1
|
Hu C, Priceputu E, Cool M, Chrobak P, Bouchard N, Forestier C, Lowell CA, Bénichou S, Hanna Z, Royal V, Jolicoeur P. NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:702-724. [PMID: 36868467 PMCID: PMC10284032 DOI: 10.1016/j.ajpath.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Nathalie Bouchard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clara Forestier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Serge Bénichou
- Insitut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes and INSERM U1016, Paris, France
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Virginie Royal
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Quebec, Canada
| | - Paul Jolicoeur
- Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
HIV-1 Nef Induces Hck/Lyn-Dependent Expansion of Myeloid-Derived Suppressor Cells Associated with Elevated Interleukin-17/G-CSF Levels. J Virol 2021; 95:e0047121. [PMID: 34106001 PMCID: PMC8354241 DOI: 10.1128/jvi.00471-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) infection causes myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+) through largely unknown cellular and molecular pathways. The mouse cells thought to be equivalent to human CD14+ CD16+ cells are CD11b+ Gr1+ myeloid-derived suppressor cells (MDSC). We used HIV transgenic (Tg) mouse models to study MDSC, namely, CD4C/Nef Tg mice expressing nef in dendritic cells (DC), pDC, CD4+ T, and other mature and immature myeloid cells and CD11c/Nef Tg mice with a more restricted expression, mainly in DC and pDC. Both Tg strains showed expansion of granulocytic and CD11b+ Gr1low/int cells with MDSC characteristics. Fetal liver cell transplantation revealed that this expansion was stroma-independent and abrogated in mixed Tg/non-Tg 50% chimera. Tg bone marrow (BM) erythroid progenitors were decreased and myeloid precursors increased, suggesting an aberrant differentiation likely driving CD11b+ Gr1+ cell expansion, apparently cell autonomously in CD4C/Nef Tg mice and likely through a bystander effect in CD11c/Nef Tg mice. Hck was activated in Tg spleen, and Nef-mediated CD11b+ Gr1+ cell expansion was abrogated in Hck/Lyn-deficient Nef Tg mice, indicating a requirement of Hck/Lyn for this Nef function. IL-17 and granulocyte colony-stimulating factor (G-CSF) were elevated in Nef Tg mice. Increased G-CSF levels were normalized in Tg mice treated with anti-IL-17 antibodies. Therefore, Nef expression in myeloid precursors causes severe BM failure, apparently cell autonomously. More cell-restricted expression of Nef in DC and pDC appears sufficient to induce BM differentiation impairment, granulopoiesis, and expansion of MDSC at the expense of erythroid maturation, with IL-17→G-CSF as one likely bystander contributor. IMPORTANCE HIV-1 and SIV infection often lead to myelodysplasia, anemia, and accumulation of inflammatory monocytes (CD14+ CD16+), with the latter likely involved in neuroAIDS. We found that some transgenic (Tg) mouse models of AIDS also develop accumulation of mature and immature cells of the granulocytic lineage, decreased erythroid precursors, and expansion of MDSC (equivalent to human CD14+ CD16+ cells). We identified Nef as being responsible for these phenotypes, and its expression in mouse DC appears sufficient for their development through a bystander mechanism. Nef expression in myeloid progenitors may also favor myeloid cell expansion, likely in a cell-autonomous way. Hck/Lyn is required for the Nef-mediated accumulation of myeloid cells. Finally, we identified G-CSF under the control of IL-17 as one bystander mediator of MDSC expansion. Our findings provide a framework to determine whether the Nef>Hck/Lyn>IL-17>G-CSF pathway is involved in human AIDS and whether it represents a valid therapeutic target.
Collapse
|
3
|
Padjasek M, Kocyła A, Kluska K, Kerber O, Tran JB, Krężel A. Structural zinc binding sites shaped for greater works: Structure-function relations in classical zinc finger, hook and clasp domains. J Inorg Biochem 2020; 204:110955. [DOI: 10.1016/j.jinorgbio.2019.110955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/08/2019] [Accepted: 12/01/2019] [Indexed: 12/12/2022]
|
4
|
Zeidan N, Damen H, Roy DC, Dave VP. Critical Role for TCR Signal Strength and MHC Specificity in ThPOK-Induced CD4 Helper Lineage Choice. THE JOURNAL OF IMMUNOLOGY 2019; 202:3211-3225. [PMID: 31036767 DOI: 10.4049/jimmunol.1801464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/26/2019] [Indexed: 01/08/2023]
Abstract
Sustained TCR signaling is critical for ThPOK induction in MHC class II (MHCII)-signaled thymocytes leading to the CD4 helper lineage commitment. ThPOK suppresses the cytotoxic program in the signaled thymocytes and is shown to be necessary and sufficient for the CD4 helper lineage choice. Accordingly, loss and gain of ThPOK function redirects MHCII- and MHC class I (MHCI)-signaled thymocytes into the CD8 cytotoxic and CD4 helper lineage, respectively. However, the impact of a defined ThPOK level on the CD4 helper lineage choice of MHCII- and MHCI-specific thymocytes and the role of TCR signaling in this process is not evaluated. Equally, it is not clear if suppression of the cytotoxic program by ThPOK is sufficient in redirecting MHCI-restricted thymocytes into the CD4 helper lineage. In this study, we have investigated CD8 to CD4 helper lineage redirection in three independent ThPOK overexpressing transgenic mouse lines. Our analysis shows that one of the transgenic lines, despite overexpressing ThPOK compared with wild-type CD4 mature T cells and compromising cytotoxic program, failed to redirect all MHCI-signaled thymocytes into the CD4 helper lineage, resulting in the continued presence of CD8+ mature T cells and the generation of a large number of double negative mature T cells. Critically, the same ThPOK transgene completely restored the CD4 helper lineage commitment of MHCII-specific Thpok -/- thymocytes. Importantly, augmenting TCR signaling significantly enhanced the ThPOK-mediated CD4 helper lineage choice of MHCI-specific thymocytes but was still substantially less efficient than that of MHCII-specific thymocytes expressing the same amount of ThPOK. Together, these data suggest that the ThPOK-induced CD4 helper lineage commitment is strongly influenced by TCR signal strength and MHC specificity of developing thymocytes.
Collapse
Affiliation(s)
- Nabil Zeidan
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| | - Hassan Damen
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada
| | - Denis-Claude Roy
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada.,Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Vibhuti P Dave
- Département d'Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada; and
| |
Collapse
|
5
|
Chen Y, Meng F, Wang B, He L, Liu Y, Liu Z. Dock2 in the development of inflammation and cancer. Eur J Immunol 2018; 48:915-922. [PMID: 29509960 DOI: 10.1002/eji.201747157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 02/15/2018] [Accepted: 02/28/2018] [Indexed: 01/21/2023]
Abstract
An atypical guanine exchange factor, Dock2 is specifically expressed in hematopoietic cells and regulates activation and migration of immune cells through activating Ras-related C3 botulinum toxin substrate (Rac). Dock2 was shown to be critical in the development of various inflammatory diseases, including allergic diseases, HIV infection, and graft rejection in organ transplantation. DOCK2 mutation in infants was recently identified to be associated with T and B cell combined immunodeficiency. Furthermore, Dock2 is involved in host protection during enteric bacterial infection and is also associated with the proliferation of cancer cells. It was also shown that patients with digestive tract cancer had high frequency mutation of DOCK2. This review summarizes the latest research progresses on the role of Dock2 for the development of various inflammatory diseases and cancers, and discusses the potential application of Dock2 modulators for patient treatment.
Collapse
Affiliation(s)
- Yayun Chen
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fan Meng
- Southern Medical University, Guangzhou, Guangdong, China.,Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bingyu Wang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Liangmei He
- The First Affiliated Hospital, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yangbin Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zhiping Liu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China.,Ganzhou Cancer Precision Medicine Engineering Research Center, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
de Repentigny L, Goupil M, Jolicoeur P. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene. Pathogens 2015; 4:406-21. [PMID: 26110288 PMCID: PMC4493482 DOI: 10.3390/pathogens4020406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/13/2015] [Accepted: 06/16/2015] [Indexed: 01/07/2023] Open
Abstract
IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC). Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.
Collapse
Affiliation(s)
- Louis de Repentigny
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Mathieu Goupil
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, PQ H3C 3J7, Canada.
| | - Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, 110, avenue des Pins Ouest, Montreal, PQ H2W 1R7, Canada.
| |
Collapse
|
7
|
Abstract
Macrophages are motile leukocytes, targeted by HIV-1, thought to play a critical role in host dissemination of the virus. However, whether infection impacts their migration capacity remains unknown. We show that 2-dimensional migration and the 3-dimensional (3D) amoeboid migration mode of HIV-1-infected human monocyte-derived macrophages were inhibited, whereas the 3D mesenchymal migration was enhanced. The viral protein Nef was necessary and sufficient for all HIV-1-mediated effects on migration. In Nef transgenic mice, tissue infiltration of macrophages was increased in a tumor model and in several tissues at steady state, suggesting a dominant role for mesenchymal migration in vivo. The mesenchymal motility involves matrix proteolysis and podosomes, cell structures constitutive of monocyte-derived cells. Focusing on the mechanisms used by HIV-1 Nef to control the mesenchymal migration, we show that the stability, size, and proteolytic function of podosomes are increased via the phagocyte-specific kinase Hck and Wiskott-Aldrich syndrome protein (WASP), 2 major regulators of podosomes. In conclusion, HIV-1 reprograms macrophage migration, which likely explains macrophage accumulation in several patient tissues, which is a key step for virus spreading and pathogenesis. Moreover, Nef points out podosomes and the Hck/WASP signaling pathway as good candidates to control tissue infiltration of macrophages, a detrimental phenomenon in several diseases.
Collapse
|
8
|
Goupil M, Cousineau-Côté V, Aumont F, Sénéchal S, Gaboury L, Hanna Z, Jolicoeur P, de Repentigny L. Defective IL-17- and IL-22-dependent mucosal host response to Candida albicans determines susceptibility to oral candidiasis in mice expressing the HIV-1 transgene. BMC Immunol 2014; 15:49. [PMID: 25344377 PMCID: PMC4213580 DOI: 10.1186/s12865-014-0049-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The tissue-signaling cytokines IL-17 and IL-22 are critical to host defense against oral Candida albicans infection, by their induction of oral antimicrobial peptide expression and recruitment of neutrophils. Mucosal Th17 cells which produce these cytokines are preferentially depleted in HIV-infected patients. Here, we tested the hypothesis that defective IL-17- and IL-22-dependent host responses to C. albicans determine the phenotype of susceptibility to oropharyngeal candidiasis (OPC) in transgenic (Tg) mice expressing HIV-1. RESULTS Naïve CD4+ T-cells and the differentiated Th1, Th2, Th17, Th1Th17 and Treg lineages were all profoundly depleted in cervical lymph nodes (CLNs) of these Tg mice. However, naive CD4+ cells from Tg mice maintained the capacity to differentiate into these lineages in response to polarizing cytokines in vitro. Expression of Il17, Il22, S100a8 and Ccl20 was enhanced in oral mucosal tissue of non-Tg, but not of Tg mice, after oral infection with C. albicans. Treatment of infected Tg mice with the combination of IL-17 and IL-22, but not IL-17 or Il-22 alone, significantly reduced oral burdens of C. albicans and abundance of Candida hyphae in the epithelium of tongues of infected Tg mice, and restored the ability of the Tg mice to up-regulate expression of S100a8 and Ccl20 in response to C. albicans infection. CONCLUSIONS These findings demonstrate that defective IL-17- and IL-22-dependent induction of innate mucosal immunity to C. albicans is central to the phenotype of susceptibility to OPC in these HIV transgenic mice.
Collapse
Affiliation(s)
- Mathieu Goupil
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Vincent Cousineau-Côté
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Francine Aumont
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Serge Sénéchal
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| | - Louis Gaboury
- Pathology and Cell Biology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
- Histology and Molecular Pathology research unit, Institute for Research in Immunology and Cancer, C.P. 6128, succursale Centre-Ville, Montreal, QC, H3C 3J7, Canada.
| | - Zaher Hanna
- Medicine, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| | - Paul Jolicoeur
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| | - Louis de Repentigny
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, University of Montreal, C.P. 6128, succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada.
| |
Collapse
|
9
|
Chandrasekaran P, Moore V, Buckley M, Spurrier J, Kehrl JH, Venkatesan S. HIV-1 Nef down-modulates C-C and C-X-C chemokine receptors via ubiquitin and ubiquitin-independent mechanism. PLoS One 2014; 9:e86998. [PMID: 24489825 PMCID: PMC3906104 DOI: 10.1371/journal.pone.0086998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/16/2013] [Indexed: 12/29/2022] Open
Abstract
Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV) encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs). Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1) degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.
Collapse
Affiliation(s)
- Prabha Chandrasekaran
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Victoria Moore
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Monica Buckley
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Spurrier
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John H. Kehrl
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sundararajan Venkatesan
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Chrobak P, Afkhami S, Priceputu E, Poudrier J, Meunier C, Hanna Z, Sparwasser T, Jolicoeur P. HIV Nef Expression Favors the Relative Preservation of CD4+ T Regulatory Cells That Retain Some Important Suppressive Functions. THE JOURNAL OF IMMUNOLOGY 2014; 192:1681-92. [DOI: 10.4049/jimmunol.1203272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Van Nuffel A, Ariën KK, Stove V, Schindler M, O'Neill E, Schmökel J, Van de Walle I, Naessens E, Vanderstraeten H, Van Landeghem K, Taghon T, Pulkkinen K, Saksela K, Garcia JV, Fackler OT, Kirchhoff F, Verhasselt B. Primate lentiviral Nef proteins deregulate T-cell development by multiple mechanisms. Retrovirology 2013; 10:137. [PMID: 24237970 PMCID: PMC3906981 DOI: 10.1186/1742-4690-10-137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/28/2013] [Indexed: 01/21/2023] Open
Abstract
Background A nef gene is present in all primate lentiviral genomes and is important for high viral loads and progression to AIDS in human or experimental macaque hosts of HIV or SIV, respectively. In these hosts, infection of the thymus results in a decreased output of naive T cells that may contribute to the development of immunodeficiency. We have previously shown that HIV-1 subtype B Nef proteins can block human T-cell development. However, the underlying mechanism(s) and the conservation of this Nef function between different groups of HIV and SIV remained to be determined. Results We investigated whether reduction of thymic output is a conserved function of highly divergent lentiviral Nef proteins including those from both types of human immunodeficiency viruses (HIV-1 and HIV-2), their direct simian counterparts (SIVcpz, SIVgor and SIVsmm, respectively), and some additional SIV strains. We found that expression of most of these nef alleles in thymocyte progenitors impaired T-cell development and reduced thymic output. For HIV-1 Nef, binding to active p21 protein (Cdc42/Rac)-activated kinase (PAK2) was a major determinant of this function. In contrast, selective disruption of PAK2 binding did not eliminate the effect on T-cell development of SIVmac239 Nef, as was shown by expressing mutants in a newly discovered PAK2 activating structural motif (PASM) constituted by residues I117, H121, T218 and Y221, as well as previously described mutants. Rather, down-modulation of cell surface CD3 was sufficient for reduced thymic output by SIVmac Nef, while other functions of SIV Nefs contributed. Conclusions Our results indicate that primate lentiviral Nef proteins impair development of thymocyte precursors into T cells in multiple ways. The interaction of HIV-1 Nef with active PAK2 by HIV-1 seem to be most detrimental, and downregulation of CD3 by HIV-2 and most SIV Nef proteins sufficient for reduced thymic output. Since the reduction of thymic output by Nef is a conserved property of divergent lentiviruses, it is likely to be relevant for peripheral T-cell depletion in poorly adapted primate lentiviral infections.
Collapse
Affiliation(s)
- Anouk Van Nuffel
- Department of Clinical Chemistry, Microbiology, and Immunology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ahmed Rahim MM, Chrobak P, Priceputu E, Hanna Z, Jolicoeur P. Normal development and function but impaired memory phenotype of CD8+ T cells in transgenic mice expressing HIV-1 Nef in its natural target cells. Virology 2013; 438:84-97. [DOI: 10.1016/j.virol.2013.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/08/2012] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
13
|
Chandrasekaran P, Buckley M, Moore V, Wang LQ, Kehrl JH, Venkatesan S. HIV-1 Nef impairs heterotrimeric G-protein signaling by targeting Gα(i2) for degradation through ubiquitination. J Biol Chem 2012; 287:41481-98. [PMID: 23071112 DOI: 10.1074/jbc.m112.361782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HIV Nef protein is an important pathogenic factor that modulates cell surface receptor trafficking and impairs cell motility, presumably by interfering at multiple steps with chemotactic receptor signaling. Here, we report that a dominant effect of Nef is to trigger AIP4 E3 ligase-mediated Gα(i2) ubiquitination, which leads to Gα(i2) endolysosomal sequestration and destruction. The loss of the Gα(i2) subunit was demonstrable in many cell types in the context of gene transfection, HIV infection, or Nef protein transduction. Nef directly interacts with Gα(i2) and ternary complexes containing AIP4, Nef, and Gα(i2) form. A substantial reversal of Gα(i2) loss and a partial recovery of impaired chemotaxis occurred following siRNA knockdown of AIP4 or NEDD4 or by inhibiting dynamin. The N-terminal myristoyl group, (62)EEEE(65) motif, and (72)PXXP(75) motif of Nef are critical for this effect to occur. Nef expression does not affect a Gq(i5) chimera where the five C-terminal residues of Gq are replaced with those of Gα(i2). Lysine at position 296 of Gα(i2) was identified as the critical determinant of Nef-induced degradation. By specifically degrading Gα(i2), Nef directly subverts leukocyte migration and homing. Impaired trafficking and homing of HIV Nef-expressing lymphocytes probably contributes to early immune dysfunction following HIV infection.
Collapse
Affiliation(s)
- Prabha Chandrasekaran
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.
Collapse
|