1
|
Lomakin YA, Zvyagin IV, Ovchinnikova LA, Kabilov MR, Staroverov DB, Mikelov A, Tupikin AE, Zakharova MY, Bykova NA, Mukhina VS, Favorov AV, Ivanova M, Simaniv T, Rubtsov YP, Chudakov DM, Zakharova MN, Illarioshkin SN, Belogurov AA, Gabibov AG. Deconvolution of B cell receptor repertoire in multiple sclerosis patients revealed a delay in tBreg maturation. Front Immunol 2022; 13:803229. [PMID: 36052064 PMCID: PMC9425031 DOI: 10.3389/fimmu.2022.803229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundB lymphocytes play a pivotal regulatory role in the development of the immune response. It was previously shown that deficiency in B regulatory cells (Bregs) or a decrease in their anti-inflammatory activity can lead to immunological dysfunctions. However, the exact mechanisms of Bregs development and functioning are only partially resolved. For instance, only a little is known about the structure of their B cell receptor (BCR) repertoires in autoimmune disorders, including multiple sclerosis (MS), a severe neuroinflammatory disease with a yet unknown etiology. Here, we elucidate specific properties of B regulatory cells in MS.MethodsWe performed a prospective study of the transitional Breg (tBreg) subpopulations with the CD19+CD24highCD38high phenotype from MS patients and healthy donors by (i) measuring their content during two diverging courses of relapsing-remitting MS: benign multiple sclerosis (BMS) and highly active multiple sclerosis (HAMS); (ii) analyzing BCR repertoires of circulating B cells by high-throughput sequencing; and (iii) measuring the percentage of CD27+ cells in tBregs.ResultsThe tBregs from HAMS patients carry the heavy chain with a lower amount of hypermutations than tBregs from healthy donors. The percentage of transitional CD24highCD38high B cells is elevated, whereas the frequency of differentiated CD27+ cells in this transitional B cell subset was decreased in the MS patients as compared with healthy donors.ConclusionsImpaired maturation of regulatory B cells is associated with MS progression.
Collapse
Affiliation(s)
- Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan V. Zvyagin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Marsel R. Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Dmitriy B. Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Artem Mikelov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexey E. Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences (RAS), Novosibirsk, Russia
| | - Maria Y. Zakharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Nadezda A. Bykova
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
| | - Vera S. Mukhina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences (RAS), Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexander V. Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences (RAS), Moscow, Russia
- Quantitative Sciences Division, Department of Oncology, Johns Hopkins University, Baltimore, MD, United States
| | - Maria Ivanova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Taras Simaniv
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Dmitriy M. Chudakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Maria N. Zakharova
- Neuroinfection Department of the Research Center of Neurology, Moscow, Russia
| | | | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Biological Chemistry, Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Department of Life Sciences, Higher School of Economics, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Alexey A. Belogurov Jr., ; Alexander G. Gabibov,
| |
Collapse
|
2
|
Nguyen TG. The therapeutic implications of activated immune responses via the enigmatic immunoglobulin D. Int Rev Immunol 2021; 41:107-122. [PMID: 33410368 DOI: 10.1080/08830185.2020.1861265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunoglobulin D (IgD) is an enigmatic antibody and the least appreciated member of the immunoglobulin (Ig) family. Since its discovery over half a century ago, the essence of its function in the immune system has been somewhat enigmatic and less well-defined than other antibody classes. Membrane-bound IgD (mIgD) is mostly recognized as B-cell receptor (BCR) while secreted IgD (sIgD) has been recently implicated in 'arming' basophils and mast cells in mucosal innate immunity. Activations of immune responses via mIgD-BCR or sIgD by specific antigens or anti-IgD antibody thereby produce a broad and complex mix of cellular, antibody and cytokine responses from both the innate and adaptive immune systems. Such broadly activated immune responses via IgD were initially deemed to potentiate and exacerbate the onset of autoimmune and allergic conditions. Paradoxically, treatments with anti-IgD antibody suppressed and ameliorated autoimmune conditions and allergic inflammations in mouse models without compromising the host's general immune defence, demonstrating a unique and novel therapeutic application for anti-IgD antibody treatment. Herein, this review endeavored to collate and summarize the evidence of the unique characteristics and features of activated immune responses via mIgD-BCR and sIgD that revealed an unappreciated immune-regulatory function of IgD in the immune system via an amplifying loop of anti-inflammatory Th2 and tolerogenic responses, and highlighted a novel therapeutic paradigm in harnessing these immune responses to treat human autoimmune and allergic conditions.
Collapse
|
3
|
Khiew SH, Jain D, Chen J, Yang J, Yin D, Young JS, Dent A, Sciammas R, Alegre ML, Chong AS. Transplantation tolerance modifies donor-specific B cell fate to suppress de novo alloreactive B cells. J Clin Invest 2020; 130:3453-3466. [PMID: 32452834 PMCID: PMC7329196 DOI: 10.1172/jci132814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
The absence of alloantibodies is a feature of transplantation tolerance. Although the lack of T cell help has been evoked to explain this absence, herein we provide evidence for B cell-intrinsic tolerance mechanisms. Using a murine model of heart tolerance, we showed that alloreactive B cells were not deleted but rapidly lost their ability to differentiate into germinal center B cells and secrete donor-specific antibodies. We inferred that tolerant alloreactive B cells retained their ability to sense alloantigen because they continued to drive T cell maturation into CXCR5+PD-1+ T follicular helper cells. Unexpectedly, dysfunctional alloreactive B cells acquired the ability to inhibit antibody production by new naive B cells in an antigen-specific manner. Thus, tolerant alloreactive B cells contribute to transplantation tolerance by foregoing germinal center responses while retaining their ability to function as antigen-presenting cells and by actively suppressing de novo alloreactive B cell responses.
Collapse
Affiliation(s)
- Stella H.W. Khiew
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Dharmendra Jain
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jianjun Chen
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jinghui Yang
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Dengping Yin
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - James S. Young
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Alexander Dent
- School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Roger Sciammas
- Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, UC Davis, Davis, California, USA
| | - Maria-Luisa Alegre
- Section of Rheumatology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Anita S. Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Nguyen TG. Harnessing Newton’s third-law paradigm to treat autoimmune diseases and chronic inflammations. Inflamm Res 2020; 69:813-824. [DOI: 10.1007/s00011-020-01374-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
|
5
|
Nguyen TG. Immune-modulation via IgD B-cell receptor suppresses allergic skin inflammation in experimental contact hypersensitivity models despite of a Th2-favoured humoral response. Immunol Lett 2018; 203:29-39. [PMID: 30218740 DOI: 10.1016/j.imlet.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are common skin inflammatory conditions. B and T cells are strongly implicated in allergic contact hypersensitivity (CHS) conditions. Activation of IgD B-cell receptor (BCR) by anti-IgD stimulation depletes mature B cells and modulates T-helper cell type 1/2 (Th1/2) responses in vivo. It is not known whether these effects by anti-IgD exacerbates or ameliorates chronic skin inflammations. This study investigated the effects of anti-IgD and B-cell depleting anti-CD20 antibody on skin inflammation in CHS murine models. Chronic CHS were induced by challenges with allergens trimellitic anhydride (TMA) or 2,4 dinitrochlorobenzene (DNCB). Mice were treated with an anti-IgD or anti-CD20 at various time-points following allergen challenges. This study revealed that early therapeutic treatments with anti-IgD at 4 h after allergen challenge significantly reduced skin inflammation in both TMA- and DNCB-induced CHS models (P < 0.05). In contrast, anti-CD20 treatment exacerbated skin inflammation in DNCB-induced CHS despite of an extensive B cell depletion (P < 0.05). Anti-IgD treatment depleted mature CD19+IgD+ B cells but enhanced allergen-specific IgM and total IgE productions, suggesting a Th2-favoured humoral response. Anti-IgD reduced neutrophilic infiltrations but increases accumulation of mast cells in dermal tissues. The anti-inflammatory effects of anti-IgD were supported by evidence of an increase in the percentage of regulatory B cells and T cells. Collectively, this study demonstrates that immune-modulation by anti-IgD treatment suppresses Th2-mediated allergic skin inflammation in murine models despite a skew toward a Th2-favvoured humoral response and therefore may present a novel treatment for chronic human AD and ACD.
Collapse
Affiliation(s)
- Tue G Nguyen
- Autoimmunity and Immunotherapy Research, Kolling Institute, Australia; Perinatal Research, Kolling Institute at Royal North Shore Hospital, St Leonards, NSW, 2065, Australia; ImmunoTherapeutic Mab Group, Macquarie Park, Sydney, NSW, 2113, Australia.
| |
Collapse
|
6
|
Lang J, Ota T, Kelly M, Strauch P, Freed BM, Torres RM, Nemazee D, Pelanda R. Receptor editing and genetic variability in human autoreactive B cells. J Exp Med 2015; 213:93-108. [PMID: 26694971 PMCID: PMC4710202 DOI: 10.1084/jem.20151039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
Lang et al. show in a humanized mouse model that human B cells undergo central tolerance via a combination of receptor editing and clonal deletion. The mechanisms by which B cells undergo tolerance, such as receptor editing, clonal deletion, and anergy, have been established in mice. However, corroborating these mechanisms in humans remains challenging. To study how autoreactive human B cells undergo tolerance, we developed a novel humanized mouse model. Mice expressing an anti–human Igκ membrane protein to serve as a ubiquitous neo self-antigen (Ag) were transplanted with a human immune system. By following the fate of self-reactive human κ+ B cells relative to nonautoreactive λ+ cells, we show that tolerance of human B cells occurs at the first site of self-Ag encounter, the bone marrow, via a combination of receptor editing and clonal deletion. Moreover, the amount of available self-Ag and the genetics of the cord blood donor dictate the levels of central tolerance and autoreactive B cells in the periphery. Thus, this model can be useful for studying specific mechanisms of human B cell tolerance and to reveal differences in the extent of this process among human populations.
Collapse
Affiliation(s)
- Julie Lang
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Margot Kelly
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Brian M Freed
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Division of Allergy and Clinical Immunology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
7
|
Nguyen TG, Morris JM. Signals from activation of B-cell receptor with anti-IgD can override the stimulatory effects of excess BAFF on mature B cells in vivo. Immunol Lett 2014; 161:157-64. [DOI: 10.1016/j.imlet.2014.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/02/2014] [Accepted: 06/12/2014] [Indexed: 11/30/2022]
|
8
|
Kirchenbaum GA, St Clair JB, Detanico T, Aviszus K, Wysocki LJ. Functionally responsive self-reactive B cells of low affinity express reduced levels of surface IgM. Eur J Immunol 2014; 44:970-82. [PMID: 24375379 DOI: 10.1002/eji.201344276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 12/18/2022]
Abstract
Somatic gene rearrangement generates a diverse repertoire of B cells, many which have receptors possessing a range of affinities for self-Ag. Newly generated B cells express high and relatively uniform amounts of surface IgM (sIgM), while follicular (FO) B cells express sIgM at widely varying levels. It is plausible, therefore, that downmodulation of sIgM serves as a mechanism to maintain weakly self-reactive B cells in a responsive state by decreasing their avidity for self-Ag. We tested this hypothesis by performing comparative functional tests with FO IgM(hi) and IgM(lo) B cells from the unrestricted repertoire of WT C57BL/6 mice. We found that FO IgM(lo) B cells mobilized Ca(2+) equivalently to IgM(hi) B cells when the same number of sIgM molecules was engaged. In agreement, FO IgM(lo) B cells were functionally competent to produce an antibody response following adoptive transfer. The FO IgM(lo) cell population had elevated levels of Nur77 transcript, and was enriched with nuclear-reactive specificities. Hybridoma sampling revealed that these B-cell receptors were of low affinity. Collectively, these results suggest that sIgM downmodulation by low-affinity, self-reactive B cells preserves their immunocompetence and circumvents classical peripheral tolerance mechanisms that would otherwise reduce diversity within the B cell compartment.
Collapse
Affiliation(s)
- Greg A Kirchenbaum
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO, USA
| | | | | | | | | |
Collapse
|
9
|
Clark AG, Fan Q, Brady GF, Mackin KM, Coffman ED, Weston ML, Foster MH. Regulation of basement membrane-reactive B cells in BXSB, (NZBxNZW)F1, NZB, and MRL/lpr lupus mice. Autoimmunity 2013; 46:188-204. [PMID: 23157336 DOI: 10.3109/08916934.2012.746671] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Autoantibodies to diverse antigens escape regulation in systemic lupus erythematosus under the influence of a multitude of predisposing genes. To gain insight into the differential impact of diverse genetic backgrounds on tolerance mechanisms controlling autoantibody production in lupus, we established a single lupus-derived nephritis associated anti-basement membrane Ig transgene on each of four inbred murine lupus strains, including BXSB, (NZBxNZW)F1, NZB, and MRL/lpr, as approved by the Duke University and the Durham Veterans Affairs Medical Centers' Animal Care and Use Committees. In nonautoimmune C57BL/6 mice, B cells bearing this anti-laminin Ig transgene are stringently regulated by central deletion, editing, and anergy. Here, we show that tolerance is generally intact in unmanipulated Ig transgenic BXSB, (NZBxNZW)F1, and NZB mice, based on absence of serum transgenic anti-laminin autoantibodies and failure to recover spontaneous anti-laminin monoclonal antibodies. Four- to six-fold depletion of splenic B cells in transgenic mice of these strains, as well as in MRL/lpr transgenic mice, and reduced frequency of IgM+ bone marrow B cells suggest that central deletion is grossly intact. Nonetheless the 4 strains demonstrate distinct transgenic B cell phenotypes, including endotoxin-stimulated production of anti-laminin antibodies by B cells from transgenic NZB mice, and in vitro hyperproliferation of both endotoxin- and BCR-stimulated B cells from transgenic BXSB mice, which are shown to have an enrichment of CD21-high marginal zone cells. Rare anti-laminin transgenic B cells spontaneously escape tolerance in MRL/lpr mice. Further study of the mechanisms underlying these strain-specific B cell fates will provide insight into genetic modification of humoral autoimmunity in lupus.
Collapse
Affiliation(s)
- Amy G Clark
- Department of Medicine, Duke University Medical Center, Box 103015, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Andrews SF, Zhang Q, Lim S, Li L, Lee JH, Zheng NY, Huang M, Taylor WM, Farris AD, Ni D, Meng W, Luning Prak ET, Wilson PC. Global analysis of B cell selection using an immunoglobulin light chain-mediated model of autoreactivity. ACTA ACUST UNITED AC 2012; 210:125-42. [PMID: 23267014 PMCID: PMC3549719 DOI: 10.1084/jem.20120525] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The nature of the immunoglobulin light chain affects peripheral B cell tolerance and autoreactivity. The important subtleties of B cell tolerance are best understood in a diverse immunoglobulin (Ig) repertoire context encoding a full spectrum of autoreactivity. To achieve this, we used mice expressing Igκ transgenes that confer varying degrees of autoreactivity within a diverse heavy chain (HC) repertoire. These transgenes, coupled with a biomarker to identify receptor-edited cells and combined with expression cloning of B cell receptors, allowed us to analyze tolerance throughout B cell development. We found that both the nature of the autoantigen and the Ig HC versus light chain (LC) contribution to autoreactivity dictate the developmental stage and mechanism of tolerance. Furthermore, although selection begins in the bone marrow, over one third of primary tolerance occurs in the periphery at the late transitional developmental stage. Notably, we demonstrate that the LC has profound effects on tolerance and can lead to exacerbated autoantibody production.
Collapse
Affiliation(s)
- Sarah F Andrews
- Section of Rheumatology, Department of Medicine, Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tussiwand R, Rauch M, Flück LA, Rolink AG. BAFF-R expression correlates with positive selection of immature B cells. Eur J Immunol 2011; 42:206-16. [PMID: 22028296 DOI: 10.1002/eji.201141957] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 01/10/2023]
Abstract
The interaction between BAFF and BAFF-R is crucial for the development of mature B cells. Here, we report that the expression of BAFF-R is first detectable on a fraction of mouse CD19(+) CD93(+) IgM(+) CD23(-) and human CD19(+) CD10(+) IgM(+) BM B cells. This BAFF-R(+) BM B-cell population shows higher levels of surface IgM expression and decreased RAG-2 transcripts than BAFF-R(-) immature B cells. When cultured, mouse BAFF-R(-), but not BAFF-R(+) immature B cells spontaneously undergo B-cell receptor editing. However, BAFF-R(+) immature B cells cultured in the presence of an anti-κ light chain antibody are induced to undergo receptor editing. This receptor editing correlates with down-modulation of surface BAFF-R expression and the up-regulation of RAG-2 at the RNA level. B-cell receptor (BCR) cross-linking on splenic T1 B cells results in down-modulation of the BAFF-R, and receptor editing and RAG-2 up-regulation in a minor fraction of B cells. BCR cross-linking on splenic T2/3 B cells results in partly down and partly up-modulation of BAFF-R expression and no evidence for receptor editing. Overall, our data indicate that BAFF-R expression is tightly regulated during B-cell development in mouse and human and its expression is correlated with positive selection.
Collapse
Affiliation(s)
- Roxane Tussiwand
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
12
|
Duong BH, Ota T, Aoki-Ota M, Cooper AB, Ait-Azzouzene D, Vela JL, Gavin AL, Nemazee D. Negative selection by IgM superantigen defines a B cell central tolerance compartment and reveals mutations allowing escape. THE JOURNAL OF IMMUNOLOGY 2011; 187:5596-605. [PMID: 22043016 DOI: 10.4049/jimmunol.1102479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To analyze B lymphocyte central tolerance in a polyclonal immune system, mice were engineered to express a superantigen reactive to IgM of allotype b (IgM(b)). IgM(b/b) mice carrying superantigen were severely B cell lymphopenic, but small numbers of B cells matured. Their sera contained low levels of IgG and occasionally high levels of IgA. In bone marrow, immature B cells were normal in number, but internalized IgM and had a unique gene expression profile, compared with those expressing high levels of surface IgM, including elevated recombinase activator gene expression. A comparable B cell population was defined in wild-type bone marrows, with an abundance suggesting that at steady state ∼20% of normal developing B cells are constantly encountering autoantigens in situ. In superantigen-expressing mice, as well as in mice carrying the 3H9 anti-DNA IgH transgene, or 3H9 H along with mutation in the murine κ-deleting element RS, IgM internalization was correlated with CD19 downmodulation. CD19(low) bone marrow cells from 3H9;RS(-/-) mice were enriched in L chains that promote DNA binding. Our results suggest that central tolerance and attendant L chain receptor editing affect a large fraction of normal developing B cells. IgH(a/b) mice carrying the superantigen had a ∼50% loss in follicular B cell numbers, suggesting that escape from central tolerance by receptor editing from one IgH allele to another was not a major mechanism. IgM(b) superantigen hosts reconstituted with experimental bone marrow were demonstrated to be useful in revealing pathways involved in central tolerance.
Collapse
Affiliation(s)
- Bao Hoa Duong
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ghia EM, Widhopf GF, Rassenti LZ, Kipps TJ. Analyses of recombinant stereotypic IGHV3-21-encoded antibodies expressed in chronic lymphocytic leukemia. THE JOURNAL OF IMMUNOLOGY 2011; 186:6338-44. [PMID: 21525382 DOI: 10.4049/jimmunol.0902875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells that use IgH encoded by IGHV3-21 and that have a particular stereotypic third CDR (HCDR3), DANGMDV (motif-1), almost invariably express Ig L chains (IgL) encoded by IGLV3-21, whereas CLL that use IGHV3-21-encoded IgH with another stereotypic HCDR3, DPSFYSSSWTLFDY (motif-2), invariably express κ-IgL encoded by IGKV3-20. This nonstochastic pairing could reflect steric factors that preclude these IgH from pairing with other IgL or selection for an Ig with a particular Ag-binding activity. We generated rIg with IGHV3-21-encoded IgH with HCDR3 motif-1 or -2 and IgL encoded by IGKV3-20 or IGLV3-21. Each IgH paired equally well with matched or mismatched κ- or λ-IgL to form functional Ig, which we screened for binding to an array of different Ags. Ig with IGLV3-21-encoded λ-IgL could bind with an affinity of ∼ 2 × 10(-6) M to protein L, a cell-wall protein of Peptostreptococcus magnus, independent of the IgH, indicating that protein L is a superantigen for IGLV3-21-encoded λ-IgL. We also detected Ig binding to cofilin, a highly conserved actin-binding protein. However, cofilin binding was independent of native pairing of IgH and IgL and was not specific for Ig with IgH encoded by IGHV3-21. We conclude that steric factors or the binding activity for protein L or cofilin cannot account for the nonstochastic pairing of IgH and IgL observed for the stereotypic Ig made by CLL cells that express IGHV3-21.
Collapse
Affiliation(s)
- Emanuela M Ghia
- Moores University of California San Diego Cancer Center, La Jolla, CA 92093-0820, USA
| | | | | | | |
Collapse
|
14
|
Ota T, Ota M, Duong BH, Gavin AL, Nemazee D. Liver-expressed Igkappa superantigen induces tolerance of polyclonal B cells by clonal deletion not kappa to lambda receptor editing. ACTA ACUST UNITED AC 2011; 208:617-29. [PMID: 21357741 PMCID: PMC3058582 DOI: 10.1084/jem.20102265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Analysis of tolerance in a polyclonal wild-type B cell population demonstrates apoptosis of cells reactive to antigen expressed on liver membrane. Little is know about the nature of peripheral B cell tolerance or how it may vary in distinct lineages. Although autoantibody transgenic studies indicate that anergy and apoptosis are involved, some studies claim that receptor editing occurs. To model peripheral B cell tolerance in a normal, polyclonal immune system, we generated transgenic mice expressing an Igκ–light chain–reactive superantigen targeted to the plasma membrane of hepatocytes (pAlb mice). In contrast to mice expressing κ superantigen ubiquitously, in which κ cells edit efficiently to λ, in pAlb mice, κ B cells underwent clonal deletion. Their κ cells failed to populate lymph nodes, and the remaining splenic κ cells were anergic, arrested at a semi-mature stage without undergoing receptor editing. In the liver, κ cells recognized superantigen, down-regulated surface Ig, and expressed active caspase 3, suggesting ongoing apoptosis at the site of B cell receptor ligand expression. Some, apparently mature, κ B1 and follicular B cells persisted in the peritoneum. BAFF (B cell–activating factor belonging to the tumor necrosis factor family) overexpression rescued splenic κ B cell maturation and allowed κ cells to populate lymph nodes. Our model facilitates analysis of tissue-specific autoimmunity, tolerance, and apoptosis in a polyclonal B cell population. The results suggest that deletion, not editing, is the major irreversible pathway of tolerance induction among peripheral B cells.
Collapse
Affiliation(s)
- Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
15
|
Chen K, Cerutti A. The function and regulation of immunoglobulin D. Curr Opin Immunol 2011; 23:345-52. [PMID: 21353515 DOI: 10.1016/j.coi.2011.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 12/22/2022]
Abstract
Recent discoveries of IgD in ancient vertebrates suggest that IgD has been preserved in evolution from fish to human for important immunological functions. A non-canonical form of class switching from IgM to IgD occurs in the human upper respiratory mucosa to generate IgD-secreting B cells that bind respiratory bacteria and their products. In addition to enhancing mucosal immunity, IgD class-switched B cells enter the circulation to 'arm' basophils and other innate immune cells with secreted IgD. Although the nature of the IgD receptor remains elusive, cross-linking of IgD on basophils stimulates release of immunoactivating, proinflammatory and antimicrobial mediators. This pathway is dysregulated in autoinflammatory disorders such as hyper-IgD syndrome, indicating that IgD orchestrates an ancestral surveillance system at the interface between immunity and inflammation.
Collapse
Affiliation(s)
- Kang Chen
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, One Gustave, L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
16
|
Aït-Azzouzene D, Kono DH, Gonzalez-Quintial R, McHeyzer-Williams LJ, Lim M, Wickramarachchi D, Gerdes T, Gavin AL, Skog P, McHeyzer-Williams MG, Nemazee D, Theofilopoulos AN. Deletion of IgG-switched autoreactive B cells and defects in Fas(lpr) lupus mice. THE JOURNAL OF IMMUNOLOGY 2010; 185:1015-27. [PMID: 20554953 DOI: 10.4049/jimmunol.1000698] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During a T cell-dependent Ab response, B cells undergo Ab class switching and V region hypermutation, with the latter process potentially rendering previously innocuous B cells autoreactive. Class switching and hypermutation are temporally and anatomically linked with both processes dependent on the enzyme, activation-induced deaminase, and occurring principally, but not exclusively, in germinal centers. To understand tolerance regulation at this stage, we generated a new transgenic mouse model expressing a membrane-tethered gamma2a-reactive superantigen (gamma2a-macroself Ag) and assessed the fate of emerging IgG2a-expressing B cells that have, following class switch, acquired self-reactivity of the Ag receptor to the macroself-Ag. In normal mice, self-reactive IgG2a-switched B cells were deleted, leading to the selective absence of IgG2a memory responses. These findings identify a novel negative selection mechanism for deleting mature B cells that acquire reactivity to self-Ag. This process was only partly dependent on the Bcl-2 pathway, but markedly inefficient in MRL-Fas(lpr) lupus mice, suggesting that defective apoptosis of isotype-switched autoreactive B cells is central to Fas mutation-associated systemic autoimmunity.
Collapse
Affiliation(s)
- Djemel Aït-Azzouzene
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|