1
|
Liu K, Cui JJ, Zhan Y, Ouyang QY, Lu QS, Yang DH, Li XP, Yin JY. Reprogramming the tumor microenvironment by genome editing for precision cancer therapy. Mol Cancer 2022; 21:98. [PMID: 35410257 PMCID: PMC8996591 DOI: 10.1186/s12943-022-01561-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is essential for immune escape by tumor cells. It plays essential roles in tumor development and metastasis. The clinical outcomes of tumors are often closely related to individual differences in the patient TME. Therefore, reprogramming TME cells and their intercellular communication is an attractive and promising strategy for cancer therapy. TME cells consist of immune and nonimmune cells. These cells need to be manipulated precisely and safely to improve cancer therapy. Furthermore, it is encouraging that this field has rapidly developed in recent years with the advent and development of gene editing technologies. In this review, we briefly introduce gene editing technologies and systematically summarize their applications in the TME for precision cancer therapy, including the reprogramming of TME cells and their intercellular communication. TME cell reprogramming can regulate cell differentiation, proliferation, and function. Moreover, reprogramming the intercellular communication of TME cells can optimize immune infiltration and the specific recognition of tumor cells by immune cells. Thus, gene editing will pave the way for further breakthroughs in precision cancer therapy.
Collapse
|
2
|
Lee DA. Cellular therapy: Adoptive immunotherapy with expanded natural killer cells. Immunol Rev 2019; 290:85-99. [DOI: 10.1111/imr.12793] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Dean A. Lee
- Department of Hematology, Oncology, and Bone Marrow Transplantation Nationwide Children's Hospital Columbus Ohio
- Department of Pediatrics The Ohio State University Columbus Ohio
| |
Collapse
|
3
|
Mittal D, Caramia F, Michiels S, Joensuu H, Kellokumpu-Lehtinen PL, Sotiriou C, Loi S, Smyth MJ. Improved Treatment of Breast Cancer with Anti-HER2 Therapy Requires Interleukin-21 Signaling in CD8+ T Cells. Cancer Res 2016; 76:264-74. [PMID: 26744522 DOI: 10.1158/0008-5472.can-15-1567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022]
Abstract
The HER2/ErbB2 monoclonal antibody (mAb) trastuzumab is combined with chemotherapy as a standard-of-care for newly diagnosed HER2(+) breast cancer patients, but some patients treated with this combination therapy experience early relapse. Our analysis of data from a clinical trial evaluating the efficacy of chemotherapy plus/minus trastuzumab suggested that the magnitude of trastuzumab benefit on distant disease-free survival was higher for increasing expression of the IL21 receptor (IL21R). Therefore, we investigated a possible role for IL21 signaling in promoting HER2 mAb therapeutic efficacy. We found that IL21R-deficient mice and wild-type mice treated with a neutralizing anti-IL21 mAb were less susceptible to trastuzumab-like anti-ErbB2 therapy. Furthermore, IL21R expression on CD8(+) T cells, but not on natural killer cells, was required for optimal anti-ErbB2 mAb efficacy, and IL21 expression was enhanced in tumor-infiltrating CD4(+) T lymphocytes after anti-ErbB2 therapy. Finally, we found that administering recombinant IL21 in combination with anti-ErbB2 therapy was therapeutic against primary tumors and experimental metastases in mice. Collectively, our findings suggest that elevating IL21 signaling may enhance trastuzumab efficacy, thus constituting a novel candidate strategy to overcome trastuzumab resistance and improve patient survival. Cancer
Collapse
Affiliation(s)
- Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, Victoria, Australia
| | - Stefan Michiels
- Service de Biostatistique et d'Epidemiologie, Gustave Roussy, Villejuif, France. INSERM U1018, CESP, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Heikki Joensuu
- Department of Oncology, Helsinki University Central Hospital and Helsinki University, Helsinki, Finland
| | | | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Université Libre de Bruxelles, Institut Jules Bordet, Brussels, Belgium
| | - Sherene Loi
- Peter MacCallum Cancer Centre, University of Melbourne, East Melbourne, Victoria, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
4
|
Lam DC, Luo SY, Deng W, Kwan JS, Rodriguez-Canales J, Cheung AL, Cheng GH, Lin CH, Wistuba II, Sham PC, Wan TS, Tsao SW. Oncogenic mutation profiling in new lung cancer and mesothelioma cell lines. Onco Targets Ther 2015; 8:195-209. [PMID: 25653542 PMCID: PMC4303463 DOI: 10.2147/ott.s71242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Thoracic tumor, especially lung cancer, ranks as the top cancer mortality in most parts of the world. Lung adenocarcinoma is the predominant subtype and there is increasing knowledge on therapeutic molecular targets, namely EGFR, ALK, KRAS, and ROS1, among lung cancers. Lung cancer cell lines established with known clinical characteristics and molecular profiling of oncogenic targets like ALK or KRAS could be useful tools for understanding the biology of known molecular targets as well as for drug testing and screening. Materials and methods Five new cancer cell lines were established from pleural fluid or biopsy tissues obtained from Chinese patients with primary lung adenocarcinomas or malignant pleural mesothelioma. They were characterized by immunohistochemistry, growth kinetics, tests for tumorigenicity, EGFR and KRAS gene mutations, ALK gene rearrangement and OncoSeq mutation profiling. Results These newly established lung adenocarcinoma and mesothelioma cell lines were maintained for over 100 passages and demonstrated morphological and immunohistochemical features as well as growth kinetics of tumor cell lines. One of these new cell lines bears EML4-ALK rearrangement variant 2, two lung cancer cell lines bear different KRAS mutations at codon 12, and known single nucleotide polymorphism variants were identified in these cell lines. Discussion Four new lung adenocarcinoma and one mesothelioma cell lines were established from patients with different clinical characteristics and oncogenic mutation profiles. These characterized cell lines and their mutation profiles will provide resources for exploration of lung cancer and mesothelioma biology with regard to the presence of known oncogenic mutations.
Collapse
Affiliation(s)
- David Cl Lam
- Department of Medicine, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Susan Y Luo
- Department of Medicine, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Wen Deng
- School of Nursing, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Johnny Sh Kwan
- Department of Psychiatry, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas at Houston, Houston, TX, USA
| | - Annie Lm Cheung
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Grace Hw Cheng
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chi-Ho Lin
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas at Houston, Houston, TX, USA
| | - Pak C Sham
- Center for Genome Sciences, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Thomas Sk Wan
- Department of Pathology, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Sai-Wah Tsao
- Department of Anatomy, University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
5
|
Chen XL, Bobbala D, Rodriguez GM, Mayhue M, Chen YG, Ilangumaran S, Ramanathan S. Induction of autoimmune diabetes in non-obese diabetic mice requires interleukin-21-dependent activation of autoreactive CD8⁺ T cells. Clin Exp Immunol 2013; 173:184-94. [PMID: 23607664 DOI: 10.1111/cei.12108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2013] [Indexed: 12/28/2022] Open
Abstract
Non-obese diabetic (NOD) mice lacking interleukin (IL)-21 or IL-21 receptor do not develop autoimmune type 1 diabetes (T1D). We have shown recently that IL-21 may promote activation of autoreactive CD8(+) T cells by increasing their antigen responsiveness. To investigate the role of IL-21 in activating diabetogenic CD8(+) T cells in the NOD mouse, we generated IL-21-deficient NOD mice expressing the highly pathogenic major histocompatibility complex (MHC) class-I-restricted 8.3 transgenic T cell receptor (TCR). IL-21 deficiency protected 8.3-NOD mice completely from T1D. CD8(+) T cells from the 8.3-NOD.Il21(-/-) mice showed decreased antigen-induced proliferation but displayed robust antigen-specific cytolytic activity and production of effector cytokines. IL-21-deficient 8.3 T cells underwent efficient homeostatic proliferation, and previous antigen stimulation enabled these cells to cause diabetes in NOD.Scid recipients. The 8.3 T cells that developed in an IL-21-deficient environment showed impaired antigen-specific proliferation in vivo even in IL-21-sufficient mice. These cells also showed impaired IL-2 production and Il2 gene transcription following antigen stimulation. However, IL-2 addition failed to reverse their impaired proliferation completely. These findings indicate that IL-21 is required for efficient initial activation of autoreactive CD8(+) T cells but is dispensable for the activated cells to develop effector functions and cause disease. Hence, therapeutic targeting of IL-21 in T1D may inhibit activation of naive autoreactive CD8(+) T cells, but may have to be combined with other strategies to inhibit already activated cells.
Collapse
Affiliation(s)
- X-L Chen
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Dodd JS, Clark D, Muir R, Korpis C, Openshaw PJM. Endogenous IL-21 regulates pathogenic mucosal CD4 T-cell responses during enhanced RSV disease in mice. Mucosal Immunol 2013; 6:704-17. [PMID: 23168836 PMCID: PMC3610641 DOI: 10.1038/mi.2012.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A role for interleukin-21 (IL-21) has recently been found in several diseases, but contribution to mucosal defences has not been described. In BALB/c mice infected with respiratory syncytial virus (RSV), IL-21 depletion had little effect in primary infection. However, depletion of mice during priming with recombinant vaccinia expressing RSV G protein (which primes RSV-specific T helper type 2 cells and causes lung eosinophilia during RSV infection) further exacerbated pathology during RSV challenge, with reduced viral clearance and impaired virus-specific serum antibody responses. This enhancement was accompanied by lymphocyte, neutrophil, and antigen-presenting cell recruitment to the lungs, with increased bronchoalveolar lavage interferon-γ and IL-17 levels. Adoptive transfer of splenic CD4 T cells from depleted mice into naive recipients replicated these effects, indicating that IL-21 mediates its effects via CD4 T cells. Endogenous IL-21, therefore, has potent and specific effects on mucosal antiviral responses, assisting viral clearance, regulating pulmonary T- and B-cell responses, and inhibiting IL-17 production.
Collapse
Affiliation(s)
- J S Dodd
- Section of Respiratory Infection, Faculty of Medicine, Centre for Respiratory Infections, National Heart and Lung Institute, Imperial College, London, UK
| | - D Clark
- Section of Respiratory Infection, Faculty of Medicine, Centre for Respiratory Infections, National Heart and Lung Institute, Imperial College, London, UK
| | - R Muir
- Section of Respiratory Infection, Faculty of Medicine, Centre for Respiratory Infections, National Heart and Lung Institute, Imperial College, London, UK
| | - C Korpis
- Section of Respiratory Infection, Faculty of Medicine, Centre for Respiratory Infections, National Heart and Lung Institute, Imperial College, London, UK
| | - P J M Openshaw
- Section of Respiratory Infection, Faculty of Medicine, Centre for Respiratory Infections, National Heart and Lung Institute, Imperial College, London, UK,()
| |
Collapse
|
7
|
Anti-cancer versus cancer-promoting effects of the interleukin-17-producing T helper cells. Immunol Lett 2012; 149:123-33. [PMID: 23159638 DOI: 10.1016/j.imlet.2012.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/15/2012] [Accepted: 11/05/2012] [Indexed: 12/18/2022]
Abstract
Research on T helper 17 (Th17) cells with regard to immunoediting has revealed elusive results. Whereas enhanced Th17 response and related molecules such as interleukin (IL)-17, IL-21, IL-22, IL-23 and STAT3 accompanied tumor induction and progression, finding that tumor growth/stage was negatively correlated with increased infiltration of Th17 cells in the tumor mass has prompted elucidation of various antitumor mechanisms elicited by Th17 and their related molecules. The pro-tumor efficacy of Th17 response included promotion of neutrophilia and induction of angiogenic (e.g. VEGF, MMP2 and MMP9) and anti-apoptotic factors (e.g. Bcl-XL), as well as expansion and activation of myeloid-derived suppressor cells, which facilitate generation of tumor-specific regulatory T cells. Other tumor immunogenic settings revealed anti-tumor pathways including induction of cytotoxic activity, expression of MHC antigens, the ability Th17 cells to reside within the tumor, and to convert into IFN-γ producers. Notably, Th17 cell related molecules exert indirect pro- or anti-tumor effects via inducing viral persistence or mediating protective mechanisms against bacterial and viral infection. Herein, the recent literature revealing such immunoediting events mediated by Th17 cells and their associated molecules as delivered by various experimental regimens and observed in cancer patient are revised, with a focus on some proposed anti-cancer therapies.
Collapse
|
8
|
Cedeno-Laurent F, Opperman M, Barthel SR, Kuchroo VK, Dimitroff CJ. Galectin-1 triggers an immunoregulatory signature in Th cells functionally defined by IL-10 expression. THE JOURNAL OF IMMUNOLOGY 2012; 188:3127-37. [PMID: 22345665 DOI: 10.4049/jimmunol.1103433] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Galectin-1 (Gal-1), a β-galactoside-binding protein, can alter fate and effector function of Th cells; however, little is known about how Gal-1 induces Th cell differentiation. In this article, we show that both uncommitted and polarized Th cells bound by Gal-1 expressed an immunoregulatory signature defined by IL-10. IL-10 synthesis was stimulated by direct Gal-1 engagement to cell surface glycoproteins, principally CD45, on activated Th cells and enhanced by IL-21 expression through the c-Maf/aryl hydrocarbon receptor pathway, independent of APCs. Gal-1-induced IL-10(+) T cells efficiently suppressed T cell proliferation and T cell-mediated inflammation and promoted the establishment of cancer immune-privileged sites. Collectively, these findings show how Gal-1 functions as a major glycome determinant regulating Th cell development, inflammation, and tumor immunity.
Collapse
|
9
|
Denman CJ, Senyukov VV, Somanchi SS, Phatarpekar PV, Kopp LM, Johnson JL, Singh H, Hurton L, Maiti SN, Huls MH, Champlin RE, Cooper LJN, Lee DA. Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells. PLoS One 2012; 7:e30264. [PMID: 22279576 PMCID: PMC3261192 DOI: 10.1371/journal.pone.0030264] [Citation(s) in RCA: 454] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/12/2011] [Indexed: 01/03/2023] Open
Abstract
NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy.
Collapse
Affiliation(s)
- Cecele J. Denman
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Vladimir V. Senyukov
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Srinivas S. Somanchi
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Prasad V. Phatarpekar
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, Health Science Center, The University of Texas, Houston, Texas, United States of America
| | - Lisa M. Kopp
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Jennifer L. Johnson
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Harjeet Singh
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Lenka Hurton
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, Health Science Center, The University of Texas, Houston, Texas, United States of America
| | - Sourindra N. Maiti
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - M. Helen Huls
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
| | - Laurence J. N. Cooper
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, Health Science Center, The University of Texas, Houston, Texas, United States of America
| | - Dean A. Lee
- Division of Pediatrics, MD Anderson Cancer Center, The University of Texas, Houston, Texas, United States of America
- Graduate School of Biomedical Sciences, Health Science Center, The University of Texas, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Rizzo A, Pallone F, Monteleone G, Fantini MC. Intestinal inflammation and colorectal cancer: A double-edged sword? World J Gastroenterol 2011; 17:3092-100. [PMID: 21912451 PMCID: PMC3158408 DOI: 10.3748/wjg.v17.i26.3092] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 09/30/2010] [Accepted: 10/07/2010] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is thought to be the leading cause of many human cancers including colorectal cancer (CRC). Accordingly, epidemiologic and clinical studies indicate that patients affected by ulcerative colitis and Crohn’s disease, the two major forms of inflammatory bowel disease, have an increased risk of developing CRC. In recent years, the role of immune cells and their products have been shown to be pivotal in initiation and progression of colitis-associated CRC. On the other hand, activation of the immune system has been shown to cause dysplastic cell elimination and cancer suppression in other settings. Clinical and experimental data herein reviewed, while confirming chronic inflammation as a risk factor for colon carcinogenesis, do not completely rule out the possibility that under certain conditions the chronic activation of the mucosal immune system might protect from colonic dysplasia.
Collapse
|
11
|
Cox MA, Harrington LE, Zajac AJ. Cytokines and the inception of CD8 T cell responses. Trends Immunol 2011; 32:180-6. [PMID: 21371940 DOI: 10.1016/j.it.2011.01.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/07/2011] [Accepted: 01/14/2011] [Indexed: 01/01/2023]
Abstract
The activation and differentiation of CD8 T cells is a necessary first step that endows these cells with the phenotypic and functional properties required for the control of intracellular pathogens. The induction of the CD8 T cell responses typically results in the development of a massive overall population of effector cells, comprising both highly functional but short-lived terminally differentiated cells, as well as a smaller subset of precursors that are predisposed to survive and transition into the memory T cell pool. In this review, we discuss how inflammatory cytokines and IL-2 bias the initial response towards short-lived effector generation, and also highlight the potential counterbalancing role of IL-21.
Collapse
Affiliation(s)
- Maureen A Cox
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | | | | |
Collapse
|
12
|
Teng MWL, von Scheidt B, Duret H, Towne JE, Smyth MJ. Anti-IL-23 monoclonal antibody synergizes in combination with targeted therapies or IL-2 to suppress tumor growth and metastases. Cancer Res 2011; 71:2077-86. [PMID: 21282337 DOI: 10.1158/0008-5472.can-10-3994] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunosuppressive barricades erected by tumors during the evolution of immune escape represent a major obstacle to many potentially effective cancer therapies and vaccines. We have shown that host interleukin (IL)-23 suppresses the innate immune response during carcinogenesis and metastasis, independently of effects on the proinflammatory cytokine IL-17A. Based on these findings, we envisioned that IL-23 neutralization might offer a promising strategy to modulate immunosuppression, particularly in combination with immunostimulatory agents. Here we show that by itself a neutralizing monoclonal antibody (mAb) to IL-23 suppressed early experimental lung metastases in the B16F10 mouse model of melanoma and also modestly inhibited the subcutaneous growth of primary tumors. These antitumor effects were respectively mediated by natural killer cells or CD8(+) T cells. More notably, combinatorial treatments of anti-IL-23 mAb with IL-2 or anti-erbB2 mAb significantly inhibited subcutaneous growth of established mammary carcinomas and suppressed established experimental and spontaneous lung metastases. Overall, our results suggest the potential of anti-human IL-23 mAbs to improve the immunostimulatory effects of IL-2 and trastuzumab in the current management of some advanced human cancers.
Collapse
Affiliation(s)
- Michele W L Teng
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, Melbourne, Australia
| | | | | | | | | |
Collapse
|
13
|
Pallone F, Fina D, Caruso R, Monteleone G. Role of IL-21 in inflammatory bowel disease. Expert Rev Clin Immunol 2010; 6:537-41. [PMID: 20594126 DOI: 10.1586/eci.10.44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IL-21 was first described as a critical regulator of T- and B-cell functions. More recently, it has become apparent that IL-21 controls the activity of both immune and nonimmune cells and, depending on the timing and context analyzed, it can promote either inflammatory or counter-regulatory effects. IL-21 participates in the immune responses against tumor cells and chronic viral infections, but excessive production of IL-21 has been associated with the development of immune-inflammatory diseases in various organs. In this article, we focus on data supporting the pathogenic role of IL-21 in human inflammatory bowel diseases and discuss preclinical studies that suggest that neutralization of IL-21 in vivo could be a new strategy to counteract the inflammatory bowel disease-related, tissue damaging immune response.
Collapse
Affiliation(s)
- Francesco Pallone
- Department of Internal Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| | | | | | | |
Collapse
|
14
|
Teng MWL, Ngiow SF, von Scheidt B, McLaughlin N, Sparwasser T, Smyth MJ. Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res 2010; 70:7800-9. [PMID: 20924111 DOI: 10.1158/0008-5472.can-10-1681] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Foxp3 is a central control element in the development and function of regulatory T cells (Treg), and mice expressing a diphtheria toxin (DT) receptor-enhanced green fluorescent protein fusion protein under the control of the foxp3 gene locus (DEREG mice) allow conditional and efficient depletion of Foxp3(+) Treg by DT injection. Herein, we use DEREG mice and a mouse model of carcinogenesis to show that conditional and effective Treg depletion can both protect mice from carcinogenesis by innate control, yet permanently eradicate a proportion of de novo-established tumors in mice in a largely CD8(+) T-cell- and IFN-γ-dependent manner. Tumors displayed a heterogeneous response to Treg depletion, and suppression of established tumors was accompanied by an increase in the tumor-infiltrating CD8(+) T-cell/B-cell ratio. Tumor rejection occurred in the absence of overt autoimmunity, suggesting that effective transient Treg depletion strategies may be therapeutic in at least a proportion of spontaneous tumors developing in the host.
Collapse
Affiliation(s)
- Michele W L Teng
- Cancer Immunology Program, Trescowthick Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|