1
|
Fischer MA, Jia L, Edelblum KL. Type I IFN Induces TCR-dependent and -independent Antimicrobial Responses in γδ Intraepithelial Lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1380-1391. [PMID: 39311642 PMCID: PMC11493514 DOI: 10.4049/jimmunol.2400138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Intraepithelial lymphocytes (IELs) expressing the TCRγδ survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I IFN is a central component of an antiviral immune response, yet how these proinflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFN-γ production, yet low-level TCR activation synergizes with type I IFN to induce IFN-γ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of costimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFN-γ expression in a STAT4-dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFN-γ production in vivo. However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFN-γ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and may produce IFN-γ in a TCR-dependent manner under permissive conditions.
Collapse
Affiliation(s)
- Matthew A Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Luo Jia
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Mehran HS, Nady S, Kassab RB, Ahmed-Farid OA, El-Hennamy RE. Recombinant Interleukin - 2 2 Immunotherapy Ameliorates Inflammation and Promotes the Release of Monoamine Neurotransmitters in the Gut-Brain Axis of Schistosoma mansoni-Infected Mice. J Neuroimmune Pharmacol 2024; 19:37. [PMID: 39052165 DOI: 10.1007/s11481-024-10133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
Recombinant interleukin-22 (rIL-22) has been reported as a protective agent in murine models of diseases driven by epithelial injury. Parasites have a circadian rhythm and their sensitivity to a certain drug may vary during the day. Therefore, this work aimed to investigate the effect of rIL-22 administration at different times of the day on the inflammation, oxidative status, and neurotransmitter release in the gut-brain axis of the Schistosoma mansoni-infected mice. Sixty male BALB/c mice aged six weeks weighing 25-30 g were divided into a control group (injected intraperitoneally with PBS), mice infected with 80 ± 10 cercariae of S. mansoni (infected group) then injected intraperitoneally with PBS, and rIL-22 treated groups. rIL-22 was administrated intraperitoneally (400 ng/kg) either at the onset or offset of the light phase for 14 days. IL-22 administration reduced the levels of IL-1β, tumor necrosis factor-alpha (TNF-α), nuclear factor kappa beta (NF-κβ), and enhanced the production of IL-22 and IL-17. The treatment with IL-22 increased glutathione (GSH) and reduced malondialdehyde (MDA) and nitric oxide (NO) levels both in the ileum and brain. The B-cell lymphoma 2 (BCL2) protein level in the ileum was diminished after IL-22 administration. Brain-derived neurotrophic factor (BDNF) and neurotransmitter release (serotonin, 5HT, norepinephrine, NE, dopamine, DA, Glutamate, Glu, and -amino butyric acid, GABA) were improved by rIL-22. In conclusion, rIL-22 showed promising immunotherapy for inflammation, oxidative damage, and neuropathological signs associated with schistosomiasis. The efficacy of IL-22 increased significantly upon its administration at the time of light offset.
Collapse
Affiliation(s)
- Heba S Mehran
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Soad Nady
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | | | - Rehab E El-Hennamy
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
3
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Yao Y, Shang W, Bao L, Peng Z, Wu C. Epithelial-immune cell crosstalk for intestinal barrier homeostasis. Eur J Immunol 2024; 54:e2350631. [PMID: 38556632 DOI: 10.1002/eji.202350631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
The intestinal barrier is mainly formed by a monolayer of epithelial cells, which forms a physical barrier to protect the gut tissues from external insults and provides a microenvironment for commensal bacteria to colonize while ensuring immune tolerance. Moreover, various immune cells are known to significantly contribute to intestinal barrier function by either directly interacting with epithelial cells or by producing immune mediators. Fulfilling this function of the gut barrier for mucosal homeostasis requires not only the intrinsic regulation of intestinal epithelial cells (IECs) but also constant communication with immune cells and gut microbes. The reciprocal interactions between IECs and immune cells modulate mucosal barrier integrity. Dysregulation of barrier function could lead to dysbiosis, inflammation, and tumorigenesis. In this overview, we provide an update on the characteristics and functions of IECs, and how they integrate their functions with tissue immune cells and gut microbiota to establish gut homeostasis.
Collapse
Affiliation(s)
- Yikun Yao
- Shanghai Institute of Nutrition & Health, Chinese Academy of Science, Shanghai, China
| | - Wanjing Shang
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingyu Bao
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Zhaoyi Peng
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Yu X, Wang L, Niu Z, Zhu L. Controversial role of γδ T cells in colorectal cancer. Am J Cancer Res 2024; 14:1482-1500. [PMID: 38726287 PMCID: PMC11076236 DOI: 10.62347/hwmb1163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/29/2024] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most frequent type of cancer, and the second leading cause of cancer-related deaths worldwide. Current treatments for patients with CRC do not substantially improve the survival and quality of life of patients with advanced CRC, thus necessitating the development of new treatment strategies. The emergence of immunotherapy has revitalized the field, showing great potential in advanced CRC treatment. Owing to the ability of tumor cells to evade the immune system through major histocompatibility complex shedding and heterogeneous and low antigen spreading, only a few patients respond to immunotherapy. γδ T cells have heterogeneous structures and functions, and their key roles in immune regulation, tumor immunosurveillance, and specific primary immune responses have increasingly been recognized. γδ T cells recognize and kill CRC cells efficiently, thus inhibiting tumor progress through various mechanisms. However, γδ T cells can potentially promote tumor development and metastasis. Thus, given this dual role in prognosis, these cells can act as either a "friend" or "foe" of CRC. In this review, we explore the characteristics of γδ T cells and their functions in CRC, highlighting their application in immunotherapy.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People’s HospitalNo. 10 Qinyun Nan Street, Chengdu, Sichuan, The People’s Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou HospitalGuiyang, Guizhou, The People’s Republic of China
| | - Zhongxi Niu
- Department of Thoracic Surgery, The Third Medical Center of PLA General HospitalBeijing, The People’s Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center and Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan UniversityChengdu, Sichuan, The People’s Republic of China
| |
Collapse
|
6
|
Fischer MA, Jia L, Edelblum KL. Type I interferon induces TCR-dependent and -independent antimicrobial responses in γδ intraepithelial lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584444. [PMID: 38559228 PMCID: PMC10979951 DOI: 10.1101/2024.03.11.584444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Intraepithelial lymphocytes (IEL) expressing the γδ T cell receptor (TCR) survey the intestinal epithelium to limit the invasion of microbial pathogens. The production of type I interferon (IFN) is a central component of an antiviral immune response, yet how these pro-inflammatory cytokines contribute to γδ IEL effector function remains unclear. Based on the unique activation status of IELs, and their ability to bridge innate and adaptive immunity, we investigated the extent to which type I IFN signaling modulates γδ IEL function. Using an ex vivo culture model, we find that type I IFN alone is unable to drive IFNγ production, yet low level TCR activation synergizes with type I IFN to induce IFNγ production in murine γδ IELs. Further investigation into the underlying molecular mechanisms of co-stimulation revealed that TCRγδ-mediated activation of NFAT and JNK is required for type I IFN to promote IFNγ expression in a STAT4- dependent manner. Whereas type I IFN rapidly upregulates antiviral gene expression independent of a basal TCRγδ signal, neither tonic TCR triggering nor the presence of a TCR agonist was sufficient to elicit type I IFN-induced IFNγ production in vivo . However, bypassing proximal TCR signaling events synergized with IFNAR/STAT4 activation to induce γδ IEL IFNγ production. These findings indicate that γδ IELs contribute to host defense in response to type I IFN by mounting a rapid antimicrobial response independent of TCRγδ signaling, and under permissive conditions, produce IFNγ in a TCR-dependent manner.
Collapse
|
7
|
Majeed S, Hamad SK, Shah BR, Bielke L, Nazmi A. Natural intraepithelial lymphocyte populations rise during necrotic enteritis in chickens. Front Immunol 2024; 15:1354701. [PMID: 38455042 PMCID: PMC10917894 DOI: 10.3389/fimmu.2024.1354701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Intraepithelial lymphocytes (IEL) reside in the epithelium at the interface between the contents of the intestinal lumen and the sterile environment of the lamina propria. Because of this strategic location, IEL play a crucial role in various immunological processes, ranging from pathogen control to tissue stability. In mice and humans, IEL exhibit high diversity, categorized into induced IEL (conventional CD4 and CD8αβ T cells) and natural IEL (TCRαβCD8αα, TCRγδ, and TCRneg IEL). In chickens, however, the subpopulations of IEL and their functions in enteric diseases remain unclear. Thus, we conducted this study to investigate the role of IEL populations during necrotic enteritis (NE) in chickens. At 14 days of age, sixty-three Specific-pathogen-free (SPF) birds were randomly assigned to three treatments: Control (sham challenge), Eimeria maxima challenge (EM), and Eimeria maxima + Clostridium Perfringens (C. Perfringens) co-challenge (EM/CP). The EM and EM/CP birds were infected with Eimeria maxima at day 14 of age, and EM/CP birds were additionally orally inoculated with C. perfringens at days 18 and 19 of age. Birds were weighed at days 18, 20, and 26 of age to assess body weight gain (BWG). At 20 days of age (1 day-post C. perfringens infection; dpi), and 26 days of age (7 dpi), 7 birds per treatment were euthanized, and jejunum was harvested for gross lesion scores, IEL isolation, and gene expression. The EM/CP birds exhibited subclinical NE disease, lower BWG and shorter colon length. The Most changes in the IEL populations were observed at 1 dpi. The EM/CP group showed substantial increases in the total number of natural IEL subsets, including TCRαβ+CD4-CD8-, TCRαβ+CD8αα+, TCRγδ+, TCRneg and innate CD8α (iCD8α) cells by at least two-fold. However, by 7 dpi, only the number of TCRαβ+CD4-CD8- and TCRαβ+CD8αα+ IEL maintained their increase in the EM/CP group. The EM/CP group had significantly higher expression of proinflammatory cytokines (IL-1β and IFN-γ) and Osteopontin (OPN) in the jejunum at 1 dpi. These findings suggest that natural IEL with innate and innate-like functions might play a critical role in the host response during subclinical NE, potentially conferring protection against C. perfringens infection.
Collapse
Affiliation(s)
- Shuja Majeed
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Shaimaa K. Hamad
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Bikas R. Shah
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| | - Lisa Bielke
- Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ali Nazmi
- Department of Animal Sciences, College of Food Agriculture and Environmental Sciences, The Ohio State University, Wooster, OH, United States
- Food For Health Discovery Theme, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Lee J, Peesh P, Quaicoe V, Tan C, Banerjee A, Mooz P, Ganesh BP, Petrosino J, Bryan RM, McCullough LD, Venna VR. Estradiol mediates colonic epithelial protection in aged mice after stroke and is associated with shifts in the gut microbiome. Gut Microbes 2023; 15:2271629. [PMID: 37910478 PMCID: PMC10730206 DOI: 10.1080/19490976.2023.2271629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victoria Quaicoe
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick Mooz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert M. Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
9
|
Manfredi GF, Celsa C, John C, Jones C, Acuti N, Scheiner B, Fulgenzi CAM, Korolewicz J, Pinter M, Gennari A, Mauri FA, Pirisi M, Minisini R, Vincenzi F, Burlone M, Rigamonti C, Donadon M, Cabibbo G, D’Alessio A, Pinato DJ. Mechanisms of Resistance to Immunotherapy in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1955-1971. [PMID: 37941812 PMCID: PMC10629523 DOI: 10.2147/jhc.s291553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Systemic treatment for advanced hepatocellular carcinoma (HCC) has been revolutionized over the last few years following the approval of immune checkpoint inhibitors (ICI). Despite the promising survival extension seen with ICI combination regimens, responses are not universally seen and the optimal partner for programmed cell death 1 pathway inhibitors remains to be identified. Even fewer encouraging results have been demonstrated with ICI used for monotherapy. Several mechanisms of resistance have been described so far, involving characteristics of cancer cells (intrinsic mechanisms) and of the surrounding tumor microenvironment (extrinsic mechanisms). Factors related to therapy may also contribute to the development of resistance. Increasing research efforts are being dedicated to the discovery of novel approaches and targets to overcome resistance, some of which may be introduced into clinic in the future. Herein we describe a selection of resistance mechanisms that have been involved in impairing response to ICI and propose potential therapeutic approaches to overcome resistance.
Collapse
Affiliation(s)
- Giulia Francesca Manfredi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Ciro Celsa
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Section of Gastroenterology & Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
- Department of Surgical, Oncological and Oral Sciences (Di.chir.on.s.), University of Palermo, Palermo, Italy
| | - Chloe John
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Charlotte Jones
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Nicole Acuti
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claudia Angela Maria Fulgenzi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Department of Medical Oncology, University Campus Bio-Medico of Rome, Rome, Italy
| | - James Korolewicz
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alessandra Gennari
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Francesco A Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Mario Pirisi
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
| | - Michela Burlone
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Cristina Rigamonti
- Department of Translational Medicine, Università Del Piemonte Orientale, Novara, Italy
- Division of Internal Medicine, AOU Maggiore della Carità, Novara, Italy
| | - Matteo Donadon
- Department of Health Science, Università Del Piemonte Orientale, Novara, Italy
- Department of Surgery, University Maggiore Hospital della Carità, Novara, Italy
| | - Giuseppe Cabibbo
- Section of Gastroenterology & Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Antonio D’Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - David James Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
10
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
11
|
Di Sabatino A, Santacroce G, Rossi CM, Broglio G, Lenti MV. Role of mucosal immunity and epithelial-vascular barrier in modulating gut homeostasis. Intern Emerg Med 2023; 18:1635-1646. [PMID: 37402104 PMCID: PMC10504119 DOI: 10.1007/s11739-023-03329-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/25/2023] [Indexed: 07/05/2023]
Abstract
The intestinal mucosa represents the most extensive human barrier having a defense function against microbial and food antigens. This barrier is represented externally by a mucus layer, consisting mainly of mucins, antimicrobial peptides, and secretory immunoglobulin A (sIgA), which serves as the first interaction with the intestinal microbiota. Below is placed the epithelial monolayer, comprising enterocytes and specialized cells, such as goblet cells, Paneth cells, enterochromaffin cells, and others, each with a specific protective, endocrine, or immune function. This layer interacts with both the luminal environment and the underlying lamina propria, where mucosal immunity processes primarily take place. Specifically, the interaction between the microbiota and an intact mucosal barrier results in the activation of tolerogenic processes, mainly mediated by FOXP3+ regulatory T cells, underlying intestinal homeostasis. Conversely, the impairment of the mucosal barrier function, the alteration of the normal luminal microbiota composition (dysbiosis), or the imbalance between pro- and anti-inflammatory mucosal factors may result in inflammation and disease. Another crucial component of the intestinal barrier is the gut-vascular barrier, formed by endothelial cells, pericytes, and glial cells, which regulates the passage of molecules into the bloodstream. The aim of this review is to examine the various components of the intestinal barrier, assessing their interaction with the mucosal immune system, and focus on the immunological processes underlying homeostasis or inflammation.
Collapse
Affiliation(s)
- Antonio Di Sabatino
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy.
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy.
- Clinica Medica I, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Viale Golgi 19, 27100, Pavia, Italy.
| | - Giovanni Santacroce
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Carlo Maria Rossi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Giacomo Broglio
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, Italy
- First Department of Internal Medicine, San Matteo Hospital Foundation, Pavia, Italy
| |
Collapse
|
12
|
Huang HI, Xue Y, Jewell ML, Tan CY, Theriot B, Aggarwal N, Dockterman J, Lin YD, Schroeder EA, Wang D, Xiong N, Coers J, Shinohara ML, Surana NK, Hammer GE. A binary module for microbiota-mediated regulation of γδ17 cells, hallmarked by microbiota-driven expression of programmed cell death protein 1. Cell Rep 2023; 42:112951. [PMID: 37556321 PMCID: PMC10588736 DOI: 10.1016/j.celrep.2023.112951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Little is known about how microbiota regulate innate-like γδ T cells or how these restrict their effector functions within mucosal barriers, where microbiota provide chronic stimulation. Here, we show that microbiota-mediated regulation of γδ17 cells is binary, where microbiota instruct in situ interleukin-17 (IL-17) production and concomitant expression of the inhibitory receptor programmed cell death protein 1 (PD-1). Microbiota-driven expression of PD-1 and IL-17 and preferential adoption of a PD-1high phenotype are conserved for γδ17 cells across multiple mucosal barriers. Importantly, microbiota-driven PD-1 inhibits in situ IL-17 production by mucosa-resident γδ17 effectors, linking microbiota to their simultaneous activation and suppression. We further show the dynamic nature of this microbiota-driven module and define an inflammation-associated activation state for γδ17 cells marked by augmented PD-1, IL-17, and lipid uptake, thus linking the microbiota to dynamic subset-specific activation and metabolic remodeling to support γδ17 effector functions in a microbiota-dense tissue environment.
Collapse
Affiliation(s)
- Hsin-I Huang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yue Xue
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mark L Jewell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Chin Yee Tan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Barbara Theriot
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Nupur Aggarwal
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jacob Dockterman
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Erin A Schroeder
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Donghai Wang
- Department of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; Department of Medicine, Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Jörn Coers
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mari L Shinohara
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Neeraj K Surana
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Gianna Elena Hammer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Hsu UH, Chiang BL. γδ T Cells and Allergic Diseases. Clin Rev Allergy Immunol 2023; 65:172-182. [PMID: 37395986 DOI: 10.1007/s12016-023-08966-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
Gamma-delta (γδ) T cells play an essential role in allergic diseases and have emerged as a potential treatment target in recent decades. To clarify the effects of γδ T cells on atopic illnesses, we reviewed the literature on the physical roles and functions of various subsets of γδ T cells, including type 1 T helper (Th1)-like, type 2 T helper- (Th2)-like, and type 17 T helper (Th17)-like γδ T cells. Mouse Vγ1 T cells increase interleukin (IL)-4 levels and trigger B cell class switching and immunoglobulin E production. Meanwhile, mouse Vγ4 T cells and human CD8lowVδ1 T cells secrete interferon-γ and exert an anti-allergy effect similar to that of Th1 cells. Moreover, mouse Vγ6 T cells produce IL-17A, while Th17-like γδ T cells enhance neutrophil and eosinophil infiltration in the acute phase of inflammation, but exert anti-inflammatory effects in the chronic phase. Human Vγ9δ2 T cells may exhibit Th1- or Th2-like characteristics in response to certain types of stimulation. In addition, the microbiota can modulate epithelial γδ T cell survival through aryl hydrocarbon receptors; these γδ T cells play crucial roles in the repair of epithelial damage, antibacterial protection, antigen tolerance, and effects of dysbiosis on allergic diseases.
Collapse
Affiliation(s)
- Uei-Hsiang Hsu
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu City, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
14
|
Lu J, Martin CR, Claud EC. Neurodevelopmental outcome of infants who develop necrotizing enterocolitis: The gut-brain axis. Semin Perinatol 2023; 47:151694. [PMID: 36572620 PMCID: PMC9974904 DOI: 10.1016/j.semperi.2022.151694] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Necrotizing enterocolitis (NEC) poses a significant risk for neurodevelopmental impairment in extremely preterm infants. The gut microbiota shapes the development of the gut, immune system, and the brain; and dysbiosis drive neonatal morbidities including NEC. In this chapter, we delineate a gut-brain axis linking gut microbiota to the adverse neurological outcomes in NEC patients. We propose that in NEC, immaturity of the microbiome along with aberrant gut microbiota-driven immaturity of the gut barrier and immune system can lead to effects including systemic inflammation and circulating microbial mediators. This nexus of gut microbiota-driven systemic effects further interacts with a likewise underdeveloped blood-brain barrier to regulate neuroinflammation and neurodevelopment. Targeting deviant gut-brain axis signaling presents an opportunity to improve the neurodevelopmental outcomes of NEC patients.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pediatrics, Division of Biological Sciences, University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, United States
| | - Camilia R Martin
- Department of Pediatrics, Division of Newborn Medicine, Weill Cornell Medicine, New York, New York 10021, United States
| | - Erika C Claud
- Department of Pediatrics, Division of Biological Sciences, University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, United States.
| |
Collapse
|
15
|
Chen H, Wu X, Sun R, Lu H, Lin R, Gao X, Li G, Feng Z, Zhu R, Yao Y, Feng B, Liu Z. Dysregulation of CD177 + neutrophils on intraepithelial lymphocytes exacerbates gut inflammation via decreasing microbiota-derived DMF. Gut Microbes 2023; 15:2172668. [PMID: 36729914 PMCID: PMC9897772 DOI: 10.1080/19490976.2023.2172668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Neutrophils synergize with intestinal resident intraepithelial lymphocytes (IELs) to serve as the first-line defense and maintain intestinal homeostasis. However, the underlying mechanisms whereby neutrophils regulate IELs to inhibit intestinal inflammation are still not completely understood. Here, we found that depletion of neutrophils (especially CD177+ subset) caused expansion of colitogenic TCRγδ+CD8αα+ IELs, increased intestinal inflammation, and dysbiosis after dextran sulfate sodium exposure or Citrobacter rodentium infection in mice. scRNA-seq analysis revealed a pyroptosis-related gene signature and hyperresponsiveness to microbiota in TCRγδ+CD8αα+ IELs from colitic Cd177-/- mice. Microbiota-derived fumarate and its derivative dimethyl fumarate (DMF), as well as fumarate-producing microbiotas, decreased in the feces of colitic Cd177-/- mice. Elimination of dysbiosis by antibiotics treatment or co-housing procedure and DMF supplementation restrained TCRγδ+CD8αα+ IEL activation. Consistently, DMF significantly alleviated intestinal mucosal inflammation in mice through restricting gasdermin D (GSDMD)-induced pyroptosis of TCRγδ+CD8αα+ IELs. Therefore, our data reveal that neutrophils inhibit intestinal inflammation by promoting microbiota-derived DMF to regulate TCRγδ+CD8αα+ IEL activation in a GSDMD-mediated pyroptosis-dependent manner, and that DMF may serve as a therapeutic target for the management of intestinal inflammation.
Collapse
Affiliation(s)
- Huimin Chen
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruicong Sun
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiying Lu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ritian Lin
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Gao
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gengfeng Li
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yao Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
16
|
Wiarda JE, Loving CL. Intraepithelial lymphocytes in the pig intestine: T cell and innate lymphoid cell contributions to intestinal barrier immunity. Front Immunol 2022; 13:1048708. [PMID: 36569897 PMCID: PMC9772029 DOI: 10.3389/fimmu.2022.1048708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Intraepithelial lymphocytes (IELs) include T cells and innate lymphoid cells that are important mediators of intestinal immunity and barrier defense, yet most knowledge of IELs is derived from the study of humans and rodent models. Pigs are an important global food source and promising biomedical model, yet relatively little is known about IELs in the porcine intestine, especially during formative ages of intestinal development. Due to the biological significance of IELs, global importance of pig health, and potential of early life events to influence IELs, we collate current knowledge of porcine IEL functional and phenotypic maturation in the context of the developing intestinal tract and outline areas where further research is needed. Based on available findings, we formulate probable implications of IELs on intestinal and overall health outcomes and highlight key findings in relation to human IELs to emphasize potential applicability of pigs as a biomedical model for intestinal IEL research. Review of current literature suggests the study of porcine intestinal IELs as an exciting research frontier with dual application for betterment of animal and human health.
Collapse
Affiliation(s)
- Jayne E. Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States,*Correspondence: Crystal L. Loving,
| |
Collapse
|
17
|
Gui Y, Cheng H, Zhou J, Xu H, Han J, Zhang D. Development and function of natural TCR + CD8αα + intraepithelial lymphocytes. Front Immunol 2022; 13:1059042. [PMID: 36569835 PMCID: PMC9768216 DOI: 10.3389/fimmu.2022.1059042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
The complexity of intestinal homeostasis results from the ability of the intestinal epithelium to absorb nutrients, harbor multiple external and internal antigens, and accommodate diverse immune cells. Intestinal intraepithelial lymphocytes (IELs) are a unique cell population embedded within the intestinal epithelial layer, contributing to the formation of the mucosal epithelial barrier and serving as a first-line defense against microbial invasion. TCRαβ+ CD4- CD8αα+ CD8αβ- and TCRγδ+ CD4- CD8αα+ CD8αβ- IELs are the two predominant subsets of natural IELs. These cells play an essential role in various intestinal diseases, such as infections and inflammatory diseases, and act as immune regulators in the gut. However, their developmental and functional patterns are extremely distinct, and the mechanisms underlying their development and migration to the intestine are not fully understood. One example is that Bcl-2 promotes the survival of thymic precursors of IELs. Mature TCRαβ+ CD4- CD8αα+ CD8αβ- IELs seem to be involved in immune regulation, while TCRγδ+ CD4- CD8αα+ CD8αβ- IELs might be involved in immune surveillance by promoting homeostasis of host microbiota, protecting and restoring the integrity of mucosal epithelium, inhibiting microbiota invasion, and limiting excessive inflammation. In this review, we elucidated and organized effectively the functions and development of these cells to guide future studies in this field. We also discussed key scientific questions that need to be addressed in this area.
Collapse
Affiliation(s)
- Yuanyuan Gui
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingyang Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiajia Han
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Jiajia Han, ; Dunfang Zhang,
| |
Collapse
|
18
|
Wu X, Gu B, Yang H. The role of γδ T cells in the interaction between commensal and pathogenic bacteria in the intestinal mucosa. Int Rev Immunol 2022; 42:379-392. [PMID: 35583374 DOI: 10.1080/08830185.2022.2076846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
The intestinal mucosa is an important structure involved in resistance to pathogen infection. It is mainly composed of four barriers, which have different but interrelated functions. Pathogenic bacteria can damage these intestinal mucosal barriers. Here, we mainly review the mechanisms of pathogen damage to biological barriers. Most γδ T cells are located on the surface of the intestinal mucosa, with the ability to migrate and engage in crosstalk with microorganisms. Commensal bacteria are involved in the activation and migration of γδ T cells to monitor the invasion of pathogens. Pathogen invasion alters the migration pattern of γδ T cells. γδ T cells accelerate pathogen clearance and limit opportunistic invasion of commensal bacteria. By discussing these interactions among γδ T cells, commensal bacteria and pathogenic bacteria, we suggest that γδ T cells may link the interactions between commensal bacteria and pathogenic bacteria.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
19
|
Khairallah C, Chu TH, Qiu Z, Imperato JN, Yang D, Sheridan BS. The accumulation of Vγ4 T cells with aging is associated with an increased adaptive Vγ4 T cell response after foodborne Listeria monocytogenes infection of mice. Immun Ageing 2022; 19:19. [PMID: 35501808 PMCID: PMC9063344 DOI: 10.1186/s12979-022-00275-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND It is generally accepted that aging has detrimental effects on conventional T cell responses to systemic infections. However, most pathogens naturally invade the body through mucosal barriers. Although mucosal sites are highly enriched in unconventional immune sentinels like γδ T cells, little is currently known about the impact of aging on unconventional mucosal T cell responses. We previously established that foodborne infection with a mouse-adapted internalin A mutant Listeria monocytogenes (Lm) generates an adaptive intestinal memory CD44hi CD27neg Vγ4 T cells capable of co-producing IL-17A and IFNγ. Therefore, we used this model to evaluate the impact of aging on adaptive Vγ4 T cell responses elicited by foodborne infection. RESULTS Foodborne Lm infection of female Balb/c and C57BL/6 mice led to an increased adaptive CD44hi CD27neg Vγ4 T cell response associated with aging. Moreover, Lm-elicited CD44hi CD27neg Vγ4 T cells maintained diverse functional subsets despite some alterations favoring IL-17A production as mice aged. In contrast to the documented susceptibility of aged mice to intravenous Lm infection, mice contained bacteria after foodborne Lm infection suggesting that elevated bacterial burden was not a major factor driving the increased adaptive CD44hi CD27neg Vγ4 T cell response associated with mouse age. However, CD44hi CD27neg Vγ4 T cells accumulated in naïve mice as they aged suggesting that an increased precursor frequency contributes to the robust Lm-elicited mucosal response observed. Body mass did not appear to have a strong positive association with CD44hi CD27neg Vγ4 T cells within age groups. Although an increased adaptive CD44hi CD27neg Vγ4 T cell response may contribute to foodborne Lm resistance of C57BL/6 mice aged 19 or more months, neither anti-TCRδ or anti-IL-17A treatment impacted Lm colonization after primary infection. These results suggest that γδTCR signaling and IL-17A are dispensable for protection after primary foodborne Lm infection consistent with the role of conventional T cells during the early innate immune response to Lm. CONCLUSIONS Lm-elicited adaptive Vγ4 T cells appear resistant to immunosenescence and memory Vγ4 T cells could be utilized to provide protective immune functions during enteric infection of aged hosts. As such, oral immunization might offer an efficient therapeutic approach to generate unconventional memory T cells in the elderly.
Collapse
Affiliation(s)
- Camille Khairallah
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Timothy H. Chu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Zhijuan Qiu
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Jessica N. Imperato
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Daniella Yang
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| | - Brian S. Sheridan
- grid.36425.360000 0001 2216 9681Department of Microbiology and Immunology, Center for Infectious Diseases, Renaissance School of Medicine, Stony Brook University, 246 Centers for Molecular Medicine, Stony Brook, 11794 NY USA
| |
Collapse
|
20
|
Rampoldi F, Prinz I. Three Layers of Intestinal γδ T Cells Talk Different Languages With the Microbiota. Front Immunol 2022; 13:849954. [PMID: 35422795 PMCID: PMC9004464 DOI: 10.3389/fimmu.2022.849954] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
The mucosal surfaces of our body are the main contact site where the immune system encounters non-self molecules from food-derived antigens, pathogens, and symbiotic bacteria. γδ T cells are one of the most abundant populations in the gut. Firstly, they include intestinal intraepithelial lymphocytes, which screen and maintain the intestinal barrier integrity in close contact with the epithelium. A second layer of intestinal γδ T cells is found among lamina propria lymphocytes (LPL)s. These γδ LPLs are able to produce IL-17 and likely have functional overlap with local Th17 cells and innate lymphoid cells. In addition, a third population of γδ T cells resides within the Peyer´s patches, where it is probably involved in antigen presentation and supports the mucosal humoral immunity. Current obstacles in understanding γδ T cells in the gut include the lack of information on cognate ligands of the γδ TCR and an incomplete understanding of their physiological role. In this review, we summarize and discuss what is known about different subpopulations of γδ T cells in the murine and human gut and we discuss their interactions with the gut microbiota in the context of homeostasis and pathogenic infections.
Collapse
Affiliation(s)
- Francesca Rampoldi
- Institute of Medical Microbiology and Hygiene and Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.,Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Camarero C, De Andrés A, García-Hoz C, Roldán B, Muriel A, León F, Roy G. Assessment of Duodenal Intraepithelial Lymphocyte Composition (Lymphogram) for Accurate and Prompt Diagnosis of Celiac Disease in Pediatric Patients. Clin Transl Gastroenterol 2021; 12:e00426. [PMID: 34757327 PMCID: PMC8585297 DOI: 10.14309/ctg.0000000000000426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Quantitative and phenotypic analyses of duodenal intraepithelial lymphocytes (IELs) by flow cytometry (IEL lymphogram) confer specificity and enable the diagnosis even in unconventional presentations of celiac disease (CD). To evaluate the validity of the IEL lymphograms in the pediatric population for new insights into their use as biomarkers in the natural history of CD. METHODS We retrospectively included 1,211 children (602 with active CD, 92 on a gluten-free diet, 47 with potential CD, and 470 nonceliac controls) who required duodenal biopsies in this study. The cutoff values for IEL subsets were established to calculate the probability of disease according to the lymphogram. RESULTS A celiac lymphogram (a ≥15% increase in gamma-delta T-cell receptor IELs and a simultaneous ≤6% decrease in CD3 surface-negative [sCD3-]) IELs was strongly associated with the diagnosis of active CD, which was present in 89.7% of the confirmed patients. The remaining 10% of the celiac patients had a partial celiac lymphogram (≥15% increase gamma-delta T-cell receptor IELs or ≤6% decrease in sCD3- IELs), with lower diagnostic certainty. On a gluten-free diet, nearly 20% of the patients were indistinguishable from nonceliac subjects based on the lymphogram. In potential CD, a decrease in sCD3- IELs was a risk marker of progression to villous atrophy and a diagnosis of active CD. DISCUSSION If a biopsy is clinically indicated, the IEL lymphogram adds specificity to the histological findings, reducing diagnostic delays and misdiagnoses. The lymphogram is useful for monitoring the natural progression of the disease and predicting the transition from potential celiac to overt CD.
Collapse
Affiliation(s)
- Cristina Camarero
- Department of Pediatric Gastroenterology, University Hospital Ramón y Cajal, University of Alcal, Madrid, Spain;
| | - Ana De Andrés
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| | - Carlota García-Hoz
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| | - Belén Roldán
- Department of Pediatric Gastroenterology, University Hospital Ramón y Cajal, University of Alcal, Madrid, Spain;
| | - Alfonso Muriel
- Clinical Biostatistic Unit, University Hospital Ramón y Cajal IRYCIS, CIBERESP Nursing and Physiotherapy Department, University of Alcalá, Madrid, Spain;
| | | | - Garbiñe Roy
- Department of Immunology, University Hospital Ramón y Cajal, IRYCIS Madrid, Spain;
| |
Collapse
|
22
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
23
|
Fernández-Bañares F, Farrais S, Planella M, Melero J, López-Palacios N, Vivas S, Fernández-Salazar L, Lanzarote AP, Ruiz-Ramírez P, Aguilar-Criado M, Vidal J, Esquerda A, Serrano C, Núñez C. Coeliac Disease in Elderly Patients: Value of Coeliac Lymphogram for Diagnosis. Nutrients 2021; 13:nu13092984. [PMID: 34578861 PMCID: PMC8467369 DOI: 10.3390/nu13092984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Although a meta-analysis reported that the sensitivity of CD3+ TCRγδ+ cells for coeliac disease diagnosis was >93%, a recent study has suggested that sensitivity decreased to 65% in elderly patients. (2) Aim: To evaluate whether the sensitivity of intraepithelial lymphocyte cytometric patterns for coeliac disease diagnosis changes with advanced age. (3) Methods: We performed a multicentre study including 127 coeliac disease patients ≥ 50 years: 87 with baseline cytometry (45 aged 50–59 years; 23 aged 60–69 years; 19 aged ≥ 70 years), 16 also with a follow-up cytometry (on a gluten-free diet); and 40 with only follow-up cytometry. (4) Results: In Marsh 3 patients, a sensitivity of 94.7%, 88.9% and 86.7% was observed for each age group using a cut-off value of TCRγδ+ >10% (p = 0.27); and a sensitivity of 84.2%, 83.4% and 53.3% for a cut-off value >14% (p = 0.02; 50–69 vs. ≥70 years), with difference between applying a cut-off of 10% or 14% (p = 0.008). The TCRγδ+ count in the ≥70 years group was lower than in the other groups (p = 0.014). (5) Conclusion: In coeliac patients ≥ 70 years, the TCRγδ+ count decreases and the cut-off point of >10% is more accurate than >14%.
Collapse
Affiliation(s)
- Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, 08221 Terrassa, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence:
| | - Sergio Farrais
- Department of Gastroenterology, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.F.); (A.P.L.)
| | - Montserrat Planella
- Department of Gastroenterology, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain;
| | - Josefa Melero
- Department Immunology and Genetics, Hospital Universitario de Badajoz, 06080 Badajoz, Spain; (J.M.); (M.A.-C.)
| | - Natalia López-Palacios
- Department of Gastroenterology, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain;
| | - Santiago Vivas
- Department of Gastroenterology, Complejo Asistencial Universitario de León, 24071 León, Spain;
| | - Luis Fernández-Salazar
- Department of Gastroenterology, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud (SACYL), Facultad de Medicina, Universidad de Valladolid, 47002 Valladolid, Spain;
| | - Ana Pilar Lanzarote
- Department of Gastroenterology, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain; (S.F.); (A.P.L.)
| | - Pablo Ruiz-Ramírez
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, 08221 Terrassa, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Aguilar-Criado
- Department Immunology and Genetics, Hospital Universitario de Badajoz, 06080 Badajoz, Spain; (J.M.); (M.A.-C.)
| | - Judith Vidal
- Department of Flow Cytometry, CATLAB, 08232 Viladecavalls, Spain;
| | - Aureli Esquerda
- Department of Clinical Laboratory, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain;
| | - Cristina Serrano
- Department of Clinical Immunology, Hospital Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Concepción Núñez
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| |
Collapse
|
24
|
Kayama H, Okumura R, Takeda K. Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol 2021; 38:23-48. [PMID: 32340570 DOI: 10.1146/annurev-immunol-070119-115104] [Citation(s) in RCA: 338] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The gastrointestinal tract harbors numerous commensal bacteria, referred to as the microbiota, that benefit host health by digesting dietary components and eliminating pathogens. The intestinal microbiota maintains epithelial barrier integrity and shapes the mucosal immune system, balancing host defense and oral tolerance with microbial metabolites, components, and attachment to host cells. To avoid aberrant immune responses, epithelial cells segregate the intestinal microbiota from immune cells by constructing chemical and physical barriers, leading to the establishment of host-commensal mutualism. Furthermore, intestinal immune cells participate in the maintenance of a healthy microbiota community and reinforce epithelial barrier functions. Perturbations of the microbiota composition are commonly observed in patients with autoimmune diseases and chronic inflammatory disorders. An understanding of the intimate interactions between the intestinal microbiota, epithelial cells, and immune cells that are crucial for the maintenance of intestinal homeostasis might promote advances in diagnostic and therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.,Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; , , .,WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
The Immunomodulatory Effect of the Gut Microbiota in Kidney Disease. J Immunol Res 2021; 2021:5516035. [PMID: 34095319 PMCID: PMC8140847 DOI: 10.1155/2021/5516035] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
The human gut microbiota is a complex cluster composed of 100 trillion microorganisms, which holds a symbiotic relationship with the host under normal circumstances. Intestinal flora can facilitate the treatment of human metabolic dysfunctions and interact with the intestinal tract, which could influence intestinal tolerance, immunity, and sensitivity to inflammation. In recent years, significant interests have evolved on the association of intestinal microbiota and kidney diseases within the academic circle. Abnormal changes in intestinal microbiota, known as dysbiosis, can affect the integrity of the intestinal barrier, resulting in the bacterial translocation, production, and accumulation of dysbiotic gut-derived metabolites, such as urea, indoxyl sulfate (IS), and p-cresyl sulfate (PCS). These processes lead to the abnormal activation of immune cells; overproduction of antibodies, immune complexes, and inflammatory factors; and inflammatory cell infiltration that can directly or indirectly cause damage to the renal parenchyma. The aim of this review is to summarize the role of intestinal flora in the development and progression of several renal diseases, such as lupus nephritis, chronic kidney disease, diabetic nephropathy, and renal ischemia-reperfusion injury. Further research on these mechanisms should provide insights into the therapeutic potential of regulating intestinal flora and intervening related molecular targets for the abovementioned nephropathy.
Collapse
|
26
|
Abstract
The immune system has coevolved with extensive microbial communities living on barrier sites that are collectively known as the microbiota. It is increasingly clear that microbial antigens and metabolites engage in a constant dialogue with the immune system, leading to microbiota-specific immune responses that occur in the absence of inflammation. This form of homeostatic immunity encompasses many arms of immunity, including B cell responses, innate-like T cells, and conventional T helper and T regulatory responses. In this review we summarize known examples of innate-like T cell and adaptive immunity to the microbiota, focusing on fundamental aspects of commensal immune recognition across different barrier sites. Furthermore, we explore how this cross talk is established during development, emphasizing critical temporal windows that establish long-term immune function. Finally, we highlight how dysregulation of immunity to the microbiota can lead to inflammation and disease, and we pinpoint outstanding questions and controversies regarding immune system-microbiota interactions.
Collapse
Affiliation(s)
- Eduard Ansaldo
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20814, USA;
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20814, USA; .,Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20814, USA; .,Microbiome Program, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| |
Collapse
|
27
|
Xu L, Wu Z, Wang Y, Wang S, Shu C, Duan Z, Deng S. High-throughput sequencing identifies salivary microbiota in Chinese caries-free preschool children with primary dentition. J Zhejiang Univ Sci B 2021; 22:285-294. [PMID: 33835762 DOI: 10.1631/jzus.b2000554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The study aimed at identifying salivary microbiota in caries-free Chinese preschool children using high-throughput sequencing. METHODS Saliva samples were obtained from 35 caries-free preschool children (18 boys and 17 girls) with primary dentition, and 16S ribosomal DNA (rDNA) V3-V4 hypervariable regions of the microorganisms were analyzed using Illumina MiSeq. RESULTS At 97% similarity level, all of these reads were clustered into 334 operational taxonomic units (OTUs). Among these, five phyla (Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Candidate division TM7) and 13 genera (Streptococcus, Rothia, Granulicatella, Prevotella, Enterobacter, Veillonella, Neisseria, Staphylococcus, Janthinobacterium, Pseudomonas, Brevundimonas, Devosia, and Gemella) were the most dominant, constituting 99.4% and 89.9% of the salivary microbiota, respectively. The core salivary microbiome comprised nine genera (Actinomyces, Capnocytophaga, Gemella, Granulicatella, Lachnoanaerobaculum, Neisseria, Porphyromonas, Rothia,and Streptococcus). Analysis of microbial diversity and community structure revealed a similar pattern between male and female subjects. The difference in microbial community composition between them was mainly attributed to Neisseria (P=0.023). Furthermore, functional prediction revealed that the most abundant genes were related to amino acid transport and metabolism. CONCLUSIONS Our results revealed the diversity and composition of salivary microbiota in caries-free preschool children, with little difference between male and female subjects. Identity of the core microbiome, coupled with prediction of gene function, deepens our understanding of oral microbiota in caries-free populations and provides basic information for associating salivary microecology and oral health.
Collapse
Affiliation(s)
- Lei Xu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Zhifang Wu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Yuan Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Sa Wang
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Chang Shu
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
| | - Zhuhui Duan
- Department of Stomatology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang 471009, China
| | - Shuli Deng
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China.
| |
Collapse
|
28
|
Cox JR, Cruickshank SM, Saunders AE. Maintenance of Barrier Tissue Integrity by Unconventional Lymphocytes. Front Immunol 2021; 12:670471. [PMID: 33936115 PMCID: PMC8079635 DOI: 10.3389/fimmu.2021.670471] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces, as a first barrier with the environment are especially susceptible to damage from both pathogens and physical trauma. Thus, these sites require tightly regulated repair programs to maintain barrier function in the face of such insults. Barrier sites are also enriched for unconventional lymphocytes, which lack rearranged antigen receptors or express only a limited range of such receptors, such as ILCs (Innate Lymphoid Cells), γδ T Cells and MAIT (Mucosal-Associated Invariant T Cells). Recent studies have uncovered critical roles for unconventional lymphocytes in regulating mucosal barrier function, and, in particular, have highlighted their important involvement in barrier repair. The production of growth factors such as amphiregulin by ILC2, and fibroblast growth factors by γδ T cells have been shown to promote tissue repair at multiple barrier sites. Additionally, MAIT cells have been shown to exhibit pro-repair phenotypes and demonstrate microbiota-dependent promotion of murine skin healing. In this review we will discuss how immune responses at mucosal sites are controlled by unconventional lymphocytes and the ways in which these cells promote tissue repair to maintain barrier integrity in the skin, gut and lungs.
Collapse
Affiliation(s)
- Joshua R Cox
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Amy E Saunders
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
29
|
Inulin and Lycium barbarum polysaccharides ameliorate diabetes by enhancing gut barrier via modulating gut microbiota and activating gut mucosal TLR2+ intraepithelial γδ T cells in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Kuldanek S, Pasko B, DomBourian M, Annen K. Cellular Therapy in Pediatric Hematologic Malignancies. Clin Lab Med 2021; 41:121-132. [PMID: 33494880 DOI: 10.1016/j.cll.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in cellular therapies for pediatric patients have created many opportunities for improved survival with reduced morbidity. This article reviews current cellular therapies in pediatric hematological malignancy, including the most updated practices in hematopoietic stem cell transplant and the use of chimeric antigen receptor (CAR) therapy in T cells. Hematopoietic stem cell transplant has evolved with improvements in chemotherapy regimens, immunosuppression, and donor-matching options. Novel therapies in development which will likely further improve the options for patients are reviewed including Natural Killer, Regulatory T-cells and αβ depletion.
Collapse
Affiliation(s)
- Susan Kuldanek
- Hemophilia and Thrombosis Center, Center for Cancer and Blood Disorders, Children's Hospital Colorado, University of Colorado-Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Bryce Pasko
- Department of Pathology and Laboratory Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA; Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Melkon DomBourian
- Main Core Laboratory and Point of Care Testing, Department of Pathology and Laboratory Medicine, Children's Hospital Colorado, 13123 East 16th Avenue, B120, Aurora, CO 80045, USA; Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA
| | - Kyle Annen
- Department of Pathology and Laboratory Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA; Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
31
|
Yap YA, McLeod KH, McKenzie CI, Gavin PG, Davalos-Salas M, Richards JL, Moore RJ, Lockett TJ, Clarke JM, Eng VV, Pearson JS, Hamilton-Williams EE, Mackay CR, Mariño E. An acetate-yielding diet imprints an immune and anti-microbial programme against enteric infection. Clin Transl Immunology 2021; 10:e1233. [PMID: 33489123 PMCID: PMC7809703 DOI: 10.1002/cti2.1233] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/16/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives During gastrointestinal infection, dysbiosis can result in decreased production of microbially derived short‐chain fatty acids (SCFAs). In response to the presence of intestinal pathogens, we examined whether an engineered acetate‐ or butyrate‐releasing diet can rectify the deficiency of SCFAs and lead to the resolution of enteric infection. Methods We tested whether a high acetate‐ or butyrate‐producing diet (HAMSA or HAMSB, respectively) condition Citrobacterrodentium infection in mice and assess its impact on host‐microbiota interactions. We analysed the adaptive and innate immune responses, changes in gut microbiome function, epithelial barrier function and the molecular mechanism via metabolite sensing G protein‐coupled receptor 43 (GPR43) and IL‐22 expression. Results HAMSA diet rectified the deficiency in acetate production and protected against enteric infection. Increased SCFAs affect the expression of pathogen virulence genes. HAMSA diet promoted compositional and functional changes in the gut microbiota during infection similar to healthy microbiota from non‐infected mice. Bacterial changes were evidenced by the production of proteins involved in acetate utilisation, starch and sugar degradation, amino acid biosynthesis, carbohydrate transport and metabolism. HAMSA diet also induced changes in host proteins critical in glycolysis, wound healing such as GPX1 and epithelial architecture such as EZR1 and PFN1. Dietary acetate assisted in rapid epithelial repair, as shown by increased colonic Muc‐2, Il‐22, and anti‐microbial peptides. We found that acetate increased numbers of colonic IL‐22 producing TCRαβ+CD8αβ+ and TCRγδ+CD8αα+ intraepithelial lymphocytes expressing GPR43. Conclusion HAMSA diet may be an effective therapeutic approach for fighting inflammation and enteric infections and offer a safe alternative that may impact on human health.
Collapse
Affiliation(s)
- Yu Anne Yap
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Keiran H McLeod
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Craig I McKenzie
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Patrick G Gavin
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Mercedes Davalos-Salas
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - James L Richards
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Robert J Moore
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,School of Science RMIT University Bundoora VIC Australia
| | | | | | - Vik Ven Eng
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton, Melbourne VIC Australia
| | - Jaclyn S Pearson
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia.,Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton, Melbourne VIC Australia.,Department of Molecular and Translational Research Monash University Clayton, Melbourne VIC Australia
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute The University of Queensland Brisbane QLD Australia
| | - Charles R Mackay
- Department of Microbiology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| | - Eliana Mariño
- Department of Biochemistry and Molecular Biology Infection and Immunity Program Biomedicine Discovery Institute Monash University Clayton, Melbourne VIC Australia
| |
Collapse
|
32
|
Wilharm A, Brigas HC, Sandrock I, Ribeiro M, Amado T, Reinhardt A, Demera A, Hoenicke L, Strowig T, Carvalho T, Prinz I, Ribot JC. Microbiota-dependent expansion of testicular IL-17-producing Vγ6 + γδ T cells upon puberty promotes local tissue immune surveillance. Mucosal Immunol 2021; 14:242-252. [PMID: 32733025 PMCID: PMC7790758 DOI: 10.1038/s41385-020-0330-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/14/2020] [Indexed: 02/04/2023]
Abstract
γδT cells represent the majority of lymphocytes in several mucosal tissues where they contribute to tissue homoeostasis, microbial defence and wound repair. Here we characterise a population of interleukin (IL) 17-producing γδ (γδ17) T cells that seed the testis of naive C57BL/6 mice, expand at puberty and persist throughout adulthood. We show that this population is foetal-derived and displays a T-cell receptor (TCR) repertoire highly biased towards Vγ6-containing rearrangements. These γδ17 cells were the major source of IL-17 in the testis, whereas αβ T cells mostly provided interferon (IFN)-γ in situ. Importantly, testicular γδ17 cell homoeostasis was strongly dependent on the microbiota and Toll-like receptor (TLR4)/IL-1α/IL-23 signalling. We further found that γδ17 cells contributed to tissue surveillance in a model of experimental orchitis induced by intra-testicular inoculation of Listeria monocytogenes, as Tcrδ-/- and Il17-/- infected mice displayed higher bacterial loads than wild-type (WT) controls and died 3 days after infection. Altogether, this study identified a previously unappreciated foetal-derived γδ17 cell subset that infiltrates the testis at steady state, expands upon puberty and plays a crucial role in local tissue immune surveillance.
Collapse
Affiliation(s)
- Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Helena C Brigas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Miguel Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Amado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Annika Reinhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Abdi Demera
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Lisa Hoenicke
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| | - Julie C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
33
|
Fischer MA, Golovchenko NB, Edelblum KL. γδ T cell migration: Separating trafficking from surveillance behaviors at barrier surfaces. Immunol Rev 2020; 298:165-180. [PMID: 32845516 PMCID: PMC7968450 DOI: 10.1111/imr.12915] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/23/2022]
Abstract
γδ T cells are found in highest numbers at barrier surfaces throughout the body, including the skin, intestine, lung, gingiva, and uterus. Under homeostatic conditions, γδ T cells provide immune surveillance of the epidermis, intestinal, and oral mucosa, whereas the presence of pathogenic microorganisms in the dermis or lungs elicits a robust γδ17 response to clear the infection. Although T cell migration is most frequently defined in the context of trafficking, analysis of specific migratory behaviors of lymphocytes within the tissue microenvironment can provide valuable insight into their function. Intravital imaging and computational analyses have been used to define "search" behavior associated with conventional αβ T cells; however, based on the known role of γδ T cells as immune sentinels at barrier surfaces and their TCR-independent functions, we put forth the need to classify distinct migratory patterns that reflect the surveillance capacity of these unconventional lymphocytes. This review will focus on how γδ T cells traffic to various barrier surfaces and how recent investigation into their migratory behavior has provided unique insight into the contribution of γδ T cells to barrier immunity.
Collapse
Affiliation(s)
- Matthew A. Fischer
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Natasha B. Golovchenko
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Karen L. Edelblum
- Center for Immunity and Inflammation, Department of Pathology, Immunology & Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ
| |
Collapse
|
34
|
Vandereyken M, James OJ, Swamy M. Mechanisms of activation of innate-like intraepithelial T lymphocytes. Mucosal Immunol 2020; 13:721-731. [PMID: 32415229 PMCID: PMC7434593 DOI: 10.1038/s41385-020-0294-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 02/04/2023]
Abstract
Intraepithelial T lymphocytes (T-IEL) contain subsets of innate-like T cells that evoke innate and adaptive immune responses to provide rapid protection at epithelial barrier sites. In the intestine, T-IEL express variable T cell antigen receptors (TCR), with unknown antigen specificities. Intriguingly, they also express multiple inhibitory receptors, many of which are normally found on exhausted or antigen-experienced T cells. This pattern suggests that T-IEL are antigen-experienced, yet it is not clear where, and in what context, T-IEL encounter TCR ligands. We review recent evidence indicating TCR antigens for intestinal innate-like T-IEL are found on thymic or intestinal epithelium, driving agonist selection of T-IEL. We explore the contributions of the TCR and various co-stimulatory and co-inhibitory receptors in activating T-IEL effector functions. The balance between inhibitory and activating signals may be key to keeping these highly cytotoxic, rapidly activated cells in check, and key to harnessing their immune surveillance potential.
Collapse
Affiliation(s)
- Maud Vandereyken
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Olivia J James
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Mahima Swamy
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
35
|
Sumida H. Recent advances in roles of G-protein coupled receptors in intestinal intraepithelial lymphocytes. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 39:77-82. [PMID: 32775124 PMCID: PMC7392907 DOI: 10.12938/bmfh.2019-053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Intestinal intraepithelial lymphocytes (IELs) potentially provide the first line of immune defense against enteric pathogens. In addition, there is growing evidence supporting the
involvement of IELs in the pathogenesis of gut disorders such as inflammatory bowel diseases. Various kinds of molecules are involved in the dynamics of IELs, such as homing to the
intestinal epithelium and retention in the intestinal mucosa. G protein-coupled receptors (GPCRs) comprise the largest family of cell surface receptors and regulate many biological
responses. Although some GPCRs, like CCR9, have been implicated to have roles in IEL homing, little is still known regarding the functional roles of GPCRs in IEL biology. In this
review, we provide a concise overview of recent advances in the roles of novel GPCRs like GPR55 and GPR18 in the dynamics of IELs.
Collapse
Affiliation(s)
- Hayakazu Sumida
- 1Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
36
|
Ravens S, Fichtner AS, Willers M, Torkornoo D, Pirr S, Schöning J, Deseke M, Sandrock I, Bubke A, Wilharm A, Dodoo D, Egyir B, Flanagan KL, Steinbrück L, Dickinson P, Ghazal P, Adu B, Viemann D, Prinz I. Microbial exposure drives polyclonal expansion of innate γδ T cells immediately after birth. Proc Natl Acad Sci U S A 2020; 117:18649-18660. [PMID: 32690687 PMCID: PMC7414158 DOI: 10.1073/pnas.1922588117] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Starting at birth, the immune system of newborns and children encounters and is influenced by environmental challenges. It is still not completely understood how γδ T cells emerge and adapt during early life. Studying the composition of T cell receptors (TCRs) using next-generation sequencing (NGS) in neonates, infants, and children can provide valuable insights into the adaptation of T cell subsets. To investigate how neonatal γδ T cell repertoires are shaped by microbial exposure after birth, we monitored the γ-chain (TRG) and δ-chain (TRD) repertoires of peripheral blood T cells in newborns, infants, and young children from Europe and sub-Saharan Africa. We identified a set of TRG and TRD sequences that were shared by all children from Europe and Africa. These were primarily public clones, characterized by simple rearrangements of Vγ9 and Vδ2 chains with low junctional diversity and usage of non-TRDJ1 gene segments, reminiscent of early ontogenetic subsets of γδ T cells. Further profiling revealed that these innate, public Vγ9Vδ2+ T cells underwent an immediate TCR-driven polyclonal proliferation within the first 4 wk of life. In contrast, γδ T cells using Vδ1+ and Vδ3+TRD rearrangements did not significantly expand after birth. However, different environmental cues may lead to the observed increase of Vδ1+ and Vδ3+TRD sequences in the majority of African children. In summary, we show how dynamic γδ TCR repertoires develop directly after birth and present important differences among γδ T cell subsets.
Collapse
MESH Headings
- Africa South of the Sahara
- Bacteria/immunology
- Child
- Child, Preschool
- Europe
- Gene Rearrangement, T-Lymphocyte/genetics
- Gene Rearrangement, T-Lymphocyte/immunology
- Humans
- Infant
- Infant, Newborn
- Longitudinal Studies
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Sarina Ravens
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany;
- Cluster of Excellence RESIST - Resolving Infection Susceptibility (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Alina S Fichtner
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Dennis Torkornoo
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Sabine Pirr
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Jennifer Schöning
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
| | - Malte Deseke
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Bubke
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Beverly Egyir
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Katie L Flanagan
- Vaccines and Immunity Theme, Medical Research Council Unit, Fajara, The Gambia
- School of Medicine, University of Tasmania, Launceston, TAS 7250, Australia
- School of Health & Biomedical Science, RMIT University, Melbourne, VIC 3083, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Paul Dickinson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Peter Ghazal
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Ghana
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence RESIST - Resolving Infection Susceptibility (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- PRIMAL (priming immunity at the beginning of life) Consortium, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence RESIST - Resolving Infection Susceptibility (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
37
|
Sanidad KZ, Zeng MY. Neonatal gut microbiome and immunity. Curr Opin Microbiol 2020; 56:30-37. [PMID: 32634598 PMCID: PMC8729197 DOI: 10.1016/j.mib.2020.05.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/22/2022]
Abstract
Early life is a critical time window for the neonatal gut to be progressively populated with different bacterial species that collectively promote gut maturation. A fully developed and healthy gut microbiome in neonates is an important driver for the development of other aspects of health. Unlike the relatively stable gut microbiome in adults, the developing gut microbiome in neonates exhibits higher plasticity and adaptability. This also underscores the unique window of opportunity for intervention or preventive measures to improve long-term health through modulations of the gut microbiome in early life. Better understanding of the neonatal gut microbiome - how it arises and how it impacts immune cell development - will help us appreciate the underpinnings of immune-related diseases. Here, we examine recent findings on the neonatal gut microbiome and discuss their implications for understanding this important driver of the maturation of the immune system and immunity against infections in early life.
Collapse
Affiliation(s)
- Katherine Z Sanidad
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York City, NY, United States
| | - Melody Y Zeng
- Drukier Institute for Children's Health, Weill Cornell Medicine, New York City, NY, United States; Department of Pediatrics, Weill Cornell Medicine, New York City, NY, United States.
| |
Collapse
|
38
|
The link “Cancer and autoimmune diseases” in the light of microbiota: Evidence of a potential culprit. Immunol Lett 2020; 222:12-28. [DOI: 10.1016/j.imlet.2020.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
|
39
|
Effect of Probiotics and Herbal Products on Intestinal Histomorphological and Immunological Development in Piglets. Vet Med Int 2020; 2020:3461768. [PMID: 32373310 PMCID: PMC7196157 DOI: 10.1155/2020/3461768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/25/2020] [Indexed: 01/21/2023] Open
Abstract
The aim of the study was to evaluate the effect of probiotics and herbal products on the intestinal histomorphological and immunological development in piglets. Accordingly, 2-week-old piglets were allocated in 4 groups: C (basal diet), Pro (basal diet + probiotics), Pro+B (basal diet + probiotics + buckwheat bran), and H (powder of herbs). After 6 weeks of the experiment, 4 piglets from each experimental group were randomly selected and slaughtered at a slaughterhouse. Samples of tissue and digestive content from the jejunum and colon were collected for bacteriological, histological, and immunohistochemical examination. The results showed that probiotics increased the number of Lactobacillus spp. in the small (p < 0.05) and large intestines. The intestinal histomorphology was improved (p < 0.05) in all experimental groups by an increased villus height, VH : CD ration, colon crypt depth, and number of Ki-67+ epithelial cells. A higher number (p < 0.05) of goblet cells and their acidification were observed in group Pro, while the density of goblet cells was decreased by the herbs. Probiotics increased (p < 0.05) the number of intraepithelial lymphocytes (IELs), density of CD3+ cells in Peyer's patches (PPs), and lamina propria (LP). In group H, a dual effect on the CD3+ cell distribution was observed. The herbs reduced (p < 0.05) the number of IELs and CD3+ in LP but increased the distribution of CD3+ cells in PPs. In the colon, herbs increased CD3+ cells in LP as well. It suggests that probiotics and herbs had influence on the intestinal histomorphology and the ability to modulate the mucosal immune system; however, the combination of probiotics and buckwheat bran was not so convincing, probably due to the inhibitory effect of the buckwheat bran on the probiotics used.
Collapse
|
40
|
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol 2020; 72:558-577. [PMID: 31622696 DOI: 10.1016/j.jhep.2019.10.003] [Citation(s) in RCA: 972] [Impact Index Per Article: 243.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/14/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
The gut-liver axis refers to the bidirectional relationship between the gut and its microbiota, and the liver, resulting from the integration of signals generated by dietary, genetic and environmental factors. This reciprocal interaction is established by the portal vein which enables transport of gut-derived products directly to the liver, and the liver feedback route of bile and antibody secretion to the intestine. The intestinal mucosal and vascular barrier is the functional and anatomical structure that serves as a playground for the interactions between the gut and the liver, limiting the systemic dissemination of microbes and toxins while allowing nutrients to access the circulation and to reach the liver. The control of microbial communities is critical to maintaining homeostasis of the gut-liver axis, and as part of this bidirectional communication the liver shapes intestinal microbial communities. Alcohol disrupts the gut-liver axis at multiple interconnected levels, including the gut microbiome, mucus barrier, epithelial barrier and at the level of antimicrobial peptide production, which increases microbial exposure and the proinflammatory environment of the liver. Growing evidence indicates the pathogenetic role of microbe-derived metabolites, such as trimethylamine, secondary bile acids, short-chain fatty acids and ethanol, in the pathogenesis of non-alcoholic fatty liver disease. Cirrhosis by itself is associated with profound alterations in gut microbiota and damage at the different levels of defence of the intestinal barrier, including the epithelial, vascular and immune barriers. The relevance of the severe disturbance of the intestinal barrier in cirrhosis has been linked to translocation of live bacteria, bacterial infections and disease progression. The identification of the elements of the gut-liver axis primarily damaged in each chronic liver disease offers possibilities for intervention. Beyond antibiotics, upcoming therapies centred on the gut include new generations of probiotics, bacterial metabolites (postbiotics), faecal microbial transplantation, and carbon nanoparticles. FXR-agonists target both the gut and the liver and are currently being tested in different liver diseases. Finally, synthetic biotic medicines, phages that target specific bacteria or therapies that create physical barriers between the gut and the liver offer new therapeutic approaches.
Collapse
Affiliation(s)
- Agustín Albillos
- Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, IRYCIS, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Andrea de Gottardi
- Hepatology, Inselspital and Department of Biomedical Research, University of Bern, Switzerland; Servizio di Gastroenterología e Epatologia, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, Lugano, Switzerland
| | - María Rescigno
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele (Mi), Italy; Humanitas Clinical and Research Center, IRCCS, 20089 Rozzano (Mi), Italy
| |
Collapse
|
41
|
Burge K, Bergner E, Gunasekaran A, Eckert J, Chaaban H. The Role of Glycosaminoglycans in Protection from Neonatal Necrotizing Enterocolitis: A Narrative Review. Nutrients 2020; 12:nu12020546. [PMID: 32093194 PMCID: PMC7071410 DOI: 10.3390/nu12020546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/22/2022] Open
Abstract
Necrotizing enterocolitis, a potentially fatal intestinal inflammatory disorder affecting primarily premature infants, is a significant cause of morbidity and mortality in neonates. While the etiology of the disease is, as yet, unknown, a number of risk factors for the development of necrotizing enterocolitis have been identified. One such risk factor, formula feeding, has been shown to contribute to both increased incidence and severity of the disease. The protective influences afforded by breastfeeding are likely attributable to the unique composition of human milk, an extremely potent, biologically active fluid. This review brings together knowledge on the pathogenesis of necrotizing enterocolitis and current thinking on the instrumental role of one of the more prominent classes of bioactive components in human breast milk, glycosaminoglycans.
Collapse
MESH Headings
- Breast Feeding
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/pathology
- Enterocolitis, Necrotizing/prevention & control
- Female
- Glycosaminoglycans/pharmacology
- Humans
- Infant Formula/adverse effects
- Infant, Newborn
- Infant, Premature, Diseases/etiology
- Infant, Premature, Diseases/pathology
- Infant, Premature, Diseases/prevention & control
- Male
- Milk, Human/chemistry
- Protective Agents/pharmacology
- Risk Factors
Collapse
|
42
|
Aversa F, Pierini A, Ruggeri L, Martelli MF, Velardi A. The Evolution of T Cell Depleted Haploidentical Transplantation. Front Immunol 2019; 10:2769. [PMID: 31827475 PMCID: PMC6890606 DOI: 10.3389/fimmu.2019.02769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Work on bone marrow transplantation from haploidentical donor has been proceeding for over 20 years all over the world and new transplant procedures have been developed. To control both graft rejection and graft vs. host disease, some centers have preferred to enhance the intensity of the conditioning regimens and the post-transplant immune suppression in the absence of graft manipulation; others have concentrated on manipulating the graft in the absence of any additional post-transplant immune suppressive agent. Due to the current high engraftment rates, the low incidence of graft-vs.-host disease and regimen related mortality, transplantation from haploidentical donors have been progressively offered even to elderly patients. Overall, survivals compare favorably with reports on transplants from unrelated donors. Further improvements will come with successful implementation of strategies to enhance post-transplant immune reconstitution and to prevent leukemia relapse.
Collapse
Affiliation(s)
- Franco Aversa
- Hematology and Bone Marrow Transplantation Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Pierini
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Loredana Ruggeri
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Massimo Fabrizio Martelli
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Andrea Velardi
- Division of Hematology and Clinical Immunology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
43
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
44
|
Breyner NM, Vilas Boas PB, Fernandes G, de Carvalho RD, Rochat T, Michel ML, Chain F, Sokol H, de Azevedo M, Myioshi A, Azevedo VA, Langella P, Bermúdez-Humarán LG, Chatel JM. Oral delivery of pancreatitis-associated protein by Lactococcus lactis displays protective effects in dinitro-benzenesulfonic-acid-induced colitis model and is able to modulate the composition of the microbiota. Environ Microbiol 2019; 21:4020-4031. [PMID: 31325218 PMCID: PMC6899824 DOI: 10.1111/1462-2920.14748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/14/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides secreted by intestinal immune and epithelial cells are important effectors of innate immunity. They play an essential role in the maintenance of intestinal homeostasis by limiting microbial epithelium interactions and preventing unnecessary microbe‐driven inflammation. Pancreatitis‐associated protein (PAP) belongs to Regenerating islet‐derived III proteins family and is a C‐type (Ca+2 dependent) lectin. PAP protein plays a protective effect presenting anti‐inflammatory properties able to reduce the severity of colitis, preserving gut barrier and epithelial inflammation. Here, we sought to determine whether PAP delivered at intestinal lumen by recombinant Lactococcus lactis strain (LL‐PAP) before and after chemically induced colitis is able to reduce the severity in two models of colitis. After construction and characterization of our recombinant strains, we tested their effects in dinitro‐benzenesulfonic‐acid (DNBS) and Dextran sulfate sodium (DSS) colitis model. After the DNBS challenge, mice treated with LL‐PAP presented less severe colitis compared with PBS and LL‐empty‐treated mice groups. After the DSS challenge, no protective effects of LL‐PAP could be detected. We determined that after 5 days administration, LL‐PAP increase butyrate producer's bacteria, especially Eubacterium plexicaudatum. Based on our findings, we hypothesize that a treatment with LL‐PAP shifts the microbiota preventing the severity of colon inflammation in DNBS colitis model. These protective roles of LL‐PAP in DNBS colitis model might be through intestinal microbiota modulation.
Collapse
Affiliation(s)
- Natalia M Breyner
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Priscilla Bagano Vilas Boas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | | | | | | | - Marie-Laure Michel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Florian Chain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marcela de Azevedo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anderson Myioshi
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Vasco A Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
45
|
Abstract
The prevalence of celiac disease (CeD) has increased in the last decades, suggesting a role for environmental factors in addition to gluten. Several cohort studies have shown that different gastrointestinal infections increase CeD risk. However, the mechanisms by which microbes participate in CeD have remained elusive. Recently, with the use of animal models, both viral and bacterial opportunistic pathogens were shown to induce immune activation relevant for CeD. The hypothesis that viral and/or bacterial infections can contribute to immune activation and breakdown of tolerance toward gluten in genetically susceptible individuals is therefore reinforced. Here, we discuss the evidence regarding the role of microbes in promoting CeD and the specific pathways triggered by microbes that could participate in CeD pathogenesis. Understanding these pathways will allow us to develop optimal microbiota-modulating strategies to help prevent CeD.
Collapse
Affiliation(s)
- Alberto Caminero
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Elena F. Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Celiac disease (CD) is an autoimmune enteropathy triggered by gluten. The purpose of this review is to examine the major genetic and environmental factors that contribute to CD pathogenesis. RECENT FINDINGS We reviewed the current state of knowledge on the genetic and environmental components that play a role in CD onset. A genome-wide association study (GWAS) analysis has highlighted several genes other than HLA involved in CD. Recent studies have shown that HLA haplotype influences the microbiome composition in infants and that dysbiosis in the intestinal microflora, in turn, contributes to loss of tolerance to gluten. Recently, observational studies have discussed the hypothesis stating that breast-feeding had a protective role against CD onset. CD etiology is influenced by genetic and environmental factors. A better understanding of these components would deepen our knowledge on the mechanisms that lead to loss of tolerance and could help in developing a more "personalized medicine."
Collapse
|
47
|
Abstract
GOALS To validate cut-off values of CD3 T-cell receptor gamma-delta chain (TCRγδ) intraepithelial lymphocyte (IEL) in the (differential) diagnosis of celiac disease (CD). BACKGROUND CD is characterized by an increase in gamma-delta IEL (CD3TCRγδ IEL). STUDY Percentages were determined by flow cytometric analysis of IELs from small bowel biopsies in 213 CD and 13 potential CD (PCD) patients and in total 112 controls. A cut-off value for percentages of CD3TCRγδ IEL to differentiate active CD and controls was obtained from a receiver operating characteristic curve and implemented in controls and PCD patients. RESULTS Percentage of CD3TCRγδ IEL was significantly increased in the majority of CD patients, irrespective of the presence of villous atrophy. A cut-off value of 14% for CD3TCRγδ IEL resulted in 66.3% sensitivity and 96.6% specificity for CD diagnosis (area under the curve, 88.6%). CONCLUSIONS A percentage of ≥14% CD3TCRγδ IEL has a high specificity for CD diagnosis and can be of diagnostic help in cases where diagnosis is not straightforward.
Collapse
|
48
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
49
|
Van Kaer L, Olivares-Villagómez D. Development, Homeostasis, and Functions of Intestinal Intraepithelial Lymphocytes. THE JOURNAL OF IMMUNOLOGY 2019; 200:2235-2244. [PMID: 29555677 PMCID: PMC5863587 DOI: 10.4049/jimmunol.1701704] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
The intestine is continuously exposed to commensal microorganisms, food, and environmental agents and also serves as a major portal of entry for many pathogens. A critical defense mechanism against microbial invasion in the intestine is the single layer of epithelial cells that separates the gut lumen from the underlying tissues. The barrier function of the intestinal epithelium is supported by cells and soluble factors of the intestinal immune system. Chief among them are intestinal intraepithelial lymphocytes (iIELs), which are embedded in the intestinal epithelium and represent one of the single largest populations of lymphocytes in the body. Compared with lymphocytes in other parts of the body, iIELs exhibit unique phenotypic, developmental, and functional properties that reflect their key roles in maintaining the intestinal epithelial barrier. In this article, we review the biology of iIELs in supporting normal health and how their dysregulation can contribute to disease.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
50
|
Zhang Z, Pu A, Yu M, Xiao W, Sun L, Cai Y, Yang H. Aryl hydrocarbon receptor activation modulates γδ intestinal intraepithelial lymphocytes and protects against ischemia/reperfusion injury in the murine small intestine. Mol Med Rep 2019; 19:1840-1848. [PMID: 30628695 DOI: 10.3892/mmr.2019.9823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/26/2018] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis of intestinal ischemia/reperfusion (I/R) is associated with dysregulation of the intestinal immune system. The aryl hydrocarbon receptor (AhR), a receptor expressed in gamma‑delta (γδ) intraepithelial lymphocytes (IELs), is thought to regulate inflammation in the bowel. γδIELs are a key immunologic compartment with a capacity to modulate immune responses. In the present study, the function of the AhR in γδIELs in a mouse model of intestinal I/R injury was investigated to determine whether the AhR attenuates intestinal injury induced by intestinal I/R. Mice were assigned to three groups: sham, I/R and I/R+6‑formylindolo(3,2‑b)carbazole (FICZ). The sham group received no ischemia treatment, whereas the I/R and I/R+FICZ groups underwent upper mesenteric vessel ischemia for 30 min. The I/R group was injected intraperitoneally with 0.3 ml saline and the I/R+FICZ group was administered 1 µg of FICZ before a subsequent 6 h reperfusion. Then, the mice were sacrificed and the entire small intestinal tissues were collected for histologic examination. The phenotype and apoptosis of γδIELs and activation of CD4+ and CD8+ IELs were examined using flow cytometry. The cytokine mRNA and anti‑apoptosis gene expression in IELs were measured by qPCR. FICZ increased the γδIEL population and anti‑apoptosis genes in the γδIELs. FICZ reduced the percentage of activated CD4+ and CD8+ subpopulations and the expression of pro‑inflammatory mediator genes in IELs. FICZ inhibited inflammation in the gastrointestinal tract of mice with I/R injury. These results suggest that the AhR plays an important role in protecting the small intestine from I/R and increasing the γδIEL population by decreasing apoptosis of γδIELs.
Collapse
Affiliation(s)
- Zhicao Zhang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Aimin Pu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Lihua Sun
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yujiao Cai
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|