our results demonstrated that PUN ≤ 100 μM did not reduce HaCaT cell viability, and PUN ≥ 3 μM was sufficient to decrease interleukin-6 (IL-6), IL-8, monocyte chemoattractant protein-1 (MCP-1), chemokine ligand 5 (CCL5), CCL17 and CCL20 concentrations. We found that PUN ≥ 10 μM and ≥ 3 μM significantly increased sirtuin 1 (SIRT1) expression and inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, respectively. PUN downregulated inflammation-related proteins cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), enhanced nuclear factor erythroid-2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, PUN decreased intercellular adhesion molecule-1 (ICAM-1) expression and inhibited monocyte adhesion to inflamed HaCaT cells. PUN also suppressed inflammatory-related pathways, including mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways in TNF-α/IFN-γ- stimulated HaCat cells. Collectively, there is significant evidence that PUN has effective protective defenses against TNF-α/IFN-γ-induced skin inflammation by enhancing SIRT1 to mediate STAT3 and Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan, ROC; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan, ROC
| | - Chian-Jiun Liou
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan, ROC; Department of Nursing, Division of Basic Medical Sciences, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan, ROC
| | - Szu-Chuan Shen
- Graduate Program of Nutrition Science, National Taiwan Normal University, 88 Ting-Chow Rd, Sec 4, Taipei 11677, Taiwan, ROC
| | - Sindy Hu
- Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC; Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, ROC
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan, ROC
| | - Chun-Hsun Huang
- Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC; Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, ROC
| | - Shu-Ju Wu
- Department of Dermatology, Aesthetic Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan, ROC; Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan, ROC.
| |
Collapse
|