1
|
Numazaki K, Tada H, Nishioka T, Nemoto E, Matsushita K, Mizoguchi I, Sugawara S. Neutrophil extracellular traps inhibit osteoclastogenesis. Biochem Biophys Res Commun 2024; 705:149743. [PMID: 38442445 DOI: 10.1016/j.bbrc.2024.149743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Neutrophil extracellular traps (NETs) released by neutrophils upon inflammation or infection, act as an innate immune defense against pathogens. NETs also influence inflammatory responses and cell differentiation in host cells. Osteoclasts, which are derived from myeloid stem cells, are critical for the bone remodeling by destroying bone. In the present study, we explores the impact of NETs, induced by the inflammatory agent calcium ionophore A23187, on the differentiation and activation of osteoclasts, potentially through suppressing RANK expression. Our results collectively suggested that the inhibition of RANKL-mediated osteoclastogenesis by NETs might lead to the suppression of excessive bone resorption during inflammation.
Collapse
Affiliation(s)
- Kento Numazaki
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan; Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Hiroyuki Tada
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan.
| | - Takashi Nishioka
- Liaison Center for Innovative Dentistry, Division for Advanced Education Development, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan; Oral and Maxillofacial Radiology, Tohoku University Hospital, Sendai, 980-8575, Japan
| | - Eiji Nemoto
- Division of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| |
Collapse
|
2
|
Cai R, Dong Y, Fang M, Fan Y, Cheng Z, Zhou Y, Gao J, Han F, Guo C, Ma X. Genome-Wide Association Identifies Risk Pathways for SAPHO Syndrome. Front Cell Dev Biol 2021; 9:643644. [PMID: 33816493 PMCID: PMC8012550 DOI: 10.3389/fcell.2021.643644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
SAPHO syndrome is a rare chronic inflammatory disease which is characterized by the comprehensive manifestations of bone, joint, and skin. However, little is known about the pathogenesis of SAPHO syndrome. A genome-wide association study (GWAS) of 49 patients and 121 control subjects have primarily focused on identification of common genetic variants associated with SAPHO, the data were analyzed by classical multiple logistic regression. Later, GWAS findings were further validated using whole exome sequencing (WES) in 16 patients and 15 controls to identify potentially functional pathways involved in SAPHO pathogenesis. In general, 40588 SNPs in genomic regions were associated with P < 0.05 after filter process, only 9 SNPs meet the expected cut-off P-value, however, none of them had association with SAPHO syndrome based on published literatures. And then, 15 pathways were found involved in SAPHO pathogenesis, of them, 6 pathways including osteoclast differentiation, bacterial invasion of epithelial cells, et al., had strong association with skin, osteoarticular manifestations of SAPHO or inflammatory reaction based published research. This study identified aberrant osteoclast differentiation and other pathways were involved in SAPHO syndrome. This finding may give insight into the understanding of pathogenic genes of SAPHO and provide the basis for SAPHO research and treatment.
Collapse
Affiliation(s)
- Ruikun Cai
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Yichao Dong
- National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Mingxia Fang
- National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Yuxuan Fan
- National Research Institute for Family Planning, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Zian Cheng
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Yue Zhou
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Jianen Gao
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Feifei Han
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changlong Guo
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
- National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
3
|
Xu Z, Tong Z, Neelakantan P, Cai Y, Wei X. Enterococcus faecalis immunoregulates osteoclastogenesis of macrophages. Exp Cell Res 2017; 362:152-158. [PMID: 29129564 DOI: 10.1016/j.yexcr.2017.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
Abstract
Persistent apical periodontitis (PAP) is characterized by refractory inflammation and progressive bone destruction. Enterococcus faecalis infection is considered an important etiological factor for the development of PAP, although the exact mechanisms remain unknown. This study aimed at investigating the role of E. faecalis in cell proliferation, inflammatory reactions and osteoclast differentiation of macrophages using an in vitro infection model of osteoclast precursor RAW264.7 cells. A cell viability assay of cultured RAW264.7 cells exposed to live E. faecalis at a multiplicity of infection of 100 for 2h, indicated that the infection exhibited no cytotoxic effect. Transmission electron microscopy images revealed no apoptotic changes but a rise of metabolic activity and phagocytic features in the infected RAW264.7 cells. Confocal laser scanning microscopic and flow cytometric analysis indicated that the phagocytosis of RAW264.7 cells was activated by E. faecalis infection. Furthermore, quantitative real-time PCR assays demonstrated that the expression of inflammatory cytokines was remarkably elevated in infected RAW264.7 cells. Differentiation of infected RAW264.7 cells into osteoclasts was remarkably attenuated, and expression of osteoclast marker genes as well as fusogenic genes significantly dropped. In summary, E. faecalis appears to attenuate osteoclastic differentiation of RAW264.7 precursor cells, rather stimulates them to function as macrophages.
Collapse
Affiliation(s)
- Zhezhen Xu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| | - Prasanna Neelakantan
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
| | - Yanling Cai
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road, Guangzhou 510055, Guangdong, China; Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, Guangzhou 510080, Guangdong, China.
| |
Collapse
|
4
|
Garg AD, Elsen S, Krysko DV, Vandenabeele P, de Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. Oncotarget 2016; 6:26841-60. [PMID: 26314964 PMCID: PMC4694957 DOI: 10.18632/oncotarget.4754] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/10/2015] [Indexed: 12/22/2022] Open
Abstract
Immunogenic cell death (ICD) is a well-established instigator of ‘anti-cancer vaccination-effect (AVE)’. ICD has shown considerable preclinical promise, yet there remain subset of cancer patients that fail to respond to clinically-applied ICD inducers. Non-responsiveness to ICD inducers could be explained by the existence of cancer cell-autonomous, anti-AVE resistance mechanisms. However such resistance mechanisms remain poorly investigated. In this study, we have characterized for the first time, a naturally-occurring preclinical cancer model (AY27) that exhibits intrinsic anti-AVE resistance despite treatment with ICD inducers like mitoxantrone or hypericin-photodynamic therapy. Further mechanistic analysis revealed that this anti-AVE resistance was associated with a defect in exposing the important ‘eat me’ danger signal, surface-calreticulin (ecto-CRT/CALR). In an ICD setting, this defective ecto-CRT further correlated with severely reduced phagocytic clearance of AY27 cells as well as the failure of these cells to activate AVE. Defective ecto-CRT in response to ICD induction was a result of low endogenous CRT protein levels (i.e. CRTlow-phenotype) in AY27 cells. Exogenous reconstitution of ecto-rCRT (recombinant-CRT) improved the phagocytic removal of ICD inducer-treated AY27 cells, and importantly, significantly increased their AVE-activating ability. Moreover, we found that a subset of cancer patients of various cancer-types indeed possessed CALRlow or CRTlow-tumours. Remarkably, we found that tumoural CALRhigh-phenotype was predictive of positive clinical responses to therapy with ICD inducers (radiotherapy and paclitaxel) in lung and ovarian cancer patients, respectively. Furthermore, only in the ICD clinical setting, tumoural CALR levels positively correlated with the levels of various phagocytosis-associated genes relevant for phagosome maturation or processing. Thus, we reveal the existence of a cancer cell-autonomous, anti-AVE or anti-ICD resistance mechanism that has profound clinical implications for anticancer immunotherapy and cancer predictive biomarker analysis.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanne Elsen
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Dmitri V Krysko
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Trouillet-Assant S, Gallet M, Nauroy P, Rasigade JP, Flammier S, Parroche P, Marvel J, Ferry T, Vandenesch F, Jurdic P, Laurent F. Dual impact of live Staphylococcus aureus on the osteoclast lineage, leading to increased bone resorption. J Infect Dis 2014; 211:571-81. [PMID: 25006047 DOI: 10.1093/infdis/jiu386] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bone and joint infection, mainly caused by Staphylococcus aureus, is associated with significant morbidity and mortality, characterized by severe inflammation and progressive bone destruction. Studies mostly focused on the interaction between S. aureus and osteoblasts, the bone matrix-forming cells, while interactions between S. aureus and osteoclasts, the only cells known to be able to degrade bone, have been poorly explored. METHODS We developed an in vitro infection model of primary murine osteoclasts to study the direct impact of live S. aureus on osteoclastogenesis and osteoclast resorption activity. RESULTS Staphylococcal infection of bone marrow-derived osteoclast precursors induced their differentiation into activated macrophages that actively secreted proinflammatory cytokines. These cytokines enhanced the bone resorption capacity of uninfected mature osteoclasts and promoted osteoclastogenesis of the uninfected precursors at the site of infection. Moreover, infection of mature osteoclasts by live S. aureus directly enhanced their ability to resorb bone by promoting cellular fusion. CONCLUSIONS Our results highlighted two complementary mechanisms involved in bone loss during bone and joint infection, suggesting that osteoclasts could be a pivotal target for limiting bone destruction.
Collapse
Affiliation(s)
- Sophie Trouillet-Assant
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Marlène Gallet
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Pauline Nauroy
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Jean-Philippe Rasigade
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Sacha Flammier
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Peggy Parroche
- CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Jacqueline Marvel
- CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Tristan Ferry
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Francois Vandenesch
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| | - Pierre Jurdic
- Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308 Institut de Génomique Fonctionnelle de Lyon, France
| | - Frederic Laurent
- Hospices Civils de Lyon CIRI, International Center for Infectiology Research, University of Lyon Inserm U1111 Ecole Normale Supérieure de Lyon University of Lyon 1 CNRS, UMR5308
| |
Collapse
|
6
|
Steensma MR, Tyler WK, Shaber AG, Goldring SR, Ross FP, Williams BO, Healey JH, Purdue PE. Targeting the giant cell tumor stromal cell: functional characterization and a novel therapeutic strategy. PLoS One 2013; 8:e69101. [PMID: 23922683 PMCID: PMC3724882 DOI: 10.1371/journal.pone.0069101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 06/06/2013] [Indexed: 12/01/2022] Open
Abstract
Giant cell tumor of bone (GCTB) is a benign, locally destructive neoplasm, with tumors comprised of mesenchymal fibroblast-like stromal cells; monocytic, mononuclear cells of myeloid lineage; and the characteristic osteoclast-like, multinucleated giant cells. Hampering the study of the complex interaction of its constituent cell types is the propensity of longstanding, repeatedly passaged cell cultures to undergo phenotypic alteration and loss of osteoclast-inducing capacities. In this study, we employed a novel, single-step technique to purify freshly harvested stromal cells using a CD14-negative selection column. Using 9 freshly harvested GCTB specimens and the purified stromal cell component, we performed analyses for markers of osteoblast lineage and analyzed the capacity of the stromal cells to undergo osteoblastic differentiation and induce osteoclastogenesis in co-cultures with monocytic cells. Successful purification of the CD14-negative stromal cells was confirmed via flow cytometric analysis and immunocytochemistry. Osteogenic media upregulated the expression of osteocalcin, suggesting an osteoblastic lineage of the GCTB stromal cells. The effects of the Wnt pathway agonist, SB415286, and recombinant human bone morphogenetic protein (BMP)-2 on osteoblastogenesis varied among samples. Notably, osteogenic media and SB415286 reversed the receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) expression ratio resulting in diminished osteoclastogenic capacity. Recombinant human BMP2 had the opposite effect, resulting in enhanced and sustained support of osteoclastogenesis. Targeting the giant cell tumor stromal cell may be an effective adjunct to existing anti-resorptive strategies.
Collapse
Affiliation(s)
- Matthew R Steensma
- Department of Surgery, Spectrum Health Medical Group/Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Myeloid cells are critical for innate immunity and the initiation of adaptive immunity. Strict regulation of the adhesive and migratory behavior is essential for proper functioning of these cells. Rho GTPases are important regulators of adhesion and migration; however, it is unknown which Rho GTPases are expressed in different myeloid cells. Here, we use a qPCR-based approach to investigate Rho GTPase expression in myeloid cells. We found that the mRNAs encoding Cdc42, RhoQ, Rac1, Rac2, RhoA and RhoC are the most abundant. In addition, RhoG, RhoB, RhoF and RhoV are expressed at low levels or only in specific cell types. More differentiated cells along the monocyte-lineage display lower levels of Cdc42 and RhoV, while RhoC mRNA is more abundant. In addition, the Rho GTPase expression profile changes during dendritic cell maturation with Rac1 being upregulated and Rac2 downregulated. Finally, GM-CSF stimulation, during macrophage and osteoclast differentiation, leads to high expression of Rac2, while M-CSF induces high levels of RhoA, showing that these cytokines induce a distinct pattern. Our data uncover cell type specific modulation of the Rho GTPase expression profile in hematopoietic stem cells and in more differentiated cells of the myeloid lineage.
Collapse
|
8
|
Cenni E, Avnet S, Granchi D, Fotia C, Salerno M, Micieli D, Sarpietro MG, Pignatello R, Castelli F, Baldini N. The effect of poly(d,l-lactide-co-glycolide)-alendronate conjugate nanoparticles on human osteoclast precursors. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1285-300. [PMID: 21781381 DOI: 10.1163/092050611x580373] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nanoparticles (NPs) formed from polymers conjugated with bisphosphonates (BPs) allow the bone targeting of loaded drugs, such as doxorubicin, for the treatment of skeletal tumours. The additional antiosteoclastic effect of the conjugated BP could contribute to the inhibition of tumour-associated bone degradation. With this aim, we have produced NPs made of poly(d,l-lactide-co-glycolide) (PLGA) conjugated with alendronate (ALE). To show if ALE retained the antiosteoclastic properties after the conjugation with PLGA and the production of NPs, we treated human osteoclasts, derived from circulating precursors, with PLGA-ALE NPs and compared the effects on actin ring generation, apoptosis and type-I collagen degradation with those of free ALE and with NPs made of pure PLGA. PLGA-ALE NPs disrupted actin ring, induced apoptosis and inhibited collagen degradation. Unexpectedly, also NPs made of pure PLGA showed similar effects. Therefore, we cannot exclude that in addition to the observed antiosteoclastic activity dependent on ALE in PLGA-ALE NPs, there was also an effect due to pure PLGA. Still, as PLGA-ALE NPs are intended for the loading with drugs for the treatment of osteolytic bone metastases, the additional antiosteoclastic effect of PLGA-ALE NPs, and even of PLGA, may contribute to the inhibition of the disease-associated bone degradation.
Collapse
Affiliation(s)
- Elisabetta Cenni
- a Laboratorio di Fisiopatologia Ortopedica e Medicina Rigenerativa, Istituto Ortopedico Rizzoli , via di Barbiano 1/10 , 40136 , Bologna , Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ivashkiv LB, Zhao B, Park-Min KH, Takami M. Feedback inhibition of osteoclastogenesis during inflammation by IL-10, M-CSF receptor shedding, and induction of IRF8. Ann N Y Acad Sci 2011; 1237:88-94. [PMID: 22082370 PMCID: PMC3263822 DOI: 10.1111/j.1749-6632.2011.06217.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammation plays a key role in excessive bone loss in conditions such as rheumatoid arthritis and periodontitis. An important paradigm in immunology is that inflammatory factors activate feedback inhibition mechanisms to restrain inflammation and limit associated tissue damage. We hypothesized that inflammatory factors would activate similar feedback mechanisms to restrain bone loss in inflammatory settings. We have identified three mechanisms that inhibit osteoclastogenesis and are induced by inflammatory factors such as toll-like receptor ligands and cytokines; downregulation of expression of costimulatory molecules such as TREM-2; induction of shedding, and thereby inactivation of the M-CSF receptor c-Fms, leading to decreased RANK transcription; and induction of transcriptional repressors such as interferon regulatory factor 8. It is likely that these mechanisms work in a complementary and cooperative manner to fine tune the extent of osteoclastogenesis in inflammatory settings, and their augmentation may represent an alternative therapeutic approach to suppress bone resorption.
Collapse
Affiliation(s)
- Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, New York, USA.
| | | | | | | |
Collapse
|