1
|
Cui X, Li CG, Gao H, Cheng M, Jiang F. Boosting regulatory T cell-dependent immune tolerance by activation of p53. Int Immunopharmacol 2023; 125:111167. [PMID: 37931392 DOI: 10.1016/j.intimp.2023.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Regulatory T cells (Tregs) have critical roles in maintaining immune hemostasis and have important anti-inflammatory functions in diseases. Recently, we identified that CX-5461 (a selective RNA polymerase I inhibitor and p53 activator) acted as a potent immunosuppressive agent, which prevented allogeneic acute rejection in animal models via a molecular mechanism distinct from all those of conventional immunosuppressive drugs. Unexpectedly, we discovered that CX-5461 could promote Treg differentiation. In this review, we have summarized the evidence for a potential role of p53 in mediating Treg differentiation and its possible mechanisms, including regulation of FoxP3 transcription, regulation of the expression of PTEN (phosphatase and tensin homolog), as well as protein-protein interaction with the transcription factor STAT5 (signal transducer and activator of transcription 5). Evidence also suggests that pharmacological p53 activators may potentially be used to boost Treg-mediated immune tolerance. Based on these data, we argue that novel p53 activators such as CX-5461 may represent a distinct class of immunosuppressants that repress conventional T cell-mediated alloimmunity with concomitant boosting of Treg-dependent immune tolerance.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Akama-Garren EH, Miller P, Carroll TM, Tellier M, Sutendra G, Buti L, Zaborowska J, Goldin RD, Slee E, Szele FG, Murphy S, Lu X. Regulation of immunological tolerance by the p53-inhibitor iASPP. Cell Death Dis 2023; 14:84. [PMID: 36746936 PMCID: PMC9902554 DOI: 10.1038/s41419-023-05567-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ludovico Buti
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Charles River Laboratories, Leiden, Netherlands
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
3
|
Marie RESM, Abd El‐ Fadeal NM, Atef LM. Expression of survivin and
p53
genes in patients with alopecia areata: A case–control study. Australas J Dermatol 2020; 62:e29-e34. [DOI: 10.1111/ajd.13433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Affiliation(s)
| | - Noha M Abd El‐ Fadeal
- Department of Medical Biochemistry and Molecular Biology Faculty of MedicineSuez Canal University IsmailiaEgypt
- Oncology Diagnostic Unit Faculty of MedicineSuez Canal University IsmailiaEgypt
| | - Lina M Atef
- Department of Dermatology, Venereology and Andrology Faculty of Medicine Suez Canal University Ismailia Egypt
| |
Collapse
|
4
|
St. John AL, Choi HW, Walker QD, Blough B, Kuhn CM, Abraham SN, Staats HF. Novel mucosal adjuvant, mastoparan-7, improves cocaine vaccine efficacy. NPJ Vaccines 2020; 5:12. [PMID: 32047657 PMCID: PMC7002721 DOI: 10.1038/s41541-020-0161-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/14/2020] [Indexed: 12/29/2022] Open
Abstract
Cocaine is one of the most potent and addictive psychostimulants known and there are no available pharmacotherapies to treat cocaine addiction. Here we describe a novel cocaine vaccine employing the mucosal adjuvant and mast cell-activating oligopeptide, mastoparan-7 (M7), to achieve optimal IgA antibody responses in mucosal secretions and effective induction of humoral immunity using a short immunization protocol. This formulation, using a hapten-carrier system to deliver cocaine as antigen, also reduced cocaine penetration of the blood brain barrier and protected mice from its psychoactive effects by reducing cocaine-induced locomotion. Surprisingly, the magnitude of cocaine-specific antibody titers induced by each adjuvant was not the major determinant of functional protection from cocaine challenge. A side-by-side comparison of the two haptens, cocaine and its analog GNC demonstrated that cocaine haptenation resulted in superior functional protection when used in combination with the novel mucosal adjuvant, M7. These results provide a new potential strategy for combatting cocaine addiction through mucosal vaccination.
Collapse
Affiliation(s)
- Ashley L. St. John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, 169857 Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228 Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, 168753 Singapore
| | - Hae Woong Choi
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
- Present Address: Korea University, Division of Life Sciences, 108 Hana-Science Building, 145 Anam-ro, Seongbuk-gu, Seoul, South Korea
| | - Q. David Walker
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Bruce Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, Durham, NC 27709 USA
| | - Cynthia M. Kuhn
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Soman N. Abraham
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore, 169857 Singapore
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710 USA
| | - Herman F. Staats
- Department of Pathology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710 USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
5
|
Takami M, Cunha C, Motohashi S, Nakayama T, Iwashima M. TGF-β suppresses RasGRP1 expression and supports regulatory T cell resistance against p53-induced CD28-dependent T-cell apoptosis. Eur J Immunol 2018; 48:1938-1943. [PMID: 30298904 PMCID: PMC6368088 DOI: 10.1002/eji.201847587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/29/2018] [Accepted: 10/05/2018] [Indexed: 11/06/2022]
Abstract
Thymus-derived regulatory T cells (tTregs) play pivotal roles in immunological self-tolerance and homeostasis. A majority of tTregs are reactive to self-antigens and are constantly exposed to antigenic stimulation. Despite this continuous stimulation, tTreg and conventional T-cell populations remain balanced during homeostasis, but the mechanisms controlling this balance are unknown. We previously reported a form of activation-induced cell death, which is dependent on p53 (p53-induced CD28-dependent T-cell apoptosis, PICA). Under PICA-inducing conditions, tTregs survive while a majority of conventional T cells undergo apoptosis, suggesting there is a survival mechanism that protects tTregs. Here, we report that the expression of RasGRP1 (Ras guanyl-releasing protein 1) is required for PICA, as conventional T cells isolated from RasGRP1-deficient mice become resistant to PICA. After continuous stimulation, tTregs express a substantially lower amount of RasGRP1 compared to conventional T cells. This reduced expression of RasGRP1 is dependent on TGF-β, as addition of TGF-β to conventional T cells reduces RasGRP1 expression. Conversely, RasGRP1 expression in tTregs increases when TGF-β signaling is inhibited. Together, these data show that RasGRP1 expression is repressed in tTregs by TGF-β signaling and suggests that reduced RasGRP1 expression is critical for tTregs to resist apoptosis caused by continuous antigen exposure.
Collapse
Affiliation(s)
- Mariko Takami
- Department of Microbiology and Immunology, Loyola University, Chicago, IL, USA
- Van Kampen Cardio Pulmonary Research Laboratory, Loyola University, Chicago, IL, USA
- Department of Medical Immunology, Chiba University, Japan
| | - Christina Cunha
- Department of Microbiology and Immunology, Loyola University, Chicago, IL, USA
| | | | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Makio Iwashima
- Department of Microbiology and Immunology, Loyola University, Chicago, IL, USA
- Van Kampen Cardio Pulmonary Research Laboratory, Loyola University, Chicago, IL, USA
| |
Collapse
|
6
|
Fierabracci A, Pellegrino M. The Double Role of p53 in Cancer and Autoimmunity and Its Potential as Therapeutic Target. Int J Mol Sci 2016; 17:ijms17121975. [PMID: 27897991 PMCID: PMC5187775 DOI: 10.3390/ijms17121975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 01/22/2023] Open
Abstract
p53 is a sequence-specific short-lived transcription factor expressed at low concentrations in various tissues while it is upregulated in damaged, tumoral or inflamed tissue. In normally proliferating cells, p53 protein levels and function are tightly controlled by main regulators, i.e., MDM2 (mouse double minute 2) and MDM4 proteins. p53 plays an important role due to its ability to mediate tumor suppression. In addition to its importance as a tumor suppressor, p53 coordinates diverse cellular responses to stress and damage and plays an emerging role in various physiological processes, including fertility, cell metabolism, mitochondrial respiration, autophagy, cell adhesion, stem cell maintenance and development. Interestingly, it has been recently implicated in the suppression of autoimmune and inflammatory diseases in both mice and humans. In this review based on current knowledge on the functional properties of p53 and its regulatory pathways, we discuss the potential utility of p53 reactivation from a therapeutic perspective in oncology and chronic inflammatory disorders leading to autoimmunity.
Collapse
Affiliation(s)
- Alessandra Fierabracci
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, 00146 Rome, Italy.
| | - Marsha Pellegrino
- Infectivology and Clinical Trials Area, Children's Hospital Bambino Gesù, 00146 Rome, Italy.
| |
Collapse
|
7
|
Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol 2016; 16:741-750. [PMID: 27667712 DOI: 10.1038/nri.2016.99] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumour-suppressor genes are indispensable for the maintenance of genomic integrity. Recently, several of these genes, including those encoding p53, PTEN, RB1 and ARF, have been implicated in immune responses and inflammatory diseases. In particular, the p53 tumour- suppressor pathway is involved in crucial aspects of tumour immunology and in homeostatic regulation of immune responses. Other studies have identified roles for p53 in various cellular processes, including metabolism and stem cell maintenance. Here, we discuss the emerging roles of p53 and other tumour-suppressor genes in tumour immunology, as well as in additional immunological settings, such as virus infection. This relatively unexplored area could yield important insights into the homeostatic control of immune cells in health and disease and facilitate the development of more effective immunotherapies. Consequently, tumour-suppressor genes are emerging as potential guardians of immune integrity.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.,Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, USA
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149 13th Street, Charlestown, Massachusetts 02129, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
8
|
Cencioni MT, Santini S, Ruocco G, Borsellino G, De Bardi M, Grasso MG, Ruggieri S, Gasperini C, Centonze D, Barilá D, Battistini L, Volpe E. FAS-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients. Cell Death Dis 2015; 6:e1741. [PMID: 25950471 PMCID: PMC4669684 DOI: 10.1038/cddis.2015.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 12/03/2022]
Abstract
Functionally distinct T-helper (Th) subsets orchestrate immune responses. Maintenance of homeostasis through the tight control of inflammatory Th cells is crucial to avoid autoimmune inflammation. Activation-Induced Cell Death (AICD) regulates homeostasis of T cells, and it has never been investigated in human Th cells. We generated stable clones of inflammatory Th subsets involved in autoimmune diseases, such as Th1, Th17 and Th1/17 cells, from healthy donors (HD) and multiple sclerosis (MS) patients and we measured AICD. We find that human Th1 cells are sensitive, whereas Th17 and Th1/17 are resistant, to AICD. In particular, Th1 cells express high level of FAS-ligand (FASL), which interacts with FAS and leads to caspases' cleavage and ultimately to cell death. In contrast, low FASL expression in Th17 and Th1/17 cells blunts caspase 8 activation and thus reduces cell death. Interestingly, Th cells obtained from healthy individuals and MS patients behave similarly, suggesting that this mechanism could explain the persistence of inflammatory IL-17-producing cells in autoimmune diseases, such as MS, where their generation is particularly substantial.
Collapse
Affiliation(s)
- M T Cencioni
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - S Santini
- 1] Cell Signaling Unit, Santa Lucia Foundation, Rome, Italy [2] Multiple Sclerosis Centre, Santa Lucia Foundation, Rome, Italy
| | - G Ruocco
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - G Borsellino
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - M De Bardi
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - M G Grasso
- Department of Biology, University Tor Vergata, Rome, Italy
| | - S Ruggieri
- Department of Neuroscience, University Tor Vergata, Rome, Italy
| | - C Gasperini
- Department of Neuroscience, University Tor Vergata, Rome, Italy
| | - D Centonze
- 1] Department of Neuroscience "Lancisi", San Camillo Hospital, Rome, Italy [2] Neuroimmunology and Synaptic Plasticity Unit, Santa Lucia Foundation, Rome, Italy
| | - D Barilá
- 1] Cell Signaling Unit, Santa Lucia Foundation, Rome, Italy [2] Multiple Sclerosis Centre, Santa Lucia Foundation, Rome, Italy
| | - L Battistini
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| | - E Volpe
- Neuroimmunology Unit, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
9
|
Impaired T-cell survival promotes mucosal inflammatory disease in SHIP1-deficient mice. Mucosal Immunol 2014; 7:1429-1439. [PMID: 24781051 PMCID: PMC4205272 DOI: 10.1038/mi.2014.32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/07/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
T cells have a critical role in immune surveillance at mucosal surfaces. SHIP1(-/-) mice succumb to mucosal inflammatory disease that afflicts the lung and small intestine (SI). The basis of this condition has not been defined. Here we show that SHIP1 is required for the normal persistence and survival of T cells in mucosal tissues. We find that CD4 and CD8 effector T cells are reduced; however, Treg cells are increased in the SI and lungs of SHIP1(-/-) and CD4CreSHIP(flox/flox) mice. Furthermore, a subset of T cells in the SI of SHIP1(-/-) mice are FasL(+) and are more susceptible to extrinsic cell death. Mechanistic analyses showed that SHIP1 associates with the death receptor CD95/Fas and treatment with a Caspase 8 inhibitor prevents SHIP1 inhibitor-mediated T-cell death. Notably, mucosal inflammation in SHIP1(-/-) mice is reduced by treatment with a Caspase 8 inhibitor. We also find that the incidence of Crohn's disease (CD) and pneumonia is significantly increased in mice with dual T and myeloid lineage SHIP1 deletion but not in single lineage-deleted mice. Thus, by promoting survival of protective T cells, thereby preventing an inflammatory myeloid response, SHIP1 maintains an appropriate balance of innate immune function at mucosal surfaces necessary for immune homeostasis.
Collapse
|
10
|
Kumar G, Roger PM, Ticchioni M, Trojani C, Bernard de Dompsur R, Bronsard N, Carles M, Bernard E. T cells from chronic bone infection show reduced proliferation and a high proportion of CD28⁻ CD4 T cells. Clin Exp Immunol 2014; 176:49-57. [PMID: 24298980 DOI: 10.1111/cei.12245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 12/16/2022] Open
Abstract
Chronic bone infection is associated with bone resorption. From animal studies, CD3/CD28-activated T cells are known to enhance osteoclastogenesis and bone resorption. Because CD28 is expressed constitutively on T cells and its expression is down-regulated by chronic exposure to the inflammatory environment, we characterized co-stimulatory molecule expression on T cells from chronically infected patients. We used cytofluorometric techniques to phenotypically characterize T cells, its co-stimulatory molecules and perforin secretion from infected and non-infected human bones. Chronic bone infection was defined as infection lasting for more than a month. We show a higher T cell activation [human leucocyte antigen D-related (HLA-DR⁺)] in infected compared to non-infected bones: median being 16 versus 7%, P = 0·009 for CD4 T cells, and 33 versus 15%, P = 0·038 for CD8 T cells, respectively. However, T cell proliferation (Ki67⁺) was lower for CD8 T cells in infected bones: 26 versus 34%, P = 0·045. In contrast, we detected no difference in apoptosis and regulatory T cells. In infected bone, we found higher CD28-negative CD4⁺ T cells compared to non-infected bone: 20 versus 8%, respectively (P = 0·005); this T cell subset had higher CD11b expression and perforin secretion. Chronically infected human bones are characterized by an increase of CD28-negative CD4⁺ T cells, indicating long-term activated cells with cytotoxic ability. Therefore, this alteration of co-stimulatory molecules may modify interactions with osteoclasts and impact bone resorption.
Collapse
Affiliation(s)
- G Kumar
- Unité 576, Institut National de la Santé et de la Recherche Médicale, Hopital L'Archet 1, Centre Hospitalier Universitaire de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Duarte JH, Di Meglio P, Hirota K, Ahlfors H, Stockinger B. Differential influences of the aryl hydrocarbon receptor on Th17 mediated responses in vitro and in vivo. PLoS One 2013; 8:e79819. [PMID: 24244565 PMCID: PMC3828240 DOI: 10.1371/journal.pone.0079819] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/04/2013] [Indexed: 11/19/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has been attributed with anti-inflammatory effects in the development of pathological immune responses leading to experimental autoimmune encephalomyelitis (EAE) via the induction of regulatory T cells. In agreement with previously published findings, we find that TCDD administration confers protection from EAE, however, this immuno-modulatory effect was not the consequence of de novo Treg generation, but the inhibition of Th17 cell differentiation. Systemic application of FICZ at the time of immunization also reduced EAE pathology albeit to a lesser degree than TCDD. In vitro Th17 differentiation in the presence of AhR agonists, including TCDD, promoted IL-17 and IL-22 expression, but did not induce Treg differentiation. AhR affinity influenced the amounts of IL-17 and IL-22 protein that was secreted by Th17 cells, but did not seem to affect susceptibility to EAE in vivo. Making use of conditional AhR-deficient mice, we show that the anti-inflammatory effect of TCDD depends on AhR activation in both T cells and dendritic cells, further emphasising the ability of TCDD to interfere with T effector cell differentiation in vivo. The dichotomy between the in vivo and in vitro effects of AhR reveals the complexity of the AhR pathway, which has the capacity of affecting different AhR-expressing cell types involved in mounting immune responses, thus participating in defining their outcome.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/deficiency
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/immunology
- Carbazoles/pharmacology
- Cell Differentiation/drug effects
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/pathology
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Environmental Pollutants/pharmacology
- Gene Expression Regulation
- Immunity, Cellular/drug effects
- Immunologic Factors/pharmacology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukins/genetics
- Interleukins/immunology
- Lymphocyte Activation/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Polychlorinated Dibenzodioxins/analogs & derivatives
- Polychlorinated Dibenzodioxins/pharmacology
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/pathology
- Interleukin-22
Collapse
Affiliation(s)
- João H. Duarte
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Paola Di Meglio
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Keiji Hirota
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Helena Ahlfors
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
12
|
Kawashima H, Takatori H, Suzuki K, Iwata A, Yokota M, Suto A, Minamino T, Hirose K, Nakajima H. Tumor suppressor p53 inhibits systemic autoimmune diseases by inducing regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:3614-23. [PMID: 24006461 DOI: 10.4049/jimmunol.1300509] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 plays a central role in tumor suppression by inducing apoptosis, cell cycle arrest, senescence, and DNA repair. In addition to the antitumor functions of p53, accumulating evidence using systemic p53-deficient mice suggests that p53 suppresses autoimmunity. However, it remains unknown how p53 suppresses autoimmunity. In this study, we generated T cell-specific p53-deficient mice (CD4-Cre p53(fl/fl) mice, or p53 conditional knockout [cKO] mice) and found that aged p53-cKO mice spontaneously developed inflammatory lesions in various organs, including lung, liver, stomach, thyroid gland, submandibular gland, and kidney. Additionally, anti-nuclear Abs and autoantibodies against gastric parietal cells were detected in p53-cKO mice but not in control p53(fl/fl) mice (p53 wild-type mice). Importantly, the number of Foxp3(+)CD4(+) regulatory T cells (Tregs) in the spleen and lung as well as in vitro differentiation of induced Tregs was significantly reduced in p53-cKO mice as compared with that in p53 wild-type mice. Regarding the mechanisms underlying p53-mediated Treg induction, p53 enhanced the transcription of Foxp3 by binding to the promoter and the conserved noncoding DNA sequence-2 of the Foxp3 gene. Taken together, these results suggest that p53 expressed in T cells functions as a suppressor for autoimmunity by inducing Treg differentiation.
Collapse
Affiliation(s)
- Hirotoshi Kawashima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wu H, Chen P, Liao R, Li YW, Yi Y, Wang JX, Cai XY, He HW, Jin JJ, Cheng YF, Fan J, Sun J, Qiu SJ. Intratumoral regulatory T cells with higher prevalence and more suppressive activity in hepatocellular carcinoma patients. J Gastroenterol Hepatol 2013; 28:1555-64. [PMID: 23517245 DOI: 10.1111/jgh.12202] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2013] [Indexed: 12/26/2022]
Abstract
Regulatory T cells (Treg) play a vital role in immunosuppressive crosstalk; however, Tregs from different locations lead to different clinical outcomes. Our aim was, therefore, to compare the prevalences and suppressive phenotypes of Tregs in the peripheral blood, peritumor, and intratumor of patients with hepatocellular carcinoma (HCC). METHODS : The frequencies and phenotypes of CD4(+) CD25(+) CD127(low/-) CD49d(-) Tregs in the periphery, peritumor, and intratumor of 78 HCC patients and 12 healthy controls were evaluated by flow cytometry. Treg-cell suppressive activity was determined using an in vitro CD154 expression assay. Tregs from tumor and paired peritumor were then hybridized using an Agilent whole genome oligo microarray, and selected genes were validated by real-time polymerase chain reaction. Functional analysis of the microarray data was performed using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses. RESULTS : Intratumoral Tregs exhibited higher frequencies and more suppressive phenotypic functions than those in peritumor and periphery, whereas there was no difference between the latter two. Functional analysis showed that complement cascades, p53, and glycosylphosphatidylinositol-anchor biosynthesis pathways were significantly upregulated in intratumoral Tregs; the salivary secretion pathway was significantly downregulated in intratumoral Tregs, and immune cells and tumor-immuno-related Gene Ontology terms were significantly affected. CONCLUSIONS : Tregs in different locations exhibited different functional statuses. A higher prevalence and more suppressive phenotype suggested a critical role for intratumoral Tregs in the formation of multicellular immunosuppressive networks. HCC immunotherapy may be improved, therefore, by specific locational Tregs elimination or suppression.
Collapse
Affiliation(s)
- Han Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Department of General Surgery, Affiliated Hospital, Nantong University, Nantong, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jin S, Chin J, Kitson C, Woods J, Majmudar R, Carvajal V, Allard J, DeMartino J, Narula S, Thomas-Karyat DA. Natural regulatory T cells are resistant to calcium release-activated calcium (CRAC/ORAI) channel inhibition. Int Immunol 2013; 25:497-506. [DOI: 10.1093/intimm/dxt013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Abstract
TGF-β was originally considered as an immunoregulatory cytokine, but accumulating data demonstrate that it also plays a critical role in development of effector immunity. Since TGF- β has a potent ability to alter immune responses, modulation of the TGF-β pathway for treatment of transplantation patients could be effective if carried out in a target selective manner. This review will focus on the role of TGF-β in T cell differentiation and discuss the prospect of TGF-β as the therapeutic target of lung transplantation acceptance.
Collapse
Affiliation(s)
- Makio Iwashima
- Department of Microbiology & Immunology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL 60153, USA.
| | | |
Collapse
|
16
|
Shah S, Lowery E, Braun RK, Martin A, Huang N, Medina M, Sethupathi P, Seki Y, Takami M, Byrne K, Wigfield C, Love RB, Iwashima M. Cellular basis of tissue regeneration by omentum. PLoS One 2012; 7:e38368. [PMID: 22701632 PMCID: PMC3368844 DOI: 10.1371/journal.pone.0038368] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 05/03/2012] [Indexed: 01/01/2023] Open
Abstract
The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells. Omentum consists of a variety of phenotypically and functionally distinctive cells. To understand the mechanism of tissue repair support by the omentum in more detail, we analyzed the cell subsets derived from the omentum on immune and inflammatory responses. Our data demonstrate that the omentum contains at least two groups of cells that support tissue repair, immunomodulatory myeloid derived suppressor cells and omnipotent stem cells that are indistinguishable from mesenchymal stem cells. Based on these data, we propose that the omentum is a designated organ for tissue repair and healing in response to foreign invasion and tissue damage.
Collapse
Affiliation(s)
- Shivanee Shah
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Erin Lowery
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Rudolf K. Braun
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Alicia Martin
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Nick Huang
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Melissa Medina
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Periannan Sethupathi
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Yoichi Seki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Mariko Takami
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Kathryn Byrne
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Christopher Wigfield
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Robert B. Love
- Department of Thoracic and Cardiovascular Surgery, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
17
|
Silberman D, Bucknum A, Bartlett T, Composto G, Kozlowski M, Walker A, Werda A, Cua J, Sharpe AH, Somerville JE, Riggs JE. CD28 ligation increases macrophage suppression of T-cell proliferation. Cell Mol Immunol 2012; 9:341-9. [PMID: 22522653 DOI: 10.1038/cmi.2012.13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
When compared to spleen or lymph node cells, resident peritoneal cavity cells respond poorly to T-cell activation in vitro. The greater proportional representation of macrophages in this cell source has been shown to actively suppress the T-cell response. Peritoneal macrophages exhibit an immature phenotype (MHC class II(lo), B7(lo)) that reduces their efficacy as antigen-presenting cells. Furthermore, these cells readily express inducible nitric oxide synthase (iNOS), an enzyme that promotes T-cell tolerance by catabolism of the limiting amino acid arginine. Here, we investigate the ability of exogenous T-cell costimulation to recover the peritoneal T-cell response. We show that CD28 ligation failed to recover the peritoneal T-cell response and actually suppressed responses that had been recovered by inhibiting iNOS. As indicated by cytokine ELISpot and neutralizing monoclonal antibody (mAb) treatment, this 'cosuppression' response was due to CD28 ligation increasing the number of interferon (IFN)-γ-secreting cells. Our results illustrate that cellular composition and cytokine milieu influence T-cell costimulation biology.Cellular & Molecular Immunology advance online publication, 23 April 2012; doi:10.1038/cmi.2012.13.
Collapse
Affiliation(s)
- Daniel Silberman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Takami M, Love RB, Iwashima M. TGF-β converts apoptotic stimuli into the signal for Th9 differentiation. THE JOURNAL OF IMMUNOLOGY 2012; 188:4369-75. [PMID: 22461692 DOI: 10.4049/jimmunol.1102698] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Naturally arising CD4(+)CD25(+)FoxP3(+) regulatory T cells (nTregs) have an essential role in maintenance of immune homeostasis and peripheral tolerance. Previously, we reported that conventional CD4(+) and CD8(+) T cells undergo p53-induced CD28-dependent apoptosis (PICA) when stimulated with a combination of immobilized anti-CD3 and anti-CD28 Abs, whereas nTregs expand robustly under the same conditions, suggesting that there is a differential survival mechanism against PICA between conventional T cells and nTregs. In this study, we demonstrate that TGF-β signaling is required for nTregs to survive PICA. Conversely, when an active form of exogenous TGF-β is present, conventional T cells become resistant to PICA and undergo robust expansion instead of apoptosis, with reduction of the proapoptotic protein Bim and FoxO3a. A substantial fraction of PICA-resistant T cells expressed IL-9 (T(H)9 cells). Moreover, the presence of IL-6 along with TGF-β led to the generation of T(H)17 cells from conventional T cells. Together, the data demonstrate a novel role for TGF-β in the homeostasis of regulatory T cells and effector T cell differentiation and expansion.
Collapse
Affiliation(s)
- Mariko Takami
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
19
|
Klinker MW, Lundy SK. Multiple mechanisms of immune suppression by B lymphocytes. Mol Med 2012; 18:123-37. [PMID: 22033729 PMCID: PMC3276396 DOI: 10.2119/molmed.2011.00333] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/21/2011] [Indexed: 12/20/2022] Open
Abstract
Suppression of the immune system after the resolution of infection or inflammation is an important process that limits immune-mediated pathogenesis and autoimmunity. Several mechanisms of immune suppression have received a great deal of attention in the past three decades. These include mechanisms related to suppressive cytokines, interleukin (IL)-10 and transforming growth factor (TGF)-β, produced by regulatory cells, and mechanisms related to apoptosis mediated by death ligands, Fas ligand (FasL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), expressed by killer or cytotoxic cells. Despite many lines of evidence supporting an important role for B lymphocytes as both regulatory and killer cells in many inflammatory settings, relatively little attention has been given to understanding the biology of these cells, their relative importance or their usefulness as therapeutic targets. This review is intended to give an overview of the major mechanisms of immunosuppression used by B lymphocytes during both normal and inflammatory contexts. The more recent discoveries of expression of granzyme B, programmed death 1 ligand 2 (PD-L2) and regulatory antibody production by B cells as well as the interactions of regulatory and killer B cells with regulatory T cells, natural killer T (NKT) cells and other cell populations are discussed. In addition, new evidence on the basis of independent characterizations of regulatory and killer CD5(+) B cells point toward the concept of a multipotent suppressor B cell with seemingly high therapeutic potential.
Collapse
Affiliation(s)
- Matthew W Klinker
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Steven K Lundy
- Department of Internal Medicine, Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
20
|
Wang X, Szymczak-Workman AL, Gravano DM, Workman CJ, Green DR, Vignali DAA. Preferential control of induced regulatory T cell homeostasis via a Bim/Bcl-2 axis. Cell Death Dis 2012; 3:e270. [PMID: 22318539 PMCID: PMC3288351 DOI: 10.1038/cddis.2012.9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Apoptosis has an essential role in controlling T cell homeostasis, especially during the contraction phase of an immune response. However, its contribution to the balance between effector and regulatory populations remains unclear. We found that Rag1−/− hosts repopulated with Bim−/− conventional CD4+ T cells (Tconv) resulted in a larger induced regulatory T cell (iTreg) population than mice given wild-type (WT) Tconv. This appears to be due to an increased survival advantage of iTregs compared with activated Tconv in the absence of Bim. Downregulation of Bcl-2 expression and upregulation of Bim expression were more dramatic in WT iTregs than activated Tconv in the absence of IL-2 in vitro. The iTregs generated following Tconv reconstitution of Rag1−/− hosts exhibited lower Bcl-2 expression and higher Bim/Bcl-2 ratio than Tconv, which indicates that iTregs were in an apoptosis-prone state in vivo. A significant proportion of the peripheral iTreg pool exhibits low Bcl-2 expression indicating increased sensitivity to apoptosis, which may be a general characteristic of certain Treg subpopulations. In summary, our data suggest that iTregs and Tconv differ in their sensitivity to apoptotic stimuli due to their altered ratio of Bim/Bcl-2 expression. Modulating the apoptosis pathway may provide novel therapeutic approaches to alter the balance between effector T cells and Tregs.
Collapse
Affiliation(s)
- X Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wendelsdorf K, Dean G, Hu S, Nordone S, Banks HT. Host immune responses that promote initial HIV spread. J Theor Biol 2011; 289:17-35. [PMID: 21871901 DOI: 10.1016/j.jtbi.2011.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 07/05/2011] [Accepted: 08/11/2011] [Indexed: 11/29/2022]
Abstract
The host inflammatory response to HIV invasion is a necessary component of the innate antiviral activity that vaccines and early interventions seek to exploit/enhance. However, the response is dependent on CD4+ T-helper cell 1 (Th1) recruitment and activation. It is this very recruitment of HIV-susceptible target cells that is associated with the initial viral proliferation. Hence, global enhancement of the inflammatory response by T-cells and dendritic cells will likely feed viral propagation. Mucosal entry sites contain inherent pathways, in the form of natural regulatory T-cells (nTreg), that globally dampen the inflammatory response. We created a model of this inflammatory response to virus as well as inherent nTreg-mediated regulation of Th1 recruitment and activation. With simulations using this model we sought to address the net effect of nTreg activation and its specific functions as well as identify mechanisms of the natural inflammatory response that are best targeted to inhibit viral spread without compromising initial antiviral activity. Simulation results provide multiple insights that are relevant to developing intervention strategies that seek to exploit natural immune processes: (i) induction of the regulatory response through nTreg activation expedites viral proliferation due to viral production by nTreg itself and not to reduced Natural Killer (NK) cell activity; (ii) at the same time, induction of the inflammation response through either DC activation or Th1 activation expedites viral proliferation; (iii) within the inflammatory pathway, the NK response is an effective controller of viral proliferation while DC-mediated stimulation of T-cells is a significant driver of viral proliferation; and (iv) nTreg-mediated DC deactivation plays a significant role in slowing viral proliferation by inhibiting T-cell stimulation, making this function an aide to the antiviral immune response.
Collapse
Affiliation(s)
- K Wendelsdorf
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and University, Washington Street, MC 0477, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
22
|
Weiss EM, Schmidt A, Vobis D, Garbi N, Lahl K, Mayer CT, Sparwasser T, Ludwig A, Suri-Payer E, Oberle N, Krammer PH. Foxp3-Mediated Suppression of CD95L Expression Confers Resistance to Activation-Induced Cell Death in Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1684-91. [DOI: 10.4049/jimmunol.1002321] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Abstract
Generation of regulatory T cells (or Treg) derived hybridomas offers a tool to study their antigen specificity. T cells hybridomas are produced by fusing TCR α-β-thymoma BW5147 with highly dividing T cell population. In vitro anergy of Tregs is an obstacle in generation of highly dividing Treg population for their fusion. In this chapter, we describe a simple and efficient method to generate large number of blasting Treg and their successful fusion with thymoma BW5147. The resultant hybridomas lose Treg-specific transcription factor FoxP3, respond to antigenic stimulation by producing IL-2, and thus allow the evaluation of antigen specific, Tregs-derived TCRs.
Collapse
|