1
|
Lee JY, Chou NL, Yu YR, Shih HA, Lin HW, Lee CK, Chang MS. PHRF1 promotes the class switch recombination of IgA in CH12F3-2A cells. PLoS One 2023; 18:e0285159. [PMID: 37540725 PMCID: PMC10403053 DOI: 10.1371/journal.pone.0285159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 08/06/2023] Open
Abstract
PHRF1 is an E3 ligase that promotes TGF-β signaling by ubiquitinating a homeodomain repressor TG-interacting factor (TGIF). The suppression of PHRF1 activity by PML-RARα facilitates the progression of acute promyelocytic leukemia (APL). PHRF1 also contributes to non-homologous end-joining in response to DNA damage by linking H3K36me3 and NBS1 with DNA repair machinery. However, its role in class switch recombination (CSR) is not well understood. In this study, we report the importance of PHRF1 in IgA switching in CH12F3-2A cells and CD19-Cre mice. Our studies revealed that Crispr-Cas9 mediated PHRF1 knockout and shRNA-silenced CH12F3-2A cells reduced IgA production, as well as decreased the amounts of PARP1, NELF-A, and NELF-D. The introduction of PARP1 could partially restore IgA production in PHRF1 knockout cells. Intriguingly, IgA, as well as IgG1, IgG2a, and IgG3, switchings were not significantly decreased in PHRF1 deficient splenic B lymphocytes isolated from CD19-Cre mice. The levels of PARP1 and NELF-D were not decreased in PHRF1-depleted primary splenic B cells. Overall, our findings suggest that PHRF1 may modulate IgA switching in CH12F3-2A cells.
Collapse
Affiliation(s)
- Jin-Yu Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Nai-Lin Chou
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ya-Ru Yu
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsin-An Shih
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Hung-Wei Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chine-Kuo Lee
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Böttcher K, Braunschmidt K, Hirth G, Schärich K, Klassert TE, Stock M, Sorgatz J, Fischer-Burkart S, Ullrich S, Frankenberger S, Kritsch D, Kosan C, Küppers R, Strobl LJ, Slevogt H, Zimber-Strobl U, Jungnickel B. Context-dependent regulation of immunoglobulin mutagenesis by p53. Mol Immunol 2021; 138:128-136. [PMID: 34392111 DOI: 10.1016/j.molimm.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
p53 plays a major role in genome maintenance. In addition to multiple p53 functions in the control of DNA repair, a regulation of DNA damage bypass via translesion synthesis has been implied in vitro. Somatic hypermutation of immunoglobulin genes for affinity maturation of antibody responses is based on aberrant translesion polymerase action and must be subject to stringent control to prevent genetic alterations and lymphomagenesis. When studying the role of p53 in somatic hypermutation in vivo, we found altered translesion polymerase-mediated A:T mutagenesis in mice lacking p53 in all organs, but notably not in mice with B cell-specific p53 inactivation, implying that p53 functions in non-B cells may alter mutagenesis in B cells. During class switch recombination, when p53 prevents formation of chromosomal translocations, we in addition detected a B cell-intrinsic role for p53 in altering G:C and A:T mutagenesis. Thus, p53 regulates translesion polymerase activity and shows differential activity during somatic hypermutation versus class switch recombination in vivo. Finally, p53 inhibition leads to increased somatic hypermutation in human B lymphoma cells. We conclude that loss of p53 function may promote genetic instability via multiple routes during antibody diversification in vivo.
Collapse
Affiliation(s)
- Katrin Böttcher
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Kerstin Braunschmidt
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Gianna Hirth
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Karsten Schärich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Tilman E Klassert
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Magdalena Stock
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Janine Sorgatz
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Sabine Fischer-Burkart
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Steffen Ullrich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Samantha Frankenberger
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Daniel Kritsch
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| | - Lothar J Strobl
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Hortense Slevogt
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| |
Collapse
|
3
|
Lehrke MJ, Shapiro MJ, Rajcula MJ, Kennedy MM, McCue SA, Medina KL, Shapiro VS. The mitochondrial iron transporter ABCB7 is required for B cell development, proliferation, and class switch recombination in mice. eLife 2021; 10:69621. [PMID: 34762046 PMCID: PMC8585479 DOI: 10.7554/elife.69621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are cofactors essential for the activity of numerous enzymes including DNA polymerases, helicases, and glycosylases. They are synthesized in the mitochondria as Fe-S intermediates and are exported to the cytoplasm for maturation by the mitochondrial transporter ABCB7. Here, we demonstrate that ABCB7 is required for bone marrow B cell development, proliferation, and class switch recombination, but is dispensable for peripheral B cell homeostasis in mice. Conditional deletion of ABCB7 using Mb1-cre resulted in a severe block in bone marrow B cell development at the pro-B cell stage. The loss of ABCB7 did not alter expression of transcription factors required for B cell specification or commitment. While increased intracellular iron was observed in ABCB7-deficient pro-B cells, this did not lead to increased cellular or mitochondrial reactive oxygen species, ferroptosis, or apoptosis. Interestingly, loss of ABCB7 led to replication-induced DNA damage in pro-B cells, independent of VDJ recombination, and these cells had evidence of slowed DNA replication. Stimulated ABCB7-deficient splenic B cells from CD23-cre mice also had a striking loss of proliferation and a defect in class switching. Thus, ABCB7 is essential for early B cell development, proliferation, and class switch recombination.
Collapse
Affiliation(s)
| | | | | | | | | | - Kay L Medina
- Department of Immunology, Mayo ClinicRochesterUnited States
| | | |
Collapse
|
4
|
Saha T, Sundaravinayagam D, Di Virgilio M. Charting a DNA Repair Roadmap for Immunoglobulin Class Switch Recombination. Trends Biochem Sci 2020; 46:184-199. [PMID: 33250286 DOI: 10.1016/j.tibs.2020.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Immunoglobulin (Ig) class switch recombination (CSR) is the process occurring in mature B cells that diversifies the effector component of antibody responses. CSR is initiated by the activity of the B cell-specific enzyme activation-induced cytidine deaminase (AID), which leads to the formation of programmed DNA double-strand breaks (DSBs) at the Ig heavy chain (Igh) locus. Mature B cells use a multilayered and complex regulatory framework to ensure that AID-induced DNA breaks are channeled into productive repair reactions leading to CSR, and to avoid aberrant repair events causing lymphomagenic chromosomal translocations. Here, we review the DNA repair pathways acting on AID-induced DSBs and their functional interplay, with a particular focus on the latest developments in their molecular composition and mechanistic regulation.
Collapse
Affiliation(s)
- Tannishtha Saha
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Devakumar Sundaravinayagam
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany.
| | - Michela Di Virgilio
- Laboratory of Genome Diversification and Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany; Charité-Universitätsmedizin Berlin, Berlin 10117, Germany.
| |
Collapse
|
5
|
Xiang Y, Jin Q, Li L, Yang Y, Zhang H, Liu M, Fan C, Li J, Shan Z, Teng W. Physiological low-dose oestrogen promotes the development of experimental autoimmune thyroiditis through the up-regulation of Th1/Th17 responses. J Reprod Immunol 2018; 126:23-31. [PMID: 29454161 DOI: 10.1016/j.jri.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 12/28/2022]
Abstract
Previous studies have reported a preponderance of autoimmune thyroiditis (AIT) in females, but the detailed mechanisms have not been elucidated. In this study, we explored the effects of oestrogen on experimental AIT (EAT) and its potential mechanisms in an ovariectomised mouse model through the supplementation of high (equivalent to the level during pregnancy) or low (equivalent to the level at the oestrus stage) doses of oestradiol (E2). We found that EAT incidence, the intrathyroidal inflammatory score, serum anti-thyroglobulin IgG2b levels, splenic mRNA expression of Th1- and Th17-specific transcription factors and typical cytokines and the proportion of IL-12-producing dendritic cells were significantly increased in EAT mice treated with low-dose E2 compared with those in the control group. However, they were not changed when administered with high-dose E2. These findings indicate that low physiological levels of E2 can stimulate the occurrence and development of EAT through the up-regulation of Th1/Th17 responses.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Qian Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Li Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Yali Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Hongmei Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Miao Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| |
Collapse
|
6
|
Díaz-Muñoz MD, Kiselev VY, Le Novère N, Curk T, Ule J, Turner M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat Commun 2017; 8:530. [PMID: 28904350 PMCID: PMC5597594 DOI: 10.1038/s41467-017-00454-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/30/2017] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis in a CAP-independent manner. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response.Sequestering mRNA in cytoplasmic stress granules is a mechanism for translational repression. Here the authors find that p53 mRNA, present in stress granules in activated B lymphocytes, is released upon DNA damage and is translated in a CAP-independent manner.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043 / CNRS U5282, Toulouse, 31300, France.
| | - Vladimir Yu Kiselev
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Nicolas Le Novère
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tomaz Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
7
|
Pone EJ. Analysis by Flow Cytometry of B-Cell Activation and Antibody Responses Induced by Toll-Like Receptors. Methods Mol Biol 2016; 1390:229-48. [PMID: 26803633 DOI: 10.1007/978-1-4939-3335-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Toll-like receptors (TLRs) are expressed in B lymphocytes and contribute to B-cell activation, antibody responses, and their maturation. TLR stimulation of mouse B cells induces class switch DNA recombination (CSR) to isotypes specified by cytokines, and also induces formation of IgM(+) as well as class-switched plasma cells. B-cell receptor (BCR) signaling, while on its own inducing limited B-cell proliferation and no CSR, can enhance CSR driven by TLRs. Particular synergistic or antagonistic interactions among TLR pathways, BCR, and cytokine signaling can have important consequences for B-cell activation, CSR, and plasma cell formation. This chapter outlines protocols for the induction and analysis of B-cell activation and antibody production by TLRs with or without other stimuli.
Collapse
Affiliation(s)
- Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
8
|
DeMicco A, Naradikian MS, Sindhava VJ, Yoon JH, Gorospe M, Wertheim GB, Cancro MP, Bassing CH. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 195:3449-62. [PMID: 26320247 DOI: 10.4049/jimmunol.1500512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
Abstract
The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Amy DeMicco
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin S Naradikian
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michael P Cancro
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
9
|
Khair L, Baker RE, Linehan EK, Schrader CE, Stavnezer J. Nbs1 ChIP-Seq Identifies Off-Target DNA Double-Strand Breaks Induced by AID in Activated Splenic B Cells. PLoS Genet 2015; 11:e1005438. [PMID: 26263206 PMCID: PMC4532491 DOI: 10.1371/journal.pgen.1005438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/10/2015] [Indexed: 01/03/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is required for initiation of Ig class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes during immune responses. AID has also been shown to induce chromosomal translocations, mutations, and DNA double-strand breaks (DSBs) involving non-Ig genes in activated B cells. To determine what makes a DNA site a target for AID-induced DSBs, we identify off-target DSBs induced by AID by performing chromatin immunoprecipitation (ChIP) for Nbs1, a protein that binds DSBs, followed by deep sequencing (ChIP-Seq). We detect and characterize hundreds of off-target AID-dependent DSBs. Two types of tandem repeats are highly enriched within the Nbs1-binding sites: long CA repeats, which can form Z-DNA, and tandem pentamers containing the AID target hotspot WGCW. These tandem repeats are not nearly as enriched at AID-independent DSBs, which we also identified. Msh2, a component of the mismatch repair pathway and important for genome stability, increases off-target DSBs, similar to its effect on Ig switch region DSBs, which are required intermediates during CSR. Most of the off-target DSBs are two-ended, consistent with generation during G1 phase, similar to DSBs in Ig switch regions. However, a minority are one-ended, presumably due to conversion of single-strand breaks to DSBs during replication. One-ended DSBs are repaired by processes involving homologous recombination, including break-induced replication repair, which can lead to genome instability. Off-target DSBs, especially those present during S phase, can lead to chromosomal translocations, deletions and gene amplifications, resulting in the high frequency of B cell lymphomas derived from cells that express or have expressed AID. Activation-induced cytidine deaminase (AID) is required for diversifying antibodies during immune responses, and it does this by introducing mutations and DNA breaks into antibody genes. How AID is targeted is not understood, and it induces chromosomal translocations, mutations, and double-strand breaks (DSBs) at sites other than antibody genes in activated B cells. To determine what makes an off-target DNA site a target for AID-induced DSBs, we identify and characterize hundreds of genome-wide DSBs induced by AID during B cell activation. Interestingly, many of the DSBs are within or adjacent to two types of tandemly repeated simple sequences, which have characteristics that might explain why they are targeted. We find that most of the DSBs are two-ended, consistent with their generation during G1 phase of the cell cycle, which is when AID induces DNA breaks in antibody genes. However, a minority is one-ended, consistent with replication encountering an AID-induced single-strand break, thereby creating a DSB. Both types of off-target DSBs, but especially those present during S phase of the cell cycle, lead to chromosomal translocations, deletions and gene amplifications that can promote B cell lymphomagenesis.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard E. Baker
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Carol E. Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Diaz-Muñoz MD, Bell SE, Fairfax K, Monzon-Casanova E, Cunningham AF, Gonzalez-Porta M, Andrews SR, Bunik VI, Zarnack K, Curk T, Heggermont WA, Heymans S, Gibson GE, Kontoyiannis DL, Ule J, Turner M. The RNA-binding protein HuR is essential for the B cell antibody response. Nat Immunol 2015; 16:415-25. [PMID: 25706746 PMCID: PMC4479220 DOI: 10.1038/ni.3115] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/28/2015] [Indexed: 12/26/2022]
Abstract
Post-transcriptional regulation of mRNA by the RNA-binding protein HuR (encoded by Elavl1) is required in B cells for the germinal center reaction and for the production of class-switched antibodies in response to thymus-independent antigens. Transcriptome-wide examination of RNA isoforms and their abundance and translation in HuR-deficient B cells, together with direct measurements of HuR-RNA interactions, revealed that HuR-dependent splicing of mRNA affected hundreds of transcripts, including that encoding dihydrolipoamide S-succinyltransferase (Dlst), a subunit of the 2-oxoglutarate dehydrogenase (α-KGDH) complex. In the absence of HuR, defective mitochondrial metabolism resulted in large amounts of reactive oxygen species and B cell death. Our study shows how post-transcriptional processes control the balance of energy metabolism required for the proliferation and differentiation of B cells.
Collapse
Affiliation(s)
- Manuel D Diaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Kirsten Fairfax
- 1] Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK. [2] The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Elisa Monzon-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, UK
| | - Mar Gonzalez-Porta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | | | - Victoria I Bunik
- A. N. Belozersky Institute of PhysicoChemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Tomaž Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | | | - Stephane Heymans
- 1] Center for Molecular and Vascular Biology, KU Leuven, Belgium. [2] Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Gary E Gibson
- Weill Cornell Medical College, Brain and Mind Research Institute, Burke Medical Research Institute, White Plains, New York, USA
| | - Dimitris L Kontoyiannis
- Division of Immunology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Jernej Ule
- UCL Genetics Institute, Department of Genetics, Environment and Evolution, University College London, London, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| |
Collapse
|
11
|
Khair L, Guikema JE, Linehan EK, Ucher AJ, Leus NG, Ogilvie C, Lou Z, Schrader CE, Stavnezer J. ATM increases activation-induced cytidine deaminase activity at downstream S regions during class-switch recombination. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:4887-96. [PMID: 24729610 PMCID: PMC4049217 DOI: 10.4049/jimmunol.1303481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates Ab class-switch recombination (CSR) in activated B cells resulting in exchanging the IgH C region and improved Ab effector function. During CSR, AID instigates DNA double-strand break (DSB) formation in switch (S) regions located upstream of C region genes. DSBs are necessary for CSR, but improper regulation of DSBs can lead to chromosomal translocations that can result in B cell lymphoma. The protein kinase ataxia telangiectasia mutated (ATM) is an important proximal regulator of the DNA damage response (DDR), and translocations involving S regions are increased in its absence. ATM phosphorylates H2AX, which recruits other DNA damage response (DDR) proteins, including mediator of DNA damage checkpoint 1 (Mdc1) and p53 binding protein 1 (53BP1), to sites of DNA damage. As these DDR proteins all function to promote repair and recombination of DSBs during CSR, we examined whether mouse splenic B cells deficient in these proteins would show alterations in S region DSBs when undergoing CSR. We find that in atm(-/-) cells Sμ DSBs are increased, whereas DSBs in downstream Sγ regions are decreased. We also find that mutations in the unrearranged Sγ3 segment are reduced in atm(-/-) cells. Our data suggest that ATM increases AID targeting and activity at downstream acceptor S regions during CSR and that in atm(-/-) cells Sμ DSBs accumulate as they lack a recombination partner.
Collapse
Affiliation(s)
- Lyne Khair
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jeroen E.J. Guikema
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Anna J. Ucher
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Niek G.J. Leus
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Colin Ogilvie
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhenkun Lou
- Division of Oncology Research, Mayo Clinic, Rochester, MN
| | - Carol E. Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
12
|
A DNA break- and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination. Nat Immunol 2013; 14:1183-1189. [PMID: 24097111 DOI: 10.1038/ni.2732] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022]
Abstract
The ability of activation-induced cytidine deaminase (AID) to efficiently mediate class-switch recombination (CSR) is dependent on its phosphorylation at Ser38; however, the trigger that induces AID phosphorylation and the mechanism by which phosphorylated AID drives CSR have not been elucidated. Here we found that phosphorylation of AID at Ser38 was induced by DNA breaks. Conversely, in the absence of AID phosphorylation, DNA breaks were not efficiently generated at switch (S) regions in the immunoglobulin heavy-chain locus (Igh), consistent with a failure of AID to interact with the endonuclease APE1. Additionally, deficiency in the DNA-damage sensor ATM impaired the phosphorylation of AID at Ser38 and the interaction of AID with APE1. Our results identify a positive feedback loop for the amplification of DNA breaks at S regions through the phosphorylation- and ATM-dependent interaction of AID with APE1.
Collapse
|
13
|
Halaby MJ, Hakem A, Li L, El Ghamrasni S, Venkatesan S, Hande PM, Sanchez O, Hakem R. Synergistic interaction of Rnf8 and p53 in the protection against genomic instability and tumorigenesis. PLoS Genet 2013; 9:e1003259. [PMID: 23382699 PMCID: PMC3561120 DOI: 10.1371/journal.pgen.1003259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
Rnf8 is an E3 ubiquitin ligase that plays a key role in the DNA damage response as well as in the maintenance of telomeres and chromatin remodeling. Rnf8−/− mice exhibit developmental defects and increased susceptibility to tumorigenesis. We observed that levels of p53, a central regulator of the cellular response to DNA damage, increased in Rnf8−/− mice in a tissue- and cell type–specific manner. To investigate the role of the p53-pathway inactivation on the phenotype observed in Rnf8−/− mice, we have generated Rnf8−/−p53−/− mice. Double-knockout mice showed similar growth retardation defects and impaired class switch recombination compared to Rnf8−/− mice. In contrast, loss of p53 fully rescued the increased apoptosis and reduced number of thymocytes and splenocytes in Rnf8−/− mice. Similarly, the senescence phenotype of Rnf8−/− mouse embryonic fibroblasts was rescued in p53 null background. Rnf8−/−p53−/− cells displayed defective cell cycle checkpoints and DNA double-strand break repair. In addition, Rnf8−/−p53−/− mice had increased levels of genomic instability and a remarkably elevated tumor incidence compared to either Rnf8−/− or p53−/− mice. Altogether, the data in this study highlight the importance of p53-pathway activation upon loss of Rnf8, suggesting that Rnf8 and p53 functionally interact to protect against genomic instability and tumorigenesis. DNA double-strand breaks are the most dangerous type of DNA lesions that can occur in cells. Failure to repair these breaks quickly and efficiently can result in either cell death or genomic instability and eventually malignant transformation. Rnf8 and p53 are key proteins in the DNA damage response. We have generated mice that are deficient in both Rnf8 and p53 proteins to determine how these two proteins interact. We found that, when p53 is absent, some of the developmental defects caused by Rnf8 deficiency are rescued. However, this is at the expense of increased chromosomal abnormalities caused by the inability of double-mutant cells to restrain DNA synthesis and cell proliferation and by their escape of cell death in the presence of damaged DNA. We showed that loss of both Rnf8 and p53 led to the accelerated development of both hematological and solid tumors. This study has important implications for human cancer, where mutations in the p53 gene are found in more than 50% of all cancers but where the other factors that facilitate cancer development are not well understood. This study suggests cooperation between Rnf8 and p53 in the prevention of cancer.
Collapse
Affiliation(s)
- Marie-Jo Halaby
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Anne Hakem
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Li Li
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Samah El Ghamrasni
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Shriram Venkatesan
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, Singapore, Singapore
| | - Prakash M. Hande
- Department of Physiology, Yong Loo Lin School of Medicine and Tembusu College, National University of Singapore, Singapore, Singapore
| | - Otto Sanchez
- University of Ontario Institute of Technology, Oshawa, Ontario, Canada
| | - Razqallah Hakem
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Hasham MG, Snow KJ, Donghia NM, Branca JA, Lessard MD, Stavnezer J, Shopland LS, Mills KD. Activation-induced cytidine deaminase-initiated off-target DNA breaks are detected and resolved during S phase. THE JOURNAL OF IMMUNOLOGY 2012; 189:2374-82. [PMID: 22826323 DOI: 10.4049/jimmunol.1200414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates DNA double-strand breaks (DSBs) in the IgH gene (Igh) to stimulate isotype class switch recombination (CSR), and widespread breaks in non-Igh (off-target) loci throughout the genome. Because the DSBs that initiate class switching occur during the G₁ phase of the cell cycle, and are repaired via end joining, CSR is considered a predominantly G₁ reaction. By contrast, AID-induced non-Igh DSBs are repaired by homologous recombination. Although little is known about the connection between the cell cycle and either induction or resolution of AID-mediated non-Igh DSBs, their repair by homologous recombination implicates post-G₁ phases. Coordination of DNA breakage and repair during the cell cycle is critical to promote normal class switching and prevent genomic instability. To understand how AID-mediated events are regulated through the cell cycle, we have investigated G₁-to-S control in AID-dependent genome-wide DSBs. We find that AID-mediated off-target DSBs, like those induced in the Igh locus, are generated during G₁. These data suggest that AID-mediated DSBs can evade G₁/S checkpoint activation and persist beyond G₁, becoming resolved during S phase. Interestingly, DSB resolution during S phase can promote not only non-Igh break repair, but also Ig CSR. Our results reveal novel cell cycle dynamics in response to AID-initiated DSBs, and suggest that the regulation of the repair of these DSBs through the cell cycle may ensure proper class switching while preventing AID-induced genomic instability.
Collapse
|
15
|
Lee H, Haque S, Nieto J, Trott J, Inman JK, McCormick S, Chiorazzi N, Mongini PKA. A p53 axis regulates B cell receptor-triggered, innate immune system-driven B cell clonal expansion. THE JOURNAL OF IMMUNOLOGY 2012; 188:6093-108. [PMID: 22611237 DOI: 10.4049/jimmunol.1103037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resting mature human B cells undergo a dynamic process of clonal expansion, followed by clonal contraction, during an in vitro response to surrogate C3d-coated Ag and innate immune system cytokines, IL-4 and BAFF. In this study, we explore the mechanism for clonal contraction through following the time- and division-influenced expression of several pro- and anti-apoptotic proteins within CFSE-labeled cultures. Several findings, involving both human and mouse B cells, show that a mitochondria-dependent apoptotic pathway involving p53 contributes to the high activation-induced cell death (AICD) susceptibility of replicating blasts. Activated B cell clones exhibit elevated p53 protein and elevated mRNA/protein of proapoptotic molecules known to be under direct p53 transcriptional control, Bax, Bad, Puma, Bid, and procaspase 6, accompanied by reduced anti-apoptotic Bcl-2. Under these conditions, Bim levels were not increased. The finding that full-length Bid protein significantly declines in AICD-susceptible replicating blasts, whereas Bid mRNA does not, suggests that Bid is actively cleaved to short-lived, proapoptotic truncated Bid. AICD was diminished, albeit not eliminated, by p53 small interfering RNA transfection, genetic deletion of p53, or Bcl-2 overexpression. DNA damage is a likely trigger for p53-dependent AICD because susceptible lymphoblasts expressed significantly elevated levels of both phosphorylated ataxia telangiectasia mutated-Ser(1980) and phospho-H2AX-Ser(139). Deficiency in activation-induced cytosine deaminase diminishes but does not ablate murine B cell AICD, indicating that activation-induced cytosine deaminase-induced DNA damage is only in part responsible. Evidence for p53-influenced AICD during this route of T cell-independent clonal expansion raises the possibility that progeny bearing p53 mutations might undergo positive selection in peripherally inflamed tissues with elevated levels of IL-4 and BAFF.
Collapse
Affiliation(s)
- Hyunjoo Lee
- Laboratory of B Cell Biology, Karches Center for Chronic Lymphocytic Leukemia Research, Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ucher AJ, Linehan EK, Teebor GW, Schrader CE, Stavnezer J. The DNA glycosylases Ogg1 and Nth1 do not contribute to Ig class switching in activated mouse splenic B cells. PLoS One 2012; 7:e36061. [PMID: 22536455 PMCID: PMC3334981 DOI: 10.1371/journal.pone.0036061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022] Open
Abstract
During activation of B cells to undergo class switching, B cell metabolism is increased, and levels of reactive oxygen species (ROS) are increased. ROS can oxidize DNA bases resulting in substrates for the DNA glycosylases Ogg1 and Nth1. Ogg1 and Nth1 excise oxidized bases, and nick the resulting abasic sites, forming single-strand DNA breaks (SSBs) as intermediates during the repair process. In this study, we asked whether splenic B cells from mice deficient in these two enzymes would show altered class switching and decreased DNA breaks in comparison with wild-type mice. As the c-myc gene frequently recombines with the IgH S region in B cells induced to undergo class switching, we also analyzed the effect of deletion of these two glycosylases on DSBs in the c-myc gene. We did not detect a reduction in S region or c-myc DSBs or in class switching in splenic B cells from Ogg1- or Nth1-deficient mice or from mice deficient in both enzymes.
Collapse
Affiliation(s)
- Anna J. Ucher
- Department of Microbiology and Physiological Systems, Medical School, University of Massachusetts, Worcester, Massachusetts, United States of America
| | - Erin K. Linehan
- Department of Microbiology and Physiological Systems, Medical School, University of Massachusetts, Worcester, Massachusetts, United States of America
| | - George W. Teebor
- Department of Pathology, Kaplan Comprehensive Cancer Center, New York University Medical Center, New York, New York, United States of America
| | - Carol E. Schrader
- Department of Microbiology and Physiological Systems, Medical School, University of Massachusetts, Worcester, Massachusetts, United States of America
| | - Janet Stavnezer
- Department of Microbiology and Physiological Systems, Medical School, University of Massachusetts, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Panchanathan R, Liu H, Liu H, Fang CM, Erickson LD, Pitha PM, Choubey D. Distinct regulation of murine lupus susceptibility genes by the IRF5/Blimp-1 axis. THE JOURNAL OF IMMUNOLOGY 2011; 188:270-8. [PMID: 22116829 DOI: 10.4049/jimmunol.1102311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Genome-wide association studies have identified lupus susceptibility genes such as IRF5 and PRDM1 (encoding for IFN regulatory factor 5 [IRF]5 and Blimp-1) in the human genome. Accordingly, the murine Irf5 and Prdm1 genes have been shown to play a role in lupus susceptibility. However, it remains unclear how IRF5 and Blimp-1 (a transcriptional target of IRF5) contribute to lupus susceptibility. Given that the murine lupus susceptibility locus Nba2 includes the IFN-regulated genes Ifi202 (encoding for the p202 protein), Aim2 (encoding for the Aim2 protein), and Fcgr2b (encoding for the FcγRIIB receptor), we investigated whether the IRF5/Blimp-1 axis could regulate the expression of these genes. We found that an Irf5 deficiency in mice decreased the expression of Blimp-1 and reduced the expression of the Ifi202. However, the deficiency increased the expression of Aim2 and Fcgr2b. Correspondingly, increased expression of IRF5 in cells increased levels of Blimp-1 and p202 protein. Moreover, Blimp-1 expression increased the expression of Ifi202, whereas it reduced the expression of Aim2. Interestingly, an Aim2 deficiency in female mice increased the expression of IRF5. Similarly, the Fcgr2b-deficient mice expressed increased levels of IRF5. Moreover, increased expression of IRF5 and Blimp-1 in lupus-prone C57BL/6.Nba2, New Zealand Black, and C57BL/6.Sle123 female mice (as compared with age-matched C57BL/6 female mice) was associated with increased levels of the p202 protein. Taken together, our observations demonstrate that the IRF5/Blimp-1 axis differentially regulates the expression of Nba2 lupus susceptibility genes, and they suggest an important role for the IRF5/Blimp-1/p202 axis in murine lupus susceptibility.
Collapse
|
18
|
Barreto VM, Magor BG. Activation-induced cytidine deaminase structure and functions: a species comparative view. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:991-1007. [PMID: 21349283 DOI: 10.1016/j.dci.2011.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/09/2011] [Accepted: 02/16/2011] [Indexed: 05/30/2023]
Abstract
In the ten years since the discovery of activation-induced cytidine deaminase (AID) there has been considerable effort to understand the mechanisms behind this enzyme's ability to target and modify immunoglobulin genes leading to somatic hypermutation and class switch recombination. While the majority of research has focused on mouse and human models of AID function, work on other species, from lamprey to rabbit and sheep, has taught us much about the scope of functions of the AID mutator. This review takes a species-comparative approach to what has been learned about the AID mutator enzyme and its role in humoral immunity.
Collapse
|
19
|
Ishikawa C, Nakachi S, Senba M, Sugai M, Mori N. Activation of AID by human T-cell leukemia virus Tax oncoprotein and the possible role of its constitutive expression in ATL genesis. Carcinogenesis 2011; 32:110-119. [DOI: 10.1093/carcin/bgq222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
20
|
Stavnezer J, Björkman A, Du L, Cagigi A, Pan-Hammarström Q. Mapping of Switch Recombination Junctions, a Tool for Studying DNA Repair Pathways during Immunoglobulin Class Switching. Adv Immunol 2010; 108:45-109. [DOI: 10.1016/b978-0-12-380995-7.00003-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|