1
|
Helou DG, Shafiei-Jahani P, Hurrell BP, Painter JD, Quach C, Howard E, Akbari O. LAIR-1 acts as an immune checkpoint on activated ILC2s and regulates the induction of airway hyperreactivity. J Allergy Clin Immunol 2022; 149:223-236.e6. [PMID: 34144112 PMCID: PMC8674385 DOI: 10.1016/j.jaci.2021.05.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Type 2 innate lymphoid cells (ILC2s) are relevant players in type 2 asthma. They initiate eosinophil infiltration and airway hyperreactivity (AHR) through cytokine secretion. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) is an inhibitory receptor considered to be an immune checkpoint in different inflammatory diseases. OBJECTIVE Our aim here was to investigate the expression of LAIR-1 and assess its role in human and murine ILC2s. METHODS Wild-type and LAIR-1 knockout mice were intranasally challenged with IL-33, and pulmonary ILC2s were sorted to perform an ex vivo comparative study based on RNA sequencing and flow cytometry. We next studied the impact of LAIR-1 deficiency on AHR and lung inflammation by using knockout mice and adoptive transfer experiments in Rag2-/-Il2rg-/- mice. Knockdown antisense strategies and humanized mice were used to assess the role of LAIR-1 in human ILC2s. RESULTS We have demonstrated that LAIR-1 is inducible on activated ILC2s and downregulates cytokine secretion and effector function. LAIR-1 signaling in ILC2s was mediated via inhibitory pathways, including SHP1/PI3K/AKT, and LAIR-1 deficiency led to exacerbated ILC2-dependent AHR in IL-33 and Alternaria alternata models. In adoptive transfer experiments, we confirmed the LAIR-1-mediated regulation of ILC2s in vivo. Interestingly, LAIR-1 was expressed and inducible in human ILC2s, and knockdown approaches of Lair1 resulted in higher cytokine production. Finally, engagement of LAIR-1 by physiologic ligand C1q significantly reduced ILC2-dependent AHR in a humanized ILC2 murine model. CONCLUSION Our results unravel a novel regulatory axis in ILC2s with the capacity to reduce allergic AHR and lung inflammation.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Jacob D Painter
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, Calif.
| |
Collapse
|
2
|
Ekka M, Mondal A, Singh R, Sen H, Datta S, Raychaudhuri S. Arginine 37 of Glycine Linker Dictates Regulatory Function of HapR. Front Microbiol 2020; 11:1949. [PMID: 32973706 PMCID: PMC7472637 DOI: 10.3389/fmicb.2020.01949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
HapR is designated as a high cell density quorum sensing master regulatory protein of Vibrio cholerae. It is a member of the TetR family protein and functions both as an activator and a repressor by directly communicating with cognate promoters, thus controlling the expression of a plethora of genes in a density-dependent manner. Molecular insights reveal the domain architecture and further unveil the significance of a cross talk between the DNA binding domain and the dimerization domain for the functionality of the wild-type protein. The DNA binding domain is made up of three α-helices, where a helix-turn-helix motif spans between the helices α2 and α3. The essentiality of the glycine-rich linker linking helices α1 and α2 came into prominence while unraveling the molecular basis of a natural non-functional variant of HapR. Subsequently, the importance of linker length was demonstrated. The present study, involving a series of biochemical analyses coupled with molecular dynamics simulation, has illustrated the indispensability of a critical arginine within the linker at position 37 contributing to HapR–DNA binding activity.
Collapse
Affiliation(s)
- Manjula Ekka
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Abhisek Mondal
- Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Richa Singh
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Himanshu Sen
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| | - Saumen Datta
- Council of Scientific and Industrial Research (CSIR), Indian Institute of Chemical Biology, Kolkata, India
| | - Saumya Raychaudhuri
- Council of Scientific and Industrial Research (CSIR), Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
3
|
Guo N, Zhang K, Gao X, Lv M, Luan J, Hu Z, Li A, Gou X. Role and mechanism of LAIR-1 in the development of autoimmune diseases, tumors, and malaria: A review. Curr Res Transl Med 2020; 68:119-124. [DOI: 10.1016/j.retram.2020.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
|
4
|
Agashe VV, Jankowska-Gan E, Keller M, Sullivan JA, Haynes LD, Kernien JF, Torrealba JR, Roenneburg D, Dart M, Colonna M, Wilkes DS, Burlingham WJ. Leukocyte-Associated Ig-like Receptor 1 Inhibits T h1 Responses but Is Required for Natural and Induced Monocyte-Dependent T h17 Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:772-781. [PMID: 29884698 DOI: 10.4049/jimmunol.1701753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/15/2018] [Indexed: 11/19/2022]
Abstract
Leukocyte-associated Ig-like receptor 1 (LAIR1) is an ITIM-bearing collagen receptor expressed by leukocytes and is implicated in immune suppression. However, using a divalent soluble LAIR1/Fc recombinant protein to block interaction of cell surface LAIR1 with matrix collagen, we found that whereas Th1 responses were enhanced as predicted, Th17 responses were strongly inhibited. Indeed, LAIR1 on both T cells and monocytes was required for optimal Th17 responses to collagen type (Col)V. For pre-existing "natural" Th17 response to ColV, the LAIR1 requirement was absolute, whereas adaptive Th17 and Th1/17 immune responses in both mice and humans were profoundly reduced in the absence of LAIR1. Furthermore, the addition of C1q, a natural LAIR1 ligand, decreased Th1 responses in a dose-dependent manner, but it had no effect on Th17 responses. In IL-17-dependent murine organ transplant models of chronic rejection, LAIR1+/+ but not LAIR1-/- littermates mounted strong fibroproliferative responses. Surface LAIR1 expression was higher on human Th17 cells as compared with Th1 cells, ruling out a receptor deficiency that could account for the differences. We conclude that LAIR1 ligation by its natural ligands favors Th17 cell development, allowing for preferential activity of these cells in collagen-rich environments. The emergence of cryptic self-antigens such as the LAIR1 ligand ColV during ischemia/reperfusion injury and early acute rejection, as well as the tendency of macrophages/monocytes to accumulate in the allograft during chronic rejection, favors Th17 over Th1 development, posing a risk to long-term graft survival.
Collapse
Affiliation(s)
- Vrushali V Agashe
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792.,Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Ewa Jankowska-Gan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | | | - Jeremy A Sullivan
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - Lynn D Haynes
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | - John F Kernien
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Jose R Torrealba
- Division of Renal Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Drew Roenneburg
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - David S Wilkes
- University of Virginia School of Medicine, Charlottesville, VA 22908
| | - William J Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792;
| |
Collapse
|
5
|
Dimitrova M, Zenarruzabeitia O, Borrego F, Simhadri VR. CD300c is uniquely expressed on CD56 bright Natural Killer Cells and differs from CD300a upon ligand recognition. Sci Rep 2016; 6:23942. [PMID: 27040328 PMCID: PMC4819222 DOI: 10.1038/srep23942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/17/2016] [Indexed: 12/22/2022] Open
Abstract
Paired receptors on NK cells recognize similar ligands with varied strength of binding ability and perform different functions. The CD300 molecules are emerging as novel immune regulators in health and disease due to their interaction with their lipid-nature ligands. Particularly, the paired receptors CD300c and CD300a have been shown to elicit activating and inhibitory capabilities, respectively. In the current study, we seek to investigate the expression and function of CD300c on human NK cells. We demonstrate that IL-2 and IL-15 treatment significantly induce CD300c expression exclusively on CD56(bright) NK cells. CD300c up-regulation requires STAT5 and its expression is inhibited by IL-4. Consistently, IL-2 secreted from activated CD4(+) T cells specifically induces the expression of CD300c on CD56(bright) NK cells. Crosslinking CD300c with a specific antibody enhances the proficiency of CD56(bright) NK cells to degranulate and induce chemokine and cytokine secretion. We also show the differential binding of CD300a and CD300c to their ligands phosphatidylethanolamine (PE) and phosphatidylserine (PS) and their differential ability to affect CD56(bright) NK cell functions. Our results provide an insight into the novel set of paired receptors CD300a and CD300c that are distinctively expressed on CD56(bright) NK cells with varied effector functions.
Collapse
Affiliation(s)
- Milena Dimitrova
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, CDER, Food and Drug Administration, USA
| | - Olatz Zenarruzabeitia
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain.,Immunotherapy Group, Basque Center for Transfusion and Human Tissues, Galdakao, Spain
| | - Francisco Borrego
- Immunopathology Group, BioCruces Health Research Institute, Barakaldo, Spain.,Immunotherapy Group, Basque Center for Transfusion and Human Tissues, Galdakao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Venkateswara R Simhadri
- Division of Biotechnology Review and Research-I, Office of Biotechnology Products Review and Research, CDER, Food and Drug Administration, USA
| |
Collapse
|
6
|
Tian L, Choi SC, Murakami Y, Allen J, Morse HC, Qi CF, Krzewski K, Coligan JE. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression. Nat Commun 2016; 5:3146. [PMID: 24477292 DOI: 10.1038/ncomms4146] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Linjie Tian
- 1] Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA [2]
| | - Seung-Chul Choi
- 1] Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA [2]
| | - Yousuke Murakami
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Joselyn Allen
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Chen-Feng Qi
- Pathology core, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Konrad Krzewski
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - John E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| |
Collapse
|
7
|
Cao Q, Fu A, Yang S, He X, Wang Y, Zhang X, Zhou J, Luan X, Yu W, Xue J. Leukocyte-associated immunoglobulin-like receptor-1 expressed in epithelial ovarian cancer cells and involved in cell proliferation and invasion. Biochem Biophys Res Commun 2015; 458:399-404. [DOI: 10.1016/j.bbrc.2015.01.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 12/30/2022]
|
8
|
Xie X, Xu Z, Cui J, Jin B. A non-stimulatory monoclonal antibody against the inhibitory immunoreceptor LAIR-1. Monoclon Antib Immunodiagn Immunother 2014; 33:141-7. [PMID: 24694245 DOI: 10.1089/mab.2013.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human leukocyte-associated Ig-like receptor (LAIR) family contains two members: LAIR-1 (CD305) and LAIR-2 (CD306). Among them, LAIR-1 is a transmembrane glycoprotein bearing two intracellular immunoreceptor tyrosine-based inhibition motifs (ITIM) and LAIR-2 is soluble. Both molecules bind collagen and LAIR-2 has higher affinity than LAIR-1. LAIR-1 can mediate strong inhibitory signal but the functions of leukocytes expressing LAIR-1 are unclear because of the absence of an effective method to isolate them with resting status. In this study, we generated a monoclonal antibody (MAb) by immunizing BALB/c mice with the recombinant LAIR-2-GST fusion protein, which we termed 3G4. The subclass of 3G4 was identified as IgG1. Specificity analysis by Western blotting demonstrated 3G4 could react with both LAIR-1 and LAIR-2. Unlike another LAIR-1-specific MAb (9.1C3), 3G4 did not inhibit the lysis of target cells P815 by NK cells in a redirected cytotoxicity assay. Preincubation of LAIR-1-transfected K562 cells with 3G4 mildly prevented the binding of LAIR-1 to collagens I and III in a dose-dependent manner. Taken together, the novel MAb 3G4 provides a useful tool to isolate LAIR-1-positive cells without changing their resting state for further application.
Collapse
Affiliation(s)
- Xin Xie
- 1 Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University , Xi'an, China
| | | | | | | |
Collapse
|
9
|
Olde Nordkamp MJM, van Eijk M, Urbanus RT, Bont L, Haagsman HP, Meyaard L. Leukocyte-associated Ig-like receptor-1 is a novel inhibitory receptor for surfactant protein D. J Leukoc Biol 2014; 96:105-11. [PMID: 24585933 DOI: 10.1189/jlb.3ab0213-092rr] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The collagenous C-type lectin, SP-D, is a multitrimeric glycoprotein present at mucosal surfaces and is involved in host defense against infections in mammals. SP-D has immunomodulatory properties, but the underlying mechanisms are incompletely understood. SP-D contains collagen domains. LAIR-1 is an inhibitory immune receptor at the cell surface of various immune-competent cells that binds collagen. We hypothesized that the immunomodulatory functions of SP-D can be mediated via interactions between its collagen domain and LAIR-1. Binding assays show that SP-D interacts via its collagenous domain with LAIR-1 and the related LAIR-2. This does not affect the mannan-binding capacities of SP-D, which induces cross-linking of LAIR-1 in a cellular reporter assay. Functional assays show that SP-D inhibits the production of FcαR-mediated reactive oxygen via LAIR-1. Our studies indicate that SP-D is a functional ligand of the immune inhibitory receptor LAIR-1. Thus, we have identified a novel pathway for the immunomodulatory functions of SP-D mediated via binding of its collagenous domains to LAIR-1. This may provide a mechanism for the unexplained immunomodulatory function of the collagenous domains of SP-D.
Collapse
Affiliation(s)
| | - Martin van Eijk
- Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; and
| | - Rolf T Urbanus
- Department of Clinical Chemistry and Hematology, University Medical Centre Utrecht, the Netherlands
| | - Louis Bont
- Laboratory of Translational Immunology, Department of Immunology, and Department of Pediatrics, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Henk P Haagsman
- Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; and
| | - Linde Meyaard
- Laboratory of Translational Immunology, Department of Immunology, and
| |
Collapse
|
10
|
Poggi A, Zocchi MR. NK cell autoreactivity and autoimmune diseases. Front Immunol 2014; 5:27. [PMID: 24550913 PMCID: PMC3912987 DOI: 10.3389/fimmu.2014.00027] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/17/2014] [Indexed: 01/14/2023] Open
Abstract
Increasing evidences have pointed out the relevance of natural killer (NK) cells in organ-specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands up-regulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILCs), comprising the classical CD56+ NK cells, have a role in maintaining or alternating tissue homeostasis secreting protective and/or pro-inflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular-matrix components, and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino-IST , Genoa , Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, Scientific Institute San Raffaele , Milan , Italy
| |
Collapse
|
11
|
Olde Nordkamp MJM, Boross P, Yildiz C, Jansen JHM, Leusen JHW, Wouters D, Urbanus RT, Hack CE, Meyaard L. Inhibition of the classical and lectin pathway of the complement system by recombinant LAIR-2. J Innate Immun 2013; 6:284-92. [PMID: 24192271 DOI: 10.1159/000354976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/12/2013] [Indexed: 11/19/2022] Open
Abstract
Activation of complement may cause severe tissue damage in antibody-mediated allograft rejection and other antibody-mediated clinical conditions; therefore, novel potent complement inhibitors are needed. Previously, we described binding of the inhibitory receptor LAIR-1 and its soluble family member LAIR-2 to collagen. Here, we investigated binding of LAIR-1 and LAIR-2 to the complement proteins C1q and MBL, which both have collagen-like domains, and evaluated the effect of this binding on complement function. We demonstrate specific binding of recombinant LAIR proteins to both C1q and MBL. Surface plasmon resonance experiments showed that LAIR-2-Fc protein bound C1q and MBL with the highest affinity compared to LAIR-2-HIS. We, therefore, hypothesized that LAIR-2-Fc is a potent complement inhibitor. Indeed, LAIR-2-Fc inhibited C4 fixation to IgG or mannan, reduced activation of C4 by aggregated IgG in plasma and inhibited iC3b deposition on cells. Finally, LAIR-2-Fc inhibited complement-mediated lysis of cells sensitized with anti-HLA antibodies in an ex vivo model for antibody-mediated transplant rejection. Thus, LAIR-2-Fc is an effective novel complement inhibitor for the treatment and prevention of antibody-mediated allograft rejection and antibody-mediated clinical conditions.
Collapse
Affiliation(s)
- Marloes J M Olde Nordkamp
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
C1q limits dendritic cell differentiation and activation by engaging LAIR-1. Proc Natl Acad Sci U S A 2012; 109:E3160-7. [PMID: 23093673 DOI: 10.1073/pnas.1212753109] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
C1q, the first component of complement, and leukocyte-associated Ig-like receptor 1 (LAIR-1; CD305), an inhibitory receptor expressed on hematopoietic cells, have both been associated with arrest of monocyte-derived dendritic cell (DC) differentiation and inhibition of Toll-like receptor activity in plasmacytoid DCs. Defects in both molecules have been implicated in susceptibility to, and progression of, systemic lupus erythematosus. Inhibitory signaling partners for C1q on monocytes and DCs remain undefined. Because C1q contains collagen-like motifs and LAIR-1 is a universal collagen receptor, we hypothesized that C1q is a functional ligand for LAIR-1. Binding analyses in cell-free systems and on the cell membrane demonstrate that C1q and its collagen tail associate with LAIR-1 and LAIR-2 (CD306), a soluble inhibitor of LAIR-1. Both C1q and its collagen tail trigger phosphorylation of LAIR-1 immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in monocytes. Functional analyses show that C1q-mediated inhibition of monocyte-DC differentiation and C1q-mediated inhibition of IFN-α production by plasmacytoid DCs were both reversed by LAIR-2. Moreover, C1q-mediated inhibition of DC differentiation was reversed by LAIR-1 siRNA. Thus, C1q is a functional ligand for LAIR-1 restricting immune cell differentiation and activation. The discovery of C1q interactions with LAIR-1 and LAIR-2 lends much needed insight into molecular mechanisms operating to prevent the loss of tolerance, particularly in systemic lupus erythematosus.
Collapse
|
13
|
Rich RL, Myszka DG. Survey of the 2009 commercial optical biosensor literature. J Mol Recognit 2012; 24:892-914. [PMID: 22038797 DOI: 10.1002/jmr.1138] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We took a different approach to reviewing the commercial biosensor literature this year by inviting 22 biosensor users to serve as a review committee. They set the criteria for what to expect in a publication and ultimately decided to use a pass/fail system for selecting which papers to include in this year's reference list. Of the 1514 publications in 2009 that reported using commercially available optical biosensor technology, only 20% passed their cutoff. The most common criticism the reviewers had with the literature was that "the biosensor experiments could have been done better." They selected 10 papers to highlight good experimental technique, data presentation, and unique applications of the technology. This communal review process was educational for everyone involved and one we will not soon forget.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
14
|
Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther 2012; 134:317-37. [PMID: 22366287 DOI: 10.1016/j.pharmthera.2012.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix is a complex network of fibrous and nonfibrous molecules that not only provide structure to the lung but also interact with and regulate the behaviour of the cells which it surrounds. Recently it has been recognised that components of the extracellular matrix proteins are released, often through the action of endogenous proteases, and these fragments are termed matrikines. Matrikines have biological activities, independent of their role within the extracellular matrix structure, which may play important roles in the lung in health and disease pathology. Integrins are the primary cell surface receptors, characterised to date, which are used by the matrikines to exert their effects on cells. However, evidence is emerging for the need for co-factors and other receptors for the matrikines to exert their effects on cells. The potential for matrikines, and peptides derived from these extracellular matrix protein fragments, as therapeutic agents has recently been recognised. The natural role of these matrikines (including inhibitors of angiogenesis and possibly inflammation) make them ideal targets to mimic as therapies. A number of these peptides have been taken forward into clinical trials. The focus of this review will be to summarise our current understanding of the role, and potential for highly relevant actions, of matrikines in lung health and disease.
Collapse
Affiliation(s)
- Janette K Burgess
- Cell Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
15
|
Colombo BM, Canevali P, Magnani O, Rossi E, Puppo F, Zocchi MR, Poggi A. Defective expression and function of the leukocyte associated Ig-like receptor 1 in B lymphocytes from systemic lupus erythematosus patients. PLoS One 2012; 7:e31903. [PMID: 22355402 PMCID: PMC3280211 DOI: 10.1371/journal.pone.0031903] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/16/2012] [Indexed: 11/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the production of a wide array of autoantibodies and dysregulation of B cell function. The leukocyte associated Immunoglobulin (Ig)-like receptor (LAIR)1 is a transmembrane molecule belonging to Ig superfamily which binds to different types of collagen. Herein, we have determined the expression and function of LAIR1 on B lymphocyte from SLE patients. LAIR1 expression in peripheral blood B lymphocytes from 54 SLE, 24 mixed connective tissue disease (MCTD), 20 systemic sclerosis (SSc) patients, 14 rheumatoid arthritis (RA) and 40 sex and age matched healthy donors (HD) have been analyzed by immunofluorescence. The effect of LAIR1 ligation by specific monoclonal antibodies, collagen or collagen producing mesenchymal stromal cells from reactive lymph nodes or bone marrow on Ig production by pokeweed mitogen and B cell receptor (BCR)-mediated NF-kB activation was assessed by ELISA and TransAM assay. The percentage of CD20+ B lymphocytes lacking or showing reduced expression of LAIR1 was markedly increased in SLE and MCTD but not in SSc or RA patients compared to HD. The downregulation of LAIR1 expression was not dependent on corticosteroid therapy. Interestingly, LAIR1 engagement by collagen or collagen-producing mesenchymal stromal cells in SLE patients with low LAIR1 expression on B cells delivered a lower inhibiting signal on Ig production. In addition, NF-kB p65 subunit activation upon BCR and LAIR1 co-engagement was less inhibited in SLE patients than in HD. Our findings indicate defective LAIR1 expression and function in SLE B lymphocytes, possible contributing to an altered control of B lymphocytes behavior.
Collapse
Affiliation(s)
| | - Paolo Canevali
- Laboratory of Molecular Oncology and Angiogenesis, National Institute for Cancer Research, IRCCS-Azienso Ospedaliera Universitaria (AOU) San Martino, Genoa, Italy
- Division of Immunology, Transplant and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Ottavia Magnani
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Edoardo Rossi
- Department of Hematology, IRCCS-A.O.U-San Martino-IST-National Institute for Cancer Research, Genoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplant and Infectious Diseases, Scientific Institute San Raffaele, Milan, Italy
| | - Alessandro Poggi
- Laboratory of Molecular Oncology and Angiogenesis, National Institute for Cancer Research, IRCCS-Azienso Ospedaliera Universitaria (AOU) San Martino, Genoa, Italy
- * E-mail:
| |
Collapse
|
16
|
Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood 2012; 119:2799-809. [PMID: 22302738 DOI: 10.1182/blood-2011-08-372425] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CD300a is an immunoreceptor tyrosine-based inhibitory motif (ITIM) containing molecule that belongs to the CD300 family of paired activating/inhibitory receptors. It has been shown that its ligation inhibits activation signals on cells of both myeloid and lymphoid lineages. The ligands for CD300a have not been identified. Here, we show that a CD300a-Ig fusion protein specifically binds to apoptotic cells that are evolutionary apart, such as human and insect cells, suggesting that the ligand has to be conserved. Using surface plasmon resonance, ultracentrifugation, ELISA, and reporter cell assays, we identified phosphatidylethanolamine (PE) and phosphatidylserine (PS), 2 phospholipids that translocate to the outer leaflet of the plasma membrane of dead cells, as the ligands for CD300a. Mutational and structural modeling studies identified residues that are involved in the binding of CD300a to PE and PS and that form a cavity where the hydrophilic heads of PE and PS, can penetrate. CD300a down-regulates the uptake of apoptotic cells by macrophages and its ectopic expression in CD300a-negative cell lines also decreased the engulfment of dead cells. Collectively, our results indicate that PE and PS are ligands for CD300a, and that this interaction plays an important role in regulating the removal of dead cells.
Collapse
|
17
|
Olde Nordkamp MJM, van Roon JAG, Douwes M, de Ruiter T, Urbanus RT, Meyaard L. Enhanced secretion of leukocyte-associated immunoglobulin-like receptor 2 (LAIR-2) and soluble LAIR-1 in rheumatoid arthritis: LAIR-2 is a more efficient antagonist of the LAIR-1-collagen inhibitory interaction than is soluble LAIR-1. ACTA ACUST UNITED AC 2012; 63:3749-57. [PMID: 22127695 DOI: 10.1002/art.30612] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Human leukocyte-associated immunoglobulin-like receptor 1 (hLAIR-1) is an immune inhibitory receptor for collagen that is expressed on most immune cells. We previously showed that the LAIR-1-collagen interaction could be antagonized by the secreted homolog hLAIR-2, which can be detected in the synovial fluid of rheumatoid arthritis (RA) patients. In addition, the extracellular part of hLAIR-1 is a putative antagonist upon shedding from the cell membrane. The purpose of this study was to determine the relative roles of hLAIR-2 and soluble hLAIR-1 (shLAIR-1) in the regulation of the LAIR-1-collagen interaction. METHODS The ability of recombinant LAIR proteins to abrogate LAIR-1-collagen binding was tested by flow cytometry and adhesion assays. Collagen binding capacity was analyzed by surface plasmon resonance. Plasma, urine, and synovial fluid were screened for the presence of sLAIR-1 and LAIR-2 by enzyme-linked immunosorbent assay. RESULTS Recombinant LAIR-2 proteins abrogated the binding of collagen to LAIR-1 more efficiently than did recombinant sLAIR-1. Consistent with these findings, surface plasmon resonance analysis showed that LAIR-2 had a higher affinity for collagen than did LAIR-1. Activated CD4+ T cells were the main producers of LAIR-2, whereas the source of sLAIR-1 remains elusive. Both soluble LAIR-1 and LAIR-2 could be detected in the plasma and urine of healthy control subjects and patients with RA. Urinary levels of both proteins were significantly increased in RA patients, and LAIR-2 levels in urine were significantly correlated with markers of inflammation. CONCLUSION Our data suggest that LAIR-2 is a more potent antagonist of LAIR-1 function in vivo, while both sLAIR-1 and LAIR-2 are potential biomarkers that may be used to monitor urine samples for evidence of systemic inflammation.
Collapse
|
18
|
Tang X, Tian L, Esteso G, Choi SC, Barrow AD, Colonna M, Borrego F, Coligan JE. Leukocyte-associated Ig-like receptor-1-deficient mice have an altered immune cell phenotype. THE JOURNAL OF IMMUNOLOGY 2011; 188:548-58. [PMID: 22156345 DOI: 10.4049/jimmunol.1102044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cross-linking of the collagen binding receptor leukocyte-associated Ig-like receptor-1 (LAIR-1) in vitro delivers an inhibitory signal that is able to downregulate activation-mediated signals. To study the in vivo function of LAIR-1, we generated LAIR-1(-/-) mice. They are healthy and fertile and have normal longevity; however, they show certain phenotypic characteristics distinct from wild-type mice, including increased numbers of splenic B, regulatory T, and dendritic cells. As LAIR-1(-/-) mice age, the splenic T cell population shows a higher frequency of activated and memory T cells. Because LAIR-1(+/+) and LAIR-1(-/-) T cells traffic with equal proficiency to peripheral lymphoid organs, this is not likely due to abnormal T lymphocyte trafficking. LAIR-1(-/-) mice have lower serum levels of IgG1 and, in response to T-dependent immunization with trinitrophenyl-OVA, switch less efficiently to Ag specific IgG2a and IgG2b, whereas switching to IgG1 is not affected. Several mouse disease models, including experimental autoimmune encephalitis and colitis, were used to examine the effect of LAIR-1 deficiency, and no differences in the responses of LAIR-1(-/-) and LAIR-1(+/+) mice were observed. Taken together, these observations indicate that LAIR-1 plays a role in regulating immune cells and suggest that any adverse effects of its absence may be balanced in vivo by other inhibitory receptors.
Collapse
Affiliation(s)
- Xiaobin Tang
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Tumor-expressed collagens can modulate immune cell function through the inhibitory collagen receptor LAIR-1. Mol Immunol 2011; 49:402-6. [DOI: 10.1016/j.molimm.2011.09.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/08/2011] [Accepted: 09/10/2011] [Indexed: 01/13/2023]
|
20
|
Choi SC, Simhadri VR, Tian L, Gil-Krzewska A, Krzewski K, Borrego F, Coligan JE. Cutting edge: mouse CD300f (CMRF-35-like molecule-1) recognizes outer membrane-exposed phosphatidylserine and can promote phagocytosis. THE JOURNAL OF IMMUNOLOGY 2011; 187:3483-7. [PMID: 21865548 DOI: 10.4049/jimmunol.1101549] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reportedly, CD300f negatively regulates interactions between dendritic and T cells and acts as an anti-inflammatory molecule in a multiple sclerosis mouse model. We found that a CD300f/Fc chimeric protein specifically binds to apoptotic/dead splenocytes and to apoptotic cells from starved or irradiated lymphocytic cell lines, an observation extended to insect cells. CD300f also binds PMA/ionomycin-activated splenocytes and Ag-stimulated T cells, an interaction inhibited by Annexin V. By ELISA, cosedimentation, and surface plasmon resonance using phospholipid-containing liposomes, we show that CD300f preferentially binds phosphatidylserine and requires a metal ion. Exogenous expression of CD300f in cell lines results in enhanced phagocytosis of apoptotic cells. We conclude that expression of CD300f conveys additional capacity to recognize phosphatidylserine to myeloid cells. The result of this recognition may vary with the overall qualitative and quantitative receptor content, as well as signaling capacity of the expressing effector cell, but enhanced phagocytosis is one measurable outcome.
Collapse
Affiliation(s)
- Seung-Chul Choi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Collagen, the most abundant protein in animals, is a key component of extracellular matrices. Not only do collagens provide essential structural support for connective tissues, but they are also intimately involved in controlling a spectrum of cellular functions such as growth, differentiation, and morphogenesis. All collagens possess triple-helical regions through which they interact with a host of other proteins including cell surface receptors. A structurally diverse group of transmembrane receptors mediates the recognition of the collagen triple helix: integrins, discoidin domain receptors, glycoprotein VI, and leukocyte-associated immunoglobulin-like receptor-1. These collagen receptors regulate a wide range of behaviors including cell adhesion and migration, hemostasis, and immune function. Here these collagen receptors are discussed in terms of their molecular basis of collagen recognition, their signaling and developmental functions, and their roles in disease.
Collapse
Affiliation(s)
- Birgit Leitinger
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
22
|
Crystal structure and collagen-binding site of immune inhibitory receptor LAIR-1: unexpected implications for collagen binding by platelet receptor GPVI. Blood 2010; 115:1364-73. [DOI: 10.1182/blood-2009-10-246322] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), one of the most widely spread immune receptors, attenuates immune cell activation when bound to specific sites in collagen. The collagen-binding domain of LAIR-1 is homologous to that of glycoprotein VI (GPVI), a collagen receptor crucial for platelet activation. Because LAIR-1 and GPVI also display overlapping collagen-binding specificities, a common structural basis for collagen recognition would appear likely. Therefore, it is crucial to gain insight into the molecular interaction of both receptors with their ligand to prevent unwanted cross-reactions during therapeutic intervention. We determined the crystal structure of LAIR-1 and mapped its collagen-binding site by nuclear magnetic resonance (NMR) titrations and mutagenesis. Our data identify R59, E61, and W109 as key residues for collagen interaction. These residues are strictly conserved in LAIR-1 and GPVI alike; however, they are located outside the previously proposed GPVI collagen-binding site. Our data provide evidence for an unanticipated mechanism of collagen recognition common to LAIR-1 and GPVI. This fundamental insight will contribute to the exploration of specific means of intervention in collagen-induced signaling in immunity and hemostasis.
Collapse
|
23
|
Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human natural killer cell receptors. Traffic 2009; 10:1735-44. [PMID: 19719476 DOI: 10.1111/j.1600-0854.2009.00973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.
Collapse
Affiliation(s)
- Madhan Masilamani
- The Jaffe Food Allergy Institute, Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|