1
|
Russo RC, Togbe D, Couillin I, Segueni N, Han L, Quesniaux VFJ, Stoeger T, Ryffel B. Ozone-induced lung injury and inflammation: Pathways and therapeutic targets for pulmonary diseases caused by air pollutants. ENVIRONMENT INTERNATIONAL 2025; 198:109391. [PMID: 40121788 DOI: 10.1016/j.envint.2025.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Exposure to ambient Ozone (O3) air pollution directly causes by its oxidative properties, respiratory epithelial cell injury, and cell death, which promote inflammation and hyperreactivity, posing a significant public health concern. Recent clinical and experimental studies have made strides in elucidating the mechanisms underlying O3-induced epithelial cell injury, inflammation, and airway hyperreactivity, which are discussed herein. The current data suggest that O3-induced oxidative stress is a central event-inducing oxeiptotic cell death pathway. O3-induced epithelial barrier damage and cell death, triggering the release of alarmins and damage-associated molecular patterns (DAMPs), with subsequent endogenous activation of Toll-like receptors (TLRs), DNA sensing pathways, and inflammasomes, activating interleukin-1-Myd88 inflammatory pathway with the production of a range of chemokines and cytokines. This cascade orchestrates lung tissue-resident cell activation in response to O3 in leukocyte and non-leukocyte populations, driving sterile innate immune response. Chronic inflammatory response to O3, by repeated exposures, supports a mixed phenotype combining asthma and emphysema, in which their exacerbation by other particulate pollutants potentially culminates in respiratory failure. We use data from lung single-cell transcriptomics to map genes of O3-damage sensing and signaling pathways to lung cells and thereby highlight potential hotspots of O3 responses. Deeper insights into these pathological pathways might be helpful for the identification of novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | - Isabelle Couillin
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | | | - Lianyong Han
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, and Member of the German Center of Lung Research (DZL), Germany
| | - Valérie F J Quesniaux
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, and Member of the German Center of Lung Research (DZL), Germany
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation, INEM, UMR7355 CNRS and University of Orleans, Orleans, France; ArtImmune SAS, 13 Avenue Buffon, Orleans, France.
| |
Collapse
|
2
|
Xu F, Wu Q, Yang L, Sun H, Li J, An Z, Li H, Wu H, Song J, Chen W, Wu W. Modification of gut and airway microbiota on ozone-induced airway inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176604. [PMID: 39353487 DOI: 10.1016/j.scitotenv.2024.176604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Ground-level ozone (O3) has been shown to induce airway inflammation, the underlying mechanisms remain unclear. The aim of this study was to determine whether gut and airway microbiota dysbiosis, and airway metabolic alterations were associated with O3-induced airway inflammation. Thirty-six 8-week-old male C57BL/6 N mice were divided into 2 groups: sterile water group and broad-spectrum antibiotics group (Abx). Each group was further divided into two subgroups, filtered air group (Air) and O3 group (O3), with 9 mice in each subgroup. Mice in the Air and O3 groups were exposed to filtered air or 1 ppm O3, 4 h/d for 5 consecutive days, respectively. Mice in Abx + Air and Abx + O3 groups were exposed to filtered air or O3, respectively, after drinking broad-spectrum Abx. 24 h after the final O3 exposure, mouse feces and bronchoalveolar lavage fluids (BALF) were collected and subjected to measurements of airway oxidative stress and inflammation biomarkers, 16S rRNA sequencing and metabolite profiling. Hematoxylin-eosin staining of lung tissues was applied to examine the pathological changes of lung tissue. The results showed that O3 exposure resulted in airway oxidative stress and inflammation, as well as gut and airway microbiota dysbiosis, and airway metabolism alteration. Abx pre-treatment markedly changed gut and airway microbiota and promoted O3-induced metabolic disorder and airway inflammation. Spearman correlation analyses indicated that inter-related gut and airway microbiota dysbiosis and airway metabolic disorder were associated with O3-induced airway inflammation. Together, inhaled O3 causes airway inflammation, which may implicate gut and airway microbiota dysbiosis and airway metabolic alterations.
Collapse
Affiliation(s)
- Fei Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Qiong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Lin Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Han Sun
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Hui Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
3
|
Radbel J, Meshanni JA, Vayas KN, Le-Hoang O, Abramova E, Zhou P, Joseph LB, Laskin JD, Gow AJ, Laskin DL. Effects of ozone exposure on lung injury, inflammation, and oxidative stress in a murine model of nonpneumonic endotoxemia. Toxicol Sci 2024; 200:299-311. [PMID: 38749002 PMCID: PMC11285192 DOI: 10.1093/toxsci/kfae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.
Collapse
Affiliation(s)
- Jared Radbel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Jaclynn A Meshanni
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Oahn Le-Hoang
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901, USA
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Peihong Zhou
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
4
|
Li CH, Tsai ML, Chiou HY(C, Lin YC, Liao WT, Hung CH. Role of Macrophages in Air Pollution Exposure Related Asthma. Int J Mol Sci 2022; 23:ijms232012337. [PMID: 36293195 PMCID: PMC9603963 DOI: 10.3390/ijms232012337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by variable airflow obstruction, bronchial hyper-responsiveness, and airway inflammation. The chronic inflammation of the airway is mediated by many cell types, cytokines, chemokines, and inflammatory mediators. Research suggests that exposure to air pollution has a negative impact on asthma outcomes in adult and pediatric populations. Air pollution is one of the greatest environmental risks to health, and it impacts the lungs' innate and adaptive defense systems. A major pollutant in the air is particulate matter (PM), a complex component composed of elemental carbon and heavy metals. According to the WHO, 99% of people live in air pollution where air quality levels are lower than the WHO air quality guidelines. This suggests that the effect of air pollution exposure on asthma is a crucial health issue worldwide. Macrophages are essential in recognizing and processing any inhaled foreign material, such as PM. Alveolar macrophages are one of the predominant cell types that process and remove inhaled PM by secreting proinflammatory mediators from the lung. This review focuses on macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants in asthma.
Collapse
Affiliation(s)
- Chung-Hsiang Li
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Mei-Lan Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsin-Ying (Clair) Chiou
- Teaching and Research Center of Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Laboratory Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Doctoral Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ting Liao
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 812, Taiwan
- Correspondence: (W.-T.L.); or (C.-H.H.); Tel.: +886-7-312-1101 (ext. 2791) (W.-T.L.); +886-7-311-5140 (C.-H.H.); Fax: +886-7-312-5339 (W.-T.L.); +886-7-321-3931 (C.-H.H.)
| |
Collapse
|
5
|
Guttenberg MA, Vose AT, Tighe RM. Role of Innate Immune System in Environmental Lung Diseases. Curr Allergy Asthma Rep 2021; 21:34. [PMID: 33970346 PMCID: PMC8311569 DOI: 10.1007/s11882-021-01011-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
The lung mucosa functions as a principal barrier between the body and inhaled environmental irritants and pathogens. Precise and targeted surveillance mechanisms are required at this lung-environment interface to maintain homeostasis and preserve gas exchange. This is performed by the innate immune system, a germline-encoded system that regulates initial responses to foreign irritants and pathogens. Environmental pollutants, such as particulate matter (PM), ozone (O3), and other products of combustion (NO2, SO3, etc.), both stimulate and disrupt the function of the innate immune system of the lung, leading to the potential for pathologic consequences. PURPOSE OF REVIEW: The purpose of this review is to explore recent discoveries and investigations into the role of the innate immune system in responding to environmental exposures. This focuses on mechanisms by which the normal function of the innate immune system is modified by environmental agents leading to disruptions in respiratory function. RECENT FINDINGS: This is a narrative review of mechanisms of pulmonary innate immunity and the impact of environmental exposures on these responses. Recent findings highlighted in this review are categorized by specific components of innate immunity including epithelial function, macrophages, pattern recognition receptors, and the microbiome. Overall, the review supports broad impacts of environmental exposures to alterations to normal innate immune functions and has important implications for incidence and exacerbations of lung disease. The innate immune system plays a critical role in maintaining pulmonary homeostasis in response to inhaled air pollutants. As many of these agents are unable to be mitigated, understanding their mechanistic impact is critical to develop future interventions to limit their pathologic consequences.
Collapse
Affiliation(s)
| | | | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, NC,Corresponding Author: Robert M Tighe, MD, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Box 2969, Durham, North Carolina 27710, Telephone: 919-684-4894, Fax: 919-684-5266,
| |
Collapse
|
6
|
Tashiro H, Shore SA. The Gut Microbiome and Ozone-induced Airway Hyperresponsiveness. Mechanisms and Therapeutic Prospects. Am J Respir Cell Mol Biol 2021; 64:283-291. [PMID: 33091322 DOI: 10.1165/rcmb.2020-0288tr] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In recent years, several new asthma therapeutics have been developed. Although many of these agents show promise in treating allergic asthma, they are less effective against nonallergic forms of asthma. The gut microbiome has important roles in human health and disease, and a growing body of evidence indicates a link between the gut microbiome and asthma. Here, we review those data focusing on the role of the microbiome in mouse models of nonallergic asthma including obese asthma and asthma triggered by exposure to air pollutants. We describe the impact of antibiotics, diet, and early life events on airway responses to the air pollutant ozone, including in the setting of obesity. We also review potential mechanisms responsible for gut-lung interactions focusing on bacterial-derived metabolites, the immune system, and hormones. Finally, we discuss future prospects for gut microbiome-targeted therapies such as fecal microbiome transplantation, prebiotics, probiotics, and prudent use of antibiotics. Better understanding of the role of the microbiome in airway responses may lead to exploration of new microbiome-targeted therapies to control asthma, especially nonallergic forms of asthma.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan; and.,Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Stephanie A Shore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
7
|
You N, Chu S, Cai B, Gao Y, Hui M, Zhu J, Wang M. Bioactive hyaluronic acid fragments inhibit lipopolysaccharide-induced inflammatory responses via the Toll-like receptor 4 signaling pathway. Front Med 2020; 15:292-301. [PMID: 32946028 DOI: 10.1007/s11684-020-0806-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
The high- and the low-molecular weight hyaluronic acids (HMW-HA and LMW-HA, respectively) showed different biological activities in inflammation. However, the role of LMW-HA in inflammatory response is controversial. In this study, we aimed to investigate the effect of bioactive hyaluronan (B-HA) on lipopolysaccharide (LPS)-induced inflammatory responses in human macrophages and mice. B-HA was produced from HA treated with glycosylated recombinant human hyaluronidase PH20. Human THP-1 cells were induced to differentiate into macrophages. THP-1-derived macrophages were treated with B-HA, LPS, or B-HA + LPS. The mRNA expression and the production of inflammatory cytokines were determined using quantitative real-time PCR and enzyme-linked immunosorbent assay. The phosphorylation levels of proteins in the nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and IRF-3 signaling pathways were measured using Western blot. The in vivo efficacy of B-HA was assessed in a mouse model of LPS-induced inflammation. Results showed that B-HA inhibited the expression of TNF-α, IL-6, IL-1, and IFN-β, and enhanced the expression of the antiinflammatory cytokine IL-10 in LPS-induced inflammatory responses in THP-1-derived macrophages and in vivo. B-HA significantly suppressed the phosphorylation of the TLR4 signaling pathway proteins p65, IKKα/β, IκBα, JNK1/2, ERK1/2, p38, and IRF-3. In conclusion, our results demonstrated that the B-HA attenuated the LPS-stimulated inflammatory response by inhibiting the activation of the TLR4 signaling pathway. B-HA could be a potential anti-inflammatory drug in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Na You
- Department of Infectious Disease, The People's Hospital of Bozhou, Bozhou, 236800, China
| | - Sasa Chu
- Department of Infectious Disease, The People's Hospital of Linyi, Linyi, 276000, China
| | - Binggang Cai
- Department of Infectious Disease, The People's Hospital of Yancheng, Yancheng, 224000, China
| | - Youfang Gao
- Department of Infectious Disease, The People's Hospital of Bozhou, Bozhou, 236800, China
| | - Mizhou Hui
- AnRuipu Biological Products Research Co., Ltd., Hangzhou, 310019, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, 210002, China.
| | - Maorong Wang
- Institute of Liver Disease, Jinling Hospital, Nanjing, 210002, China.
| |
Collapse
|
8
|
Patial S, Saini Y. Lung macrophages: current understanding of their roles in Ozone-induced lung diseases. Crit Rev Toxicol 2020; 50:310-323. [PMID: 32458707 DOI: 10.1080/10408444.2020.1762537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Through the National Ambient Air Quality Standards (NAAQS), the Clean Air Act of the United States outlines acceptable levels of six different air pollutants considered harmful to humans and the environment. Included in this list is ozone (O3), a highly reactive oxidant gas, respiratory health hazard, and common environmental air pollutant at ground level. The respiratory health effects due to O3 exposure are often associated with molecular and cellular perturbations in the respiratory tract. Periodic review of NAAQS requires comprehensive scientific evaluation of the public health effects of these pollutants, which is formulated through integrated science assessment (ISA) of the most policy-relevant scientific literature. This review focuses on the protective and pathogenic effects of macrophages in the O3-exposed respiratory tract, with emphasis on mouse model-based toxicological studies. Critical findings from 39 studies containing the words O3, macrophage, mice, and lung within the full text were assessed. While some of these studies highlight the presence of disease-relevant pathogenic macrophages in the airspaces, others emphasize a protective role for macrophages in O3-induced lung diseases. Moreover, a comprehensive list of currently known macrophage-specific roles in O3-induced lung diseases is included in this review and the significant knowledge gaps that still exist in the field are outlined. In conclusion, there is a vital need in this field for additional policy-relevant scientific information, including mechanistic studies to further define the role of macrophages in response to O3.
Collapse
Affiliation(s)
- Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
9
|
Hyaluronan interactions with innate immunity in lung biology. Matrix Biol 2018; 78-79:84-99. [PMID: 29410190 DOI: 10.1016/j.matbio.2018.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Lung disease is a leading cause of morbidity and mortality worldwide. Innate immune responses in the lung play a central role in the pathogenesis of lung disease and the maintenance of lung health, and thus it is crucial to understand factors that regulate them. Hyaluronan is ubiquitous in the lung, and its expression is increased following lung injury and in disease states. Furthermore, hyaladherins like inter-α-inhibitor, tumor necrosis factor-stimulated gene 6, pentraxin 3 and versican are also induced and help form a dynamic hyaluronan matrix in injured lung. This review synthesizes present knowledge about the interactions of hyaluronan and its associated hyaladherins with the lung immune system, and the implications of these interactions for lung biology and disease.
Collapse
|
10
|
Michaudel C, Couturier-Maillard A, Chenuet P, Maillet I, Mura C, Couillin I, Gombault A, Quesniaux VF, Huaux F, Ryffel B. Inflammasome, IL-1 and inflammation in ozone-induced lung injury. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2016; 5:33-40. [PMID: 27168953 PMCID: PMC4858604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Exposure to ambient ozone causes airway hyperreactivity and lung inflammation, which represent an important health concern in humans. Recent clinical and experimental studies contributed to the understanding of the mechanisms of epithelial injury, inflammation and airway hyperreactivity, which is reviewed here. The present data suggest that ozone induced oxidative stress causes inflammasome activation with the release of IL-1, other cytokines and proteases driving lung inflammation leading to the destruction of alveolar epithelia with emphysema and respiratory failure. Insights in the pathogenic pathway may allow to identify novel biomarkers of ozone-induced lung disease and therapeutic targets.
Collapse
Affiliation(s)
- Chloé Michaudel
- ArtImmune SAS13 Avenue Buffon, Orleans, France
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | | | - Pauline Chenuet
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Isabelle Maillet
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Catherine Mura
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Isabelle Couillin
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Aurélie Gombault
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - Valérie F Quesniaux
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
| | - François Huaux
- ULB, Bruxelles Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de LouvainBrussels, Belgium
| | - Bernhard Ryffel
- CNRS, UMR7355, Experimental and Molecular Immunology and Neurogenetics45071 Orleans, France
- IDM, University of Cape TownRSA
| |
Collapse
|
11
|
The Rise and Fall of Hyaluronan in Respiratory Diseases. Int J Cell Biol 2015; 2015:712507. [PMID: 26448757 PMCID: PMC4581576 DOI: 10.1155/2015/712507] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/11/2015] [Accepted: 05/03/2015] [Indexed: 12/24/2022] Open
Abstract
In normal airways, hyaluronan (HA) matrices are primarily located within the airway submucosa, pulmonary vasculature walls, and, to a lesser extent, the alveoli. Following pulmonary injury, elevated levels of HA matrices accumulate in these regions, and in respiratory secretions, correlating with the extent of injury. Animal models have provided important insight into the role of HA in the onset of pulmonary injury and repair, generally indicating that the induction of HA synthesis is an early event typically preceding fibrosis. The HA that accumulates in inflamed airways is of a high molecular weight (>1600 kDa) but can be broken down into smaller fragments (<150 kDa) by inflammatory and disease-related mechanisms that have profound effects on HA pathobiology. During inflammation in the airways, HA is often covalently modified with heavy chains from inter-alpha-inhibitor via the enzyme tumor-necrosis-factor-stimulated-gene-6 (TSG-6) and this modification promotes the interaction of leukocytes with HA matrices at sites of inflammation. The clearance of HA and its return to normal levels is essential for the proper resolution of inflammation. These data portray HA matrices as an important component of normal airway physiology and illustrate its integral roles during tissue injury and repair among a variety of respiratory diseases.
Collapse
|
12
|
Xu C, Chen G, Yang W, Xu Y, Xu Y, Huang X, Liu J, Feng Y, Xu Y, Liu B. Hyaluronan ameliorates LPS-induced acute lung injury in mice via Toll-like receptor (TLR) 4-dependent signaling pathways. Int Immunopharmacol 2015; 28:1050-8. [PMID: 26321117 DOI: 10.1016/j.intimp.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 08/02/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
Toll-like receptor-4 (TLR4) signaling has been implicated in innate immunity and acute inflammation following acute lung injury (ALI). As such, modulating inflammatory response through TLR4 represents an attractive therapeutic approach to treat ALI. Increasing evidence demonstrates that hyaluronan (HA) can modulate TLR4 activation and has shown early promise as a therapeutic agent in ALI. However, the mechanism associated with HA has not been fully elucidated. In the current study, we sought to determine the effects of HA on lipopolysaccharide (LPS)-induced inflammatory response and gain insights into the mechanism of action in mice with intratracheal instillation of LPS. Our results demonstrate that in contrast to mice challenged with LPS, pretreatment with HA significantly inhibited inflammatory cell recruitment, attenuated lung injury and suppressed the level of cytokine/chemokine in bronchial alveolar lavage fluid (BALF). Investigation of the mechanism responsible for inhibition of LPS activation showed HA treatment significantly inhibited the nuclear translocation of NF-κB p65 and protein expression of myeloid differentiation primary response protein (MyD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) and p38 MAPK, JNK and ERK activation in lung tissue. Furthermore, we compared the protection effect of HA in TLR4-deficient mice with those of genetically matched wild type (WT) mice in an acute model of lung injury. However, in TLR4-deficient mice, HA pretreatment before LPS instillation fail to affect the LPS response. Therefore, our findings suggest that HA pretreatment attenuated LPS-induced ALI and the anti-inflammatory function of HA was partial dependent on TLR4, which shed new light on potential elements that regulate the lung injury response.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Gang Chen
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Weiwei Yang
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Yizhe Xu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Yongfang Xu
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Xuqing Huang
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Jiangang Liu
- Maternal and Child Health Hospital Affiliated to Zhejiang University, Hangzhou 311121, China
| | - Yuejuan Feng
- Department of Respiration, Affiliated Hospital, School of Medicine, Hangzhou Normal University, 16 Wen Zhou Road, Hangzhou 311121, China
| | - Yanchun Xu
- Department of Physiology and Pharmacology, West Virginia University, WV 26506, USA
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
13
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Calatroni A, Campo S. Beta-arrestin 1 is involved in the catabolic response stimulated by hyaluronan degradation in mouse chondrocytes. Cell Tissue Res 2015; 361:567-79. [PMID: 25673209 DOI: 10.1007/s00441-015-2112-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023]
Abstract
Beta-arrestin-1 (β-arrestin-1) is an adaptor protein that functions in the termination of G-protein activation and seems to be involved in the mediation of the inflammatory response. Interleukin-1β (IL-1β) elicits the expression of inflammatory mediators through a mechanism involving hyaluronan (HA) degradation, thereby contributing to toll-like receptor 4 (TLR-4) and CD44 activation. Stimulation of both receptors induces nuclear factor kappaB (NF-kB) activation that, through transforming-growth-factor-activated-kinase-1 (TAK-1), in turn stimulates the inflammatory mediators of transcription. As β-arrestin-1 seems to play an inflammatory role in arthritis, we have investigated the involvement of β-arrestin-1 in a model of IL-1β-induced inflammatory response in mouse chondrocytes. IL-1β treatment significantly increases chondrocytes TLR-4, CD44, β-arrestin-1, TAK-1, and serine/threonine kinase (AKT) mRNA expression and related protein levels. NF-kB is also markedly activated with consequent tumor-necrosis-factor-alpha, interleukin-6, and inducible-nitric-oxide-synthase up-regulation. Treatment of IL-1β-stimulated chondrocytes with β-arrestin-1 and/or AKT and/or TAK-1-specific inhibitors significantly reduces all parameters, although the inhibitory effect exerted by TAK-1-mediated pathways is more effective than that of β-arrestin-1. β-Arrestin-1-induced NF-kB activation is mediated by the AKT pathway as shown by IL-1β-stimulated chondrocytes treated with AKT inhibitor. Finally, a specific HA-blocking peptide (Pep-1) has confirmed the inflammatory role of degraded HA as a mediator of the IL-1β-induced activation of β-arrestin-1.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biomedical Sciences and Morphological and Functional Images, Section of Medical Biotechnologies and Preventive Medicine, School of Medicine (Policlinico Universitario), University of Messina, Torre Biologica, 5° Piano, Via C. Valeria, 98125, Messina, Italy,
| | | | | | | | | | | |
Collapse
|
14
|
Lewis SS, Hutchinson MR, Frick MM, Zhang Y, Maier SF, Sammakia T, Rice KC, Watkins LR. Select steroid hormone glucuronide metabolites can cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun 2015; 44:128-36. [PMID: 25218902 PMCID: PMC4275344 DOI: 10.1016/j.bbi.2014.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/01/2014] [Accepted: 09/02/2014] [Indexed: 12/18/2022] Open
Abstract
We have recently shown that several classes of glucuronide metabolites, including the morphine metabolite morphine-3-glucuronide and the ethanol metabolite ethyl glucuronide, cause toll like receptor 4 (TLR4)-dependent signaling in vitro and enhanced pain in vivo. Steroid hormones, including estrogens and corticosterone, are also metabolized through glucuronidation. Here we demonstrate that in silico docking predicts that corticosterone, corticosterone-21-glucuronide, estradiol, estradiol-3-glucuronide and estradiol-17-glucuronide all dock with the MD-2 component of the TLR4 receptor complex. In addition to each docking with MD-2, the docking of each was altered by pre-docking with (+)-naloxone, a TLR4 signaling inhibitor. As agonist versus antagonist activity cannot be determined from these in silico interactions, an in vitro study was undertaken to clarify which of these compounds can act in an agonist fashion. Studies using a cell line transfected with TLR4, necessary co-signaling molecules, and a reporter gene revealed that only estradiol-3-glucuronide and estradiol-17-glucuronide increased reporter gene product, indicative of TLR4 agonism. Finally, in in vivo studies, each of the 5 drugs was injected intrathecally at equimolar doses. In keeping with the in vitro results, only estradiol-3-glucuronide and estradiol-17-glucuronide caused enhanced pain. For both compounds, pain enhancement was blocked by the TLR4 antagonist lipopolysaccharide from Rhodobacter sphaeroides, evidence for the involvement in TLR4 in the resultant pain enhancement. These findings have implications for several chronic pain conditions, including migraine and temporomandibular joint disorder, in which pain episodes are more likely in cycling females when estradiol is decreasing and estradiol metabolites are at their highest.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA,Corresponding author: Susannah S. Lewis, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-3288
| | - Mark R. Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Morin M. Frick
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Yingning Zhang
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Tarek Sammakia
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| |
Collapse
|
15
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Calatroni A, Campo S. Beta-arrestin-2 negatively modulates inflammation response in mouse chondrocytes induced by 4-mer hyaluronan oligosaccharide. Mol Cell Biochem 2015; 399:201-8. [PMID: 25318610 DOI: 10.1007/s11010-014-2246-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/09/2014] [Indexed: 02/06/2023]
Abstract
Beta-arrestin-2 is an adaptor protein that terminates G protein activation and seems to be involved in the modulation of the inflammatory response. Small hyaluronan (HA) fragments, such as 4-mer HA oligosaccharides, are known to interact with the toll-like receptor-4 (TLR-4) with consequent activation of the nuclear factor kappaB (NF-kB) that in turn stimulates the inflammation response. NF-kB activation is mediated by different pathways, in particular by the transforming growth factor-activated kinase-1 (TAK-1). Conversely, increased levels of protein kinase A (PKA), induced by cyclic adenosine monophosphate (cAMP), seem to inhibit NF-kB activation. We studied the involvement and role of beta-arrestin-2 in mouse chondrocytes stimulated with 4-mer HA fragments. The exposure of chondrocytes to 4-mer HA produced a significant up-regulation in TLR-4, cAMP, beta-arrestin-2, TAK-1, protein 38 mitogen-activated protein kinase (p38MAPK), and PKA, both in terms of mRNA expression and of the related protein levels. NF-kB was significantly activated, thereby producing the transcription of pro-inflammatory mediators, including tumor necrosis factor alpha, interleukin-6, and interleukin-17. The treatment of 4-mer HA-stimulated chondrocytes with antibodies against beta-arrestin-2 and/or a specific PKA inhibitor, significantly increased the inflammatory response, while the treatment with a specific p38MAPK inhibitor significantly reduced the inflammatory response. Interestingly, the anti-inflammatory action exerted by beta-arrestin-2 appeared to be mediated in part through the direct inhibition of p38MAPK, preventing NF-kB activation, and in part through cAMP and PKA activation primed by G protein signaling, which exerted an inhibitory effect on NF-kB. Taken together, these results could be useful for future anti-inflammatory strategies.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biomedical Sciences and Morphological and Functional Images, Section of Medical Biotechnologies and Preventive Medicine, School of Medicine, University of Messina, Policlinico Universitario, Torre Biologica, 5° piano, Via C. Valeria, 98125, Messina, Italy,
| | | | | | | | | | | |
Collapse
|
16
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Nastasi G, Calatroni A, Campo S. Inhibition of the hyaluronan oligosaccharides inflammatory response: reduction of adenosine 2A receptor activation by EPAC and PKA. Cell Biochem Funct 2014; 32:692-701. [PMID: 25367782 DOI: 10.1002/cbf.3073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 02/05/2023]
Abstract
The aim of this study was to investigate the involvement of exchange proteins directly activated by cyclic adenosine (ADO) monophosphate (EPAC) in 4-mer hyaluronan (HA) oligosaccharide-induced inflammatory response in mouse normal synovial fibroblasts (NSF). Treatment of NSF with 4-mer HA increased Toll-like receptor-4, TNF-alpha and IL-1beta mRNA expression and of the related proteins, as well as nuclear factor kappaB (NF-kB) activation. Addition to NSF, previously stimulated with 4-mer HA oligosaccharides, of ADO significantly reduced NF-kB activation, TNF-alpha and IL-1beta expression. The pre-treatment of NSF with cyclic ADO monophosphate and/or PKA and/or EPAC-specific inhibitors significantly inhibited the anti-inflammatory effect exerted by ADO. In particular, the EPAC inhibitor reduced the ADO effect to a major extent than the PKA inhibitor. These results mean that both PKA and EPAC pathways are involved in ADO-induced NF-kB inhibition although EPAC seems to be more involved than PKA.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biomedical Sciences and Morphological and Functional Images, Section of Medical Biotechnologies and Preventive Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Huang Z, Zhao C, Chen Y, Cowell JA, Wei G, Kultti A, Huang L, Thompson CB, Rosengren S, Frost GI, Shepard HM. Recombinant human hyaluronidase PH20 does not stimulate an acute inflammatory response and inhibits lipopolysaccharide-induced neutrophil recruitment in the air pouch model of inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 192:5285-95. [PMID: 24778442 DOI: 10.4049/jimmunol.1303060] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyaluronidase (Hyal) and low m.w. hyaluronan (LMW HA) fragments have been widely reported to stimulate the innate immune response. However, most hyaluronidases used were purified from animal tissues (e.g., bovine testis Hyal [BTH]), and contain endotoxin and other unrelated proteins. We tested a highly purified recombinant human Hyal (rHuPH20) and endotoxin-free HA fragments from M(r) 5,000 to 1,500,000 in the rodent air pouch model of inflammation to determine their potential for stimulation of the innate immune response. Exogenous LMW HA fragments (average M(r) 200,000) failed to induce either cytokine/chemokine production or neutrophil infiltration into the air pouch. Challenging the air pouch with LPS or BTH stimulated production of cytokines and chemokines but rHuPH20 did not, suggesting that neither PH20 nor generation of LMW HA fragments in situ stimulates cytokine and chemokine production. LPS and BTH also induced neutrophil infiltration into the air pouch, which was not observed with rHuPH20 treatment. Endotoxin-depleted BTH had much reduced proinflammatory activity, suggesting that the difference in inflammatory responses between rHuPH20 and BTH is likely due to endotoxin contaminants in BTH. When rHuPH20 was dosed with LPS, the induction of cytokines and chemokines was the same as LPS alone, but neutrophil infiltration was inhibited, likely by interrupting HA-CD44 interaction. Our results indicate that neither rHuPH20 nor its directly generated HA catabolites have inflammatory properties in the air pouch model, and rHuPH20 can instead inhibit some aspects of inflammation, such as neutrophil infiltration into the air pouch.
Collapse
Affiliation(s)
| | | | | | | | - Ge Wei
- Halozyme Therapeutics, San Diego, CA 92121
| | | | - Lei Huang
- Halozyme Therapeutics, San Diego, CA 92121
| | | | | | | | | |
Collapse
|
18
|
Robertson S, Colombo ES, Lucas SN, Hall PR, Febbraio M, Paffett ML, Campen MJ. CD36 mediates endothelial dysfunction downstream of circulating factors induced by O3 exposure. Toxicol Sci 2013; 134:304-11. [PMID: 23650127 PMCID: PMC3707435 DOI: 10.1093/toxsci/kft107] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023] Open
Abstract
Inhaled pollutants induce the release of vasoactive factors into the systemic circulation, but little information is available regarding the nature of these factors or their receptors. The pattern recognition receptor CD36 interacts with many damage-related circulating molecules, leading to activation of endothelial cells and promoting vascular inflammation; therefore, we hypothesized that CD36 plays a pivotal role in mediating cross talk between inhaled ozone (O3)-induced circulating factors and systemic vascular dysfunction. O3 exposure (1 ppm × 4h) induced lung inflammation in wild-type (WT) mice, which was absent in the CD36 deficient (CD36(-/-)) mice. Acetylcholine (ACh)-evoked vasorelaxation was impaired in isolated aortas from O3-exposed WT mice but not in vessels from CD36(-/-) mice. To delineate whether vascular impairments were caused by lung inflammation or CD36-mediated generation of circulating factors, naïve aortas were treated with diluted serum from control or O3-exposed WT mice, which recapitulated the impairments of vasorelaxation observed after inhalation exposures. Aortas from CD36(-/-) mice were insensitive to the effects of O3-induced circulating factors, with robust vasorelaxation responses in the presence of serum from O3-exposed WT mice. Lung inflammation was not a requirement for production of circulating vasoactive factors, as serum from O3-exposed CD36(-/-) mice could inhibit vasorelaxation in naïve WT aortas. These results suggest that O3 inhalation induces the release of circulating bioactive factors capable of impairing vasorelaxation to ACh via a CD36-dependent signaling mechanism. Although lung inflammatory and systemic vascular effects were both dependent on CD36, the presence of circulating factors appears to be independent of CD36 and inflammatory responses.
Collapse
Affiliation(s)
- Sarah Robertson
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Shalaby KH, Allard-Coutu A, O'Sullivan MJ, Nakada E, Qureshi ST, Day BJ, Martin JG. Inhaled birch pollen extract induces airway hyperresponsiveness via oxidative stress but independently of pollen-intrinsic NADPH oxidase activity, or the TLR4-TRIF pathway. THE JOURNAL OF IMMUNOLOGY 2013; 191:922-33. [PMID: 23776177 DOI: 10.4049/jimmunol.1103644] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress in allergic asthma may result from oxidase activity or proinflammatory molecules in pollens. Signaling via TLR4 and its adaptor Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF) has been implicated in reactive oxygen species-mediated acute lung injury and in Th2 immune responses. We investigated the contributions of oxidative stress and TLR4/TRIF signaling to experimental asthma induced by birch pollen exposure exclusively via the airways. Mice were exposed to native or heat-inactivated white birch pollen extract (BPEx) intratracheally and injected with the antioxidants, N-acetyl-L-cysteine or dimethylthiourea, prior to sensitization, challenge, or all allergen exposures, to assess the role of oxidative stress and pollen-intrinsic NADPH oxidase activity in allergic sensitization, inflammation, and airway hyperresponsiveness (AHR). Additionally, TLR4 signaling was antagonized concomitantly with allergen exposure, or the development of allergic airway disease was evaluated in TLR4 or TRIF knockout mice. N-acetyl-L-cysteine inhibited BPEx-induced eosinophilic airway inflammation and AHR except when given exclusively during sensitization, whereas dimethylthiourea was inhibitory even when administered with the sensitization alone. Heat inactivation of BPEx had no effect on the development of allergic airway disease. Oxidative stress-mediated AHR was also TLR4 and TRIF independent; however, TLR4 deficiency decreased, whereas TRIF deficiency increased BPEx-induced airway inflammation. In conclusion, oxidative stress plays a significant role in allergic sensitization to pollen via the airway mucosa, but the pollen-intrinsic NADPH oxidase activity and TLR4 or TRIF signaling are unnecessary for the induction of allergic airway disease and AHR. Pollen extract does, however, activate TLR4, thereby enhancing airway inflammation, which is restrained by the TRIF-dependent pathway.
Collapse
Affiliation(s)
- Karim H Shalaby
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Lewis SS, Hutchinson MR, Zhang Y, Hund DK, Maier SF, Rice KC, Watkins LR. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun 2013; 30:24-32. [PMID: 23348028 PMCID: PMC3641160 DOI: 10.1016/j.bbi.2013.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mark R. Hutchinson
- Discipline of Pharmacology and Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yingning Zhang
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Dana K. Hund
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
21
|
Feng F, Li Z, Potts-Kant EN, Wu Y, Foster WM, Williams KL, Hollingsworth JW. Hyaluronan activation of the Nlrp3 inflammasome contributes to the development of airway hyperresponsiveness. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1692-8. [PMID: 23010656 PMCID: PMC3546367 DOI: 10.1289/ehp.1205188] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 09/24/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND The role of the Nlrp3 inflammasome in nonallergic airway hyperresponsiveness (AHR) has not previously been reported. Recent evidence supports both interleukin (IL) 1β and short fragments of hyaluronan (HA) as contributors to the biological response to inhaled ozone. OBJECTIVE Because extracellular secretion of IL-1β requires activation of the inflammasome, we investigated the role of the inflammasome proteins ASC, caspase1, and Nlrp3 in the biological response to ozone and HA. METHODS C57BL/6J wild-type mice and mice deficient in ASC, caspase1, or Nlrp3 were exposed to ozone (1 ppm for 3 hr) or HA followed by analysis of airway resistance, cellular inflammation, and total protein and cytokines in bronchoalveolar lavage fluid (BALF). Transcription levels of IL-1β and IL-18 were determined in two populations of lung macrophages. In addition, we examined levels of cleaved caspase1 and cleaved IL-1β as markers of inflammasome activation in isolated alveolar macrophages harvested from BALF from HA-treated mice. RESULTS We observed that genes of the Nlrp3 inflammasome were required for development of AHR following exposure to either ozone or HA fragments. These genes are partially required for the cellular inflammatory response to ozone. The expression of IL-1β mRNA in alveolar macrophages was up-regulated after either ozone or HA challenge and was not dependent on the Nlrp3 inflammasome. However, soluble levels of IL-1β protein were dependent on the inflammasome after challenge with either ozone or HA. HA challenge resulted in cleavage of macrophage-derived caspase1 and IL-1β, suggesting a role for alveolar macrophages in Nlrp3-dependent AHR. CONCLUSIONS The Nlrp3 inflammasome is required for the development of ozone-induced reactive airways disease.
Collapse
Affiliation(s)
- Feifei Feng
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Li Z, Tighe RM, Feng F, Ledford JG, Hollingsworth JW. Genes of innate immunity and the biological response to inhaled ozone. J Biochem Mol Toxicol 2012; 27:3-16. [PMID: 23169704 DOI: 10.1002/jbt.21453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/28/2012] [Accepted: 10/07/2012] [Indexed: 12/31/2022]
Abstract
Ambient ozone has a significant impact on human health. We have made considerable progress in understanding the fundamental mechanisms that regulate the biological response to ozone. It is increasingly clear that genes of innate immunity play a central role in both infectious and noninfectious lung disease. The biological response to ambient ozone provides a clinically relevant environmental exposure that allows us to better understand the role of innate immunity in noninfectious airways disease. In this brief review, we focus on (1) specific cell types in the lung modified by ozone, (2) ozone and oxidative stress, (3) the relationship between genes of innate immunity and ozone, (4) the role of extracellular matrix in reactive airways disease, and (5) the effect of ozone on the adaptive immune system. We summarize recent advances in understanding the mechanisms that ozone contributes to environmental airways disease.
Collapse
Affiliation(s)
- Zhuowei Li
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
23
|
Uchakina ON, Castillejo CM, Bridges CC, McKallip RJ. The role of hyaluronic acid in SEB-induced acute lung inflammation. Clin Immunol 2012; 146:56-69. [PMID: 23246605 DOI: 10.1016/j.clim.2012.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/25/2012] [Accepted: 11/07/2012] [Indexed: 01/27/2023]
Abstract
We investigated the role of the extracellular matrix component, hyaluronic acid (HA) in SEB-induced ALI/ARDS. Intranasal exposure of mice to SEB led to a significant increase in the level of soluble hyaluronic acid in the lungs. Similarly, in an endothelial cell/spleen cell co-culture, SEB exposure led to significant increases in soluble levels of hyaluronic acid, cellular proliferation, and cytokine production compared with SEB-exposed spleen cells or endothelial cells alone. Exposure of SEB-activated spleen cells to hyaluronic acid led to increased cellular proliferation and increased cytokine production. SEB-induced cytokine production and proliferation in vitro were significantly reduced by the hyaluronic acid blocking peptide, Pep-1. Finally, treatment of SEB-exposed mice with Pep-1 significantly reduced SEB-induced ALI/ARDS, through reduction of cytokine production and numbers of lung inflammatory cells, compared to mice treated with a control peptide. Together, these results suggest the possibility of targeting HA for the treatment of SEB-induced ALI/ARDS.
Collapse
Affiliation(s)
- Olga N Uchakina
- Division of Basic Medical Sciences, Mercer University School of Medicine, Georgia 31207, USA
| | | | | | | |
Collapse
|
24
|
Oakes JL, O'Connor BP, Warg LA, Burton R, Hock A, Loader J, Laflamme D, Jing J, Hui L, Schwartz DA, Yang IV. Ozone enhances pulmonary innate immune response to a Toll-like receptor-2 agonist. Am J Respir Cell Mol Biol 2012; 48:27-34. [PMID: 23002100 DOI: 10.1165/rcmb.2012-0187oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous work demonstrated that pre-exposure to ozone primes innate immunity and increases Toll-like receptor-4 (TLR4)-mediated responses to subsequent stimulation with LPS. To explore the pulmonary innate immune response to ozone exposure further, we investigated the effects of ozone in combination with Pam3CYS, a synthetic TLR2/TLR1 agonist. Whole-lung lavage (WLL) and lung tissue were harvested from C57BL/6 mice after exposure to ozone or filtered air, followed by saline or Pam3CYS 24 hours later. Cells and cytokines in the WLL, the surface expression of TLRs on macrophages, and lung RNA genomic expression profiles were examined. We demonstrated an increased WLL cell influx, increased IL-6 and chemokine KC (Cxcl1), and decreased macrophage inflammatory protein (MIP)-1α and TNF-α in response to Pam3CYS as a result of ozone pre-exposure. We also observed the increased cell surface expression of TLR4, TLR2, and TLR1 on macrophages as a result of ozone alone or in combination with Pam3CYS. Gene expression analysis of lung tissue revealed a significant increase in the expression of genes related to injury repair and the cell cycle as a result of ozone alone or in combination with Pam3CYS. Our results extend previous findings with ozone/LPS to other TLR ligands, and suggest that the ozone priming of innate immunity is a general mechanism. Gene expression profiling of lung tissue identified transcriptional networks and genes that contribute to the priming of innate immunity at the molecular level.
Collapse
Affiliation(s)
- Judy L Oakes
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Campo GM, Avenoso A, D'Ascola A, Prestipino V, Scuruchi M, Nastasi G, Calatroni A, Campo S. The stimulation of adenosine 2A receptor reduces inflammatory response in mouse articular chondrocytes treated with hyaluronan oligosaccharides. Matrix Biol 2012; 31:338-51. [PMID: 22796382 DOI: 10.1016/j.matbio.2012.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/02/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023]
Abstract
The adenosine 2A receptor (A(2A)R) is greatly involved in inflammation pathologies such as rheumatoid arthritis. By interacting with A(2A)R, the purine nucleoside adenosine acts as a potent endogenous inhibitor of the inflammatory process in a variety of tissues. Hyaluronan (HA) fragments act to prime inflammation via CD44 and the toll-like receptor 4 (TLR-4). The aim of this study was to investigate whether the inhibition/stimulation of A(2A)R modulates the inflammation cascade primed by small HA fragments in mouse articular chondrocytes. 6-mer HA treatment induced up-regulation of CD44, TLR4 and A(2A)R mRNA expression and the related protein levels, and NF-kB activation, that in turn increased TNF-α, IL-1β, and IL-6 and production. Treatment with a selective (2)A adenosine receptor agonist (2-phenylaminoadenosine) enhanced A(2A)R increase, as well as the inhibition of CD44 and TLR4 activity using two specific antibodies abolished up-regulation of CD44 and TLR4, and significantly reduced, especially by antibody inhibition, NF-kB activation and pro-inflammatory cytokine production. Furthermore, the exposure of chondrocytes to A(2A)R specific interference mRNA (A(2A)R siRNA) enhanced HA 6-mer induced NF-kB activation and inflammatory cytokine increase. Finally, the use of an exchange protein activated by cAMP (EPAC) siRNA and a specific PKA inhibitor showed a predominant EPAC involvement in the mediation of the anti-inflammatory activity exerted by A(2A)R stimulation. These data suggest that HA depolymerization occurring during inflammation contributes to priming of the inflammatory cascade, while endogenous adenosine, by exerting anti-inflammatory response via A(2A)R, could be a modulatory mechanism that attempts to attenuate the inflammation process.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
CD44 as a novel target for treatment of staphylococcal enterotoxin B-induced acute inflammatory lung injury. Clin Immunol 2012; 144:41-52. [PMID: 22659034 DOI: 10.1016/j.clim.2012.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 01/07/2023]
|
27
|
Ishii T, Warabi E, Yanagawa T. Novel roles of peroxiredoxins in inflammation, cancer and innate immunity. J Clin Biochem Nutr 2012; 50:91-105. [PMID: 22448089 PMCID: PMC3303482 DOI: 10.3164/jcbn.11-109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/20/2011] [Indexed: 02/06/2023] Open
Abstract
Peroxiredoxins possess thioredoxin or glutathione peroxidase and chaperone-like activities and thereby protect cells from oxidative insults. Recent studies, however, reveal additional functions of peroxiredoxins in gene expression and inflammation-related biological reactions such as tissue repair, parasite infection and tumor progression. Notably, peroxiredoxin 1, the major mammalian peroxiredoxin family protein, directly interacts with transcription factors such as c-Myc and NF-κB in the nucleus. Additionally, peroxiredoxin 1 is secreted from some cells following stimulation with TGF-β and other cytokines and is thus present in plasma and body fluids. Peroxiredoxin 1 is now recognized as one of the pro-inflammatory factors interacting with toll-like receptor 4, which triggers NF-κB activation and other signaling pathways to evoke inflammatory reactions. Some cancer cells release peroxiredoxin 1 to stimulate toll-like receptor 4-mediated signaling for their progression. Interestingly, peroxiredoxins expressed in protozoa and helminth may modulate host immune responses partly through toll-like receptor 4 for their survival and progression in host. Extracellular peroxiredoxin 1 and peroxiredoxin 2 are known to enhance natural killer cell activity and suppress virus-replication in cells. Peroxiredoxin 1-deficient mice show reduced antioxidant activities but also exhibit restrained tissue inflammatory reactions under some patho-physiological conditions. Novel functions of peroxiredoxins in inflammation, cancer and innate immunity are the focus of this review.
Collapse
Affiliation(s)
- Tetsuro Ishii
- Majors of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
28
|
Campo GM, Avenoso A, D'Ascola A, Scuruchi M, Prestipino V, Calatroni A, Campo S. Hyaluronan in part mediates IL-1beta-induced inflammation in mouse chondrocytes by up-regulating CD44 receptors. Gene 2012; 494:24-35. [PMID: 22192912 DOI: 10.1016/j.gene.2011.11.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023]
Abstract
Interleukin-1beta (IL-1beta) elicits the expression of inflammatory mediators through a mechanism involving the CD44 receptor. Hyaluronan (HA) depolymerization also contributes to CD44 activation. This study investigated the potential of HA fragments, obtained by hyaluronidase (HYAL) treatment, as mediators of CD44 activation on IL-1beta-induced inflammation in mouse chondrocytes. mRNA and related protein levels were measured for CD44, tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), matrix metalloproteinase-13 (MMP-13) and inducible nitric oxide synthase (iNOS) in chondrocytes, treated or untreated with IL-1beta, either with or without the addition of HYAL. The level of NF-kB activation was also assayed. CD44 mRNA expression was higher than controls in chondrocytes treated with IL-1beta. IL-1beta also induced NF-kB up-regulation and increased TNF-alpha, IL-6, MMP-13 and iNOS expression. Different effects resulted from HYAL treatment. Treatment of chondrocytes exposed to IL-1beta with HYAL synergistically increased the same parameters up-regulated by IL-1beta, while the same parameters were increased by HYAL in chondrocytes not exposed to IL-1beta but to a lesser extent. Specific CD44 blocking antibody and hyaluronan binding protein (HABP), which inhibit HA activity, were used to confirm CD44 to be the target of IL-1beta action through HA mediation. HA levels and molecular size further confirm the role of degraded HA. These findings suggest that IL-1beta exerts inflammatory activity via CD44 by the mediation of HA fragments derived from HA depolymerization.
Collapse
Affiliation(s)
- Giuseppe M Campo
- Department of Biochemical, Physiological and Nutritional Sciences, Section of Medical Chemistry, School of Medicine, University of Messina, Policlinico Universitario, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
29
|
Li Z, Potts-Kant EN, Garantziotis S, Foster WM, Hollingsworth JW. Hyaluronan signaling during ozone-induced lung injury requires TLR4, MyD88, and TIRAP. PLoS One 2011; 6:e27137. [PMID: 22073274 PMCID: PMC3208559 DOI: 10.1371/journal.pone.0027137] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022] Open
Abstract
Ozone exposure is associated with exacerbation of reactive airways disease. We have previously reported that the damage-associated molecular pattern, hyaluronan, is required for the complete biological response to ambient ozone and that hyaluronan fragments signal through toll-like receptor 4 (TLR4). In this study, we further investigated the role of TLR4 adaptors in ozone-induced airway hyperresponsiveness (AHR) and the direct response to hyaluronan fragments (HA). Using a murine model of AHR, C57BL/6J, TLR4-/-, MyD88-/-, and TIRAP-/- mice were characterized for AHR after exposure to either ozone (1 ppm × 3 h) or HA fragments. Animals were characterized for AHR with methacholine challenge, cellular inflammation, lung injury, and production of pro-inflammatory cytokines. Ozone-exposed C57BL/6J mice developed cellular inflammation, lung injury, pro-inflammatory cytokines, and AHR, while mice deficient in TLR4, MyD88 or TIRAP demonstrated both reduced AHR and reduced levels of pro-inflammatory cytokines including TNFα, IL-1β, MCP-1, IL-6 and KC. The level of hyaluronan was increased after inhalation of ozone in each strain of mice. Direct challenge of mice to hyaluronan resulted in AHR in C57BL/6J mice, but not in TLR4-/-, MyD88-/-, or TIRAP-/- mice. HA-induced cytokine production in wild-type mice was significantly reduced in TLR4-/-, MyD88-/-, or TIRAP-/- mice. In conclusion, our findings support that ozone-induced airway hyperresponsiveness is dependent on the HA-TLR4-MyD88-TIRAP signaling pathway.
Collapse
Affiliation(s)
- Zhuowei Li
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Erin N. Potts-Kant
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - W. Michael Foster
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - John W. Hollingsworth
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
30
|
Peden DB. The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev 2011; 242:91-105. [PMID: 21682740 DOI: 10.1111/j.1600-065x.2011.01035.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ozone (O(3)) and endotoxin are common environmental contaminants that cause asthma exacerbation. These pollutants have similar phenotype response characteristics, including induction of neutrophilic inflammation, changes in airway macrophage immunophenotypes, and ability to enhance response to inhaled allergen. Evoked phenotyping studies of volunteers exposed to O(3) and endotoxin were used to identify the response characteristics of volunteers to these pollutants. New studies support the hypotheses that similar innate immune and oxidant processes modulate response to these agents. These include TLR4 and inflammasome-mediated signaling and cytokine production. Innate immune responses are also impacted by oxidative stress. It is likely that continued discovery of common molecular processes which modulate response to these pollutants will occur. Understanding the pathways that modulate response to pollutants will also allow for discovery of genetic and epigenetic factors that regulate response to these pollutants and determine risk of disease exacerbation. Additionally, defining the mechanisms of response will allow rational selection of interventions to examine. Interventions focused on inhibition of Toll-like receptor 4 and inflammasome represent promising new approaches to preventing pollutant-induced asthma exacerbations. Such interventions include specific inhibitors of innate immunity and antioxidant therapies designed to counter the effects of pollutants on cell signaling.
Collapse
Affiliation(s)
- David B Peden
- Division of Pediatric Allergy, Immunology, Rheumatology and Infectious Diseases, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
31
|
Abstract
Ambient ozone is a criteria air pollutant that impacts both human morbidity and mortality. The effect of ozone inhalation includes both toxicity to lung tissue and alteration of the host immunologic response. The innate immune system facilitates immediate recognition of both foreign pathogens and tissue damage. Emerging evidence supports that ozone can modify the host innate immune response and that this response to inhaled ozone is dependent on genes of innate immunity. Improved understanding of the complex interaction between environmental ozone and host innate immunity will provide fundamental insight into the pathogenesis of inflammatory airways disease. We review the current evidence supporting that environmental ozone inhalation: (1) modifies cell types required for intact innate immunity, (2) is partially dependent on genes of innate immunity, (3) primes pulmonary innate immune responses to LPS, and (4) contributes to innate-adaptive immune system cross-talk.
Collapse
|