1
|
Wang Y, Jiang Y, Wang J, Li S, Jia X, Xiao X, Sun W, Wang P, Zhang Q. Retinopathy as an initial sign of hereditary immunological diseases: report of six families and challenges in eye clinic. Front Immunol 2023; 14:1239886. [PMID: 37711606 PMCID: PMC10498122 DOI: 10.3389/fimmu.2023.1239886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Retinal degenerative or inflammatory changes may occur with hereditary immunological disorders (HID) due to variants in approximately 20 genes. This study aimed to investigate if such retinopathy may present as an initial sign of immunological disorders in eye clinic. Methods The variants in the 20 genes were selected from in-house exome sequencing data from 10,530 individuals with different eye conditions. Potential pathogenic variants were assessed by multistep bioinformatic analysis. Pathogenic variants were defined according to the ACMG/AMP criteria and confirmed by Sanger sequencing, co-segregation analysis, and consistency with related phenotypes. Ocular clinical data were thoroughly reviewed, especially fundus changes. Results A total of seven pathogenic variants in four of the 20 genes were detected in six probands from six families, including three with hemizygous nonsense variants p.(Q308*), p.(Q416*), and p.(R550*) in MSN, one with homozygous nonsense variants p.(R257*) in AIRE, one with compound heterozygous nonsense variants p.(R176*) and p.(T902*) in LAMB2, and one with a known c.1222T>C (p.W408R) heterozygous variant in CBL. Ocular presentation, as the initial signs of the diseases, was mainly retinopathy mimicking other forms of hereditary retinal degeneration, including exudative vitreoretinopathy in the three patients with MSN variants or tapetoretinal degeneration in the other three patients. Neither extraocular symptoms nor extraocular manifestations were recorded at the time of visit to our eye clinic. However, of the 19 families in the literature with retinopathy caused by variants in these four genes, only one family with an AIRE homozygous variant had retinopathy as an initial symptom, while the other 18 families had systemic abnormalities that preceded retinopathy. Discussion This study, for the first time, identified six unrelated patients with retinopathy as their initial and only presenting sign of HID, contrary to the previous reports where retinopathy was the accompanying sign of systemic HID. Recognizing such phenotype of HID may facilitate the clinical care of these patients. Follow-up visits to such patients and additional studies are expected to validate and confirm our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
2
|
Song J, Anderson W, Hu A, Obata-Ninomiya K, Ziegler SF, Rawlings DJ, Buckner JH. CBLBDeficiency in Human CD4 +T Cells Results in Resistance to T Regulatory Suppression through Multiple Mechanisms. THE JOURNAL OF IMMUNOLOGY 2022; 209:1260-1271. [DOI: 10.4049/jimmunol.2200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/16/2022] [Indexed: 11/06/2022]
|
3
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Janine Schlöder,
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Franz-Joseph Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn Wieschendorf
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Han S, Liu ZQ, Chung DC, Paul MS, Garcia-Batres CR, Sayad A, Elford AR, Gold MJ, Grimshaw N, Ohashi PS. Overproduction of IFNγ by Cbl-b-Deficient CD8+ T Cells Provides Resistance against Regulatory T Cells and Induces Potent Antitumor Immunity. Cancer Immunol Res 2022; 10:437-452. [PMID: 35181779 PMCID: PMC9662906 DOI: 10.1158/2326-6066.cir-20-0973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
Abstract
Regulatory T cells (Treg) are an integral component of the adaptive immune system that negatively affect antitumor immunity. Here, we investigated the role of the E3 ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) in establishing CD8+ T-cell resistance to Treg-mediated suppression to enhance antitumor immunity. Transcriptomic analyses suggested that Cbl-b regulates pathways associated with cytokine signaling and cellular proliferation. We showed that the hypersecretion of IFNγ by Cbl-b-deficient CD8+ T cells selectively attenuated CD8+ T-cell suppression by Tregs. Although IFNγ production by Cbl-b-deficient T cells contributed to phenotypic alterations in Tregs, the cytokine did not attenuate the suppressive function of Tregs. Instead, IFNγ had a profound effect on CD8+ T cells by directly upregulating interferon-stimulated genes and modulating T-cell activation. In murine models of adoptive T-cell therapy, Cbl-b-deficient T cells elicited superior antitumor immune response. Furthermore, Cbl-b-deficient CD8+ T cells were less susceptible to suppression by Tregs in the tumor through the effects of IFNγ. Collectively, this study demonstrates that the hypersecretion of IFNγ serves as a key mechanism by which Cbl-b-deficient CD8+ T cells are rendered resistant to Tregs. See related Spotlight by Wolf and Baier, p. 370.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Douglas C. Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | - Michael St. Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada
| | | | - Azin Sayad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R. Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Matthew J. Gold
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Natasha Grimshaw
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, Ontario, Canada.,Corresponding Author: Pamela S. Ohashi, Princess Margaret Cancer Centre, 610 University Avenue, 9-406, Toronto ON M5G 2M9, Canada. Phone: 416-946-4501 ×3689; E-mail:
| |
Collapse
|
5
|
Jafari D, Mousavi MJ, Keshavarz Shahbaz S, Jafarzadeh L, Tahmasebi S, Spoor J, Esmaeilzadeh A. E3 ubiquitin ligase Casitas B lineage lymphoma-b and its potential therapeutic implications for immunotherapy. Clin Exp Immunol 2021; 204:14-31. [PMID: 33306199 DOI: 10.1111/cei.13560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
The distinction of self from non-self is crucial to prevent autoreactivity and ensure protection from infectious agents and tumors. Maintaining the balance between immunity and tolerance of immune cells is strongly controlled by several sophisticated regulatory mechanisms of the immune system. Among these, the E3 ligase ubiquitin Casitas B cell lymphoma-b (Cbl-b) is a newly identified component in the ubiquitin-dependent protein degradation system, which is thought to be an important negative regulator of immune cells. An update on the current knowledge and new concepts of the relevant immune homeostasis program co-ordinated by Cbl-b in different cell populations could pave the way for future immunomodulatory therapies of various diseases, such as autoimmune and allergic diseases, infections, cancers and other immunopathological conditions. In the present review, the latest findings are comprehensively summarized on the molecular structural basis of Cbl-b and the suppressive signaling mechanisms of Cbl-b in physiological and pathological immune responses, as well as its emerging potential therapeutic implications for immunotherapy in animal models and human diseases.
Collapse
Affiliation(s)
- D Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran
| | - M J Mousavi
- Department of Hematology, Faculty of Allied medicine, Bushehr University of Medical Sciences, Bushehr, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - L Jafarzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - S Tahmasebi
- Department of Immunology, School of public health, Tehran University of Medical Sciences, Tehran, Iran
| | - J Spoor
- Erasmus University Medical Centre, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - A Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Immunotherapy Research and Technology Group, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Hu X, Wang J, Chu M, Liu Y, Wang ZW, Zhu X. Emerging Role of Ubiquitination in the Regulation of PD-1/PD-L1 in Cancer Immunotherapy. Mol Ther 2021; 29:908-919. [PMID: 33388422 DOI: 10.1016/j.ymthe.2020.12.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
A growing amount of evidence suggests that ubiquitination and deubiquitination of programmed death 1 (PD-1)/programmed death-ligand 1 (PD-L1) play crucial roles in the regulation of PD-1 and PD-L1 protein stabilization and dynamics. PD-1/PD-L1 is a major coinhibitory checkpoint pathway that modulates immune escape in cancer patients, and its engagement and inhibition has significantly reshaped the landscape of tumor clearance. The abnormal ubiquitination and deubiquitination of PD-1/PD-L1 influence PD-1/PD-L1-mediated immunosuppression. In this review, we describe the ubiquitination- and deubiquitination-mediated modulation of PD-1/PD-L1 signaling through a variety of E3 ligases and deubiquitinating enzymes (DUBs). Moreover, we briefly expound on the anticancer potential of some agents that target related E3 ligases, which further modulate the ubiquitination of PD-1/PD-L1 in cancers. Therefore, this review reveals the development of a highly promising therapeutic approach for cancer immunotherapy by targeting PD-1/PD-L1 ubiquitination.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Man Chu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Zhi-Wei Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
7
|
Han S, Chung DC, St Paul M, Liu ZQ, Garcia-Batres C, Elford AR, Tran CW, Chapatte L, Ohashi PS. Overproduction of IL-2 by Cbl-b deficient CD4 + T cells provides resistance against regulatory T cells. Oncoimmunology 2020; 9:1737368. [PMID: 32313719 PMCID: PMC7153846 DOI: 10.1080/2162402x.2020.1737368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells are integral to the regulation of autoimmune and anti-tumor immune responses. However, several studies have suggested that changes in T cell signaling networks can result in T cells that are resistant to the suppressive effects of regulatory T cells. Here, we investigated the role of Cbl-b, an E3 ubiquitin ligase, in establishing resistance to Treg-mediated suppression. We found that the absence of Cbl-b, a negative regulator of multiple TCR signaling pathways, rendered T cells impartial to Treg suppression by regulating cytokine networks leading to improved anti-tumor immunity despite the presence of Treg cells in the tumor. Specifically, Cbl-b KO CD4+FoxP3− T cells hyper-produced IL-2 and together with IL-2 Rα upregulation served as an essential mechanism to escape suppression by Treg cells. Furthermore, we report that IL-2 serves as the central molecule required for cytokine-induced Treg resistance. Collectively our data emphasize the role of IL-2 as a key mechanism that renders CD4+ T cells resistant to the inhibitory effects of Treg cells.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Douglas C Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Carlos Garcia-Batres
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alisha R Elford
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Charles W Tran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Laurence Chapatte
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Baloghova N, Lidak T, Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-β, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes (Basel) 2019; 10:genes10100815. [PMID: 31623112 PMCID: PMC6826584 DOI: 10.3390/genes10100815] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/20/2022] Open
Abstract
The Wnt, TGF-β, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-β, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-β, and Notch pathways and we summarized the knowledge gained from related mouse models.
Collapse
Affiliation(s)
- Nikol Baloghova
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Tomas Lidak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| | - Lukas Cermak
- Laboratory of Cancer Biology, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, 252 42 Vestec, Czech Republic.
| |
Collapse
|
9
|
Han S, Toker A, Liu ZQ, Ohashi PS. Turning the Tide Against Regulatory T Cells. Front Oncol 2019; 9:279. [PMID: 31058083 PMCID: PMC6477083 DOI: 10.3389/fonc.2019.00279] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Regulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells. To date, numerous strategies have been proposed to limit the suppressive effects of Treg cells, including Treg cell neutralization, destabilizing Treg cells and rendering T cells resistant to Treg cells. Here, we focus on key mechanisms which render T cells resistant to the suppressive effects of Treg cells. Lastly, we also examine current limitations and caveats of overcoming the inhibitory activity of Treg cells, and briefly discuss the potential to target Treg cell resistance in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- SeongJun Han
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Aras Toker
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
| | - Zhe Qi Liu
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre, Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON, Canada
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Peer S, Cappellano G, Hermann-Kleiter N, Albrecht-Schgoer K, Hinterleitner R, Baier G, Gruber T. Regulation of Lymphatic GM-CSF Expression by the E3 Ubiquitin Ligase Cbl-b. Front Immunol 2018; 9:2311. [PMID: 30349541 PMCID: PMC6186797 DOI: 10.3389/fimmu.2018.02311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies as well as lymphatic expression analyses have linked both Cbl-b and GM-CSF to human multiple sclerosis as well as other autoimmune diseases. Both Cbl-b and GM-CSF have been shown to play a prominent role in the development of murine encephalomyelitis; however, no functional connection between the two has yet been established. In this study, we show that Cblb knockout mice demonstrated significantly exacerbated severity of experimental autoimmune encephalomyelitis (EAE), augmented T cell infiltration into the central nervous system (CNS) and strongly increased production of GM-CSF in T cells in vitro and in vivo.GM-CSF neutralization demonstrated that the increased susceptibility of Cblb−/− mice to EAE was dependent on GM-CSF. Mechanistically, p50 binding to the GM-CSF promoter and the IL-3/GM-CSF enhancer element “CNSa” was strongly increased in nuclear extracts from Cbl-b-deficient T cells. This study suggests that Cbl-b limits autoimmunity by preventing the pathogenic effects of GM-CSF overproduction in T cells.
Collapse
Affiliation(s)
- Sebastian Peer
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Giuseppe Cappellano
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Karin Albrecht-Schgoer
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Reinhard Hinterleitner
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gottfried Baier
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Division of Translational Cell Genetics, Department for Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Peer S, Baier G, Gruber T. Cblb-deficient T cells are less susceptible to PD-L1-mediated inhibition. Oncotarget 2018; 8:41841-41853. [PMID: 28611299 PMCID: PMC5522032 DOI: 10.18632/oncotarget.18360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/22/2017] [Indexed: 12/13/2022] Open
Abstract
Modulation of the immune system for the treatment of primary and metastatic tumors has been a goal of cancer research for many years. The E3 ubiquitin ligase Cbl-b has been established as an intracellular checkpoint that limits T cell activation, critically contributing to the maintenance of self-tolerance. Furthermore, it has been shown that Cblb deficiency enhances T cell effector functions towards tumors. Blockade of the immune checkpoints CTLA-4 and PD-1/PD-L1 has recently emerged as a promising strategy in the development of effective cancer immune therapies. Therefore, we explored the concept of targeting different checkpoints concomitantly. Interestingly, we observed that CTLA-4 but not PD-L1 based immunotherapy selectively enhanced the anti-tumor phenotype of Cblb-deficient mice. In agreement with the in vivo results, in vitro experiments showed that Cblb−/− T cells were less susceptible to PD-L1-mediated suppression of T cell proliferation and IFNγ secretion. Taken together, our findings reveal a so far unappreciated function of Cbl-b in the regulation of PD-1 signaling in murine T cells.
Collapse
Affiliation(s)
- Sebastian Peer
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Division of Translational Cell Genetics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Down-regulation of TYK2, CBLB and LMP7 genes expression in relapsing-remitting multiple sclerosis patients treated with interferon-beta. J Neuroimmunol 2018; 314:24-29. [PMID: 29157944 DOI: 10.1016/j.jneuroim.2017.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/21/2022]
Abstract
This study aimed to examine the expression of TYK2, CBLB and LMP7 genes at both mRNA and protein levels in relapsing-remitting MS (RRMS) patients in compare with healthy controls. Seventy-eight RRMS patients treated with IFNβ-1a and 79 age- and ethnic-matched healthy subjects were studied. The mRNA expression levels of TYK2, CBLB and LMP7 in PBMCs were quantified by real-time PCR and plasma concentrations of three molecules were measured by ELISA. Results were compared between patients and controls, IFNβ-responders and non-responders. Forty-nine of 78 patients were classified as IFNβ-responders and 29 cases were non-responders. Significantly down-regulated expression of TYK2, CBLB and LMP7 genes was found in the patients group versus controls (P<0.001). Decreased plasma levels of three molecules were observed in patients compared to controls (P<0.001). IFNβ-responders had significantly higher expressions for CBLB (P=0.001) and LMP7 (P=0.02) than non-responders. Also, we observed increased expressions of LMP7 (P=0.39) and CBLB (P=0.02) genes in patients under 30y and increased expression of TYK2 in patients >40years (P=0.002). Our results suggest that expression analysis of TYK2, CBLB and LMP7 genes could be useful for evaluation of T cells immunity and clinical response to IFNβ-therapy in RRMS patients.
Collapse
|
13
|
Tran CW, Saibil SD, Le Bihan T, Hamilton SR, Lang KS, You H, Lin AE, Garza KM, Elford AR, Tai K, Parsons ME, Wigmore K, Vainberg MG, Penninger JM, Woodgett JR, Mak TW, Ohashi PS. Glycogen Synthase Kinase-3 Modulates Cbl-b and Constrains T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2017; 199:4056-4065. [DOI: 10.4049/jimmunol.1600396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/05/2017] [Indexed: 11/19/2022]
|
14
|
Romo-Tena J, Rajme-López S, Aparicio-Vera L, Alcocer-Varela J, Gómez-Martín D. Lys63-polyubiquitination by the E3 ligase casitas B-lineage lymphoma-b (Cbl-b) modulates peripheral regulatory T cell tolerance in patients with systemic lupus erythematosus. Clin Exp Immunol 2017; 191:42-49. [PMID: 28940360 DOI: 10.1111/cei.13054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 09/14/2017] [Indexed: 11/28/2022] Open
Abstract
T cells from systemic lupus erythematosus (SLE) patients display a wide array of anomalies in peripheral immune tolerance mechanisms. The role of ubiquitin ligases such as Cbl-b has been described recently in these phenomena. However, its role in resistance to suppression phenotype in SLE has not been characterized, which was the aim of the present study. Thirty SLE patients (20 with active disease and 10 with complete remission) and 30 age- and sex-matched healthy controls were recruited. Effector (CD4+ CD25- ) and regulatory (CD4+ CD25+ ) T cells (Tregs ) were purified from peripheral blood mononuclear cells (PBMCs) by magnetic selection. Suppression assays were performed in autologous and allogeneic co-cultures and analysed by a flow cytometry assay. Cbl-b expression and lysine-63 (K63)-specific polyubiquitination profile were assessed by Western blotting. We found a defective Cbl-b expression in Tregs from lupus patients in contrast to healthy controls (1·1 ± 0·9 versus 2·5 ± 1·8, P = 0·003), which was related with resistance to suppression (r = 0·633, P = 0·039). Moreover, this feature was associated with deficient K63 polyubiquitination substrates and enhanced expression of phosphorylated signal transducer and activation of transcription 3 (pSTAT-3) in Tregs from lupus patients. Our findings support that Cbl-b modulates resistance to suppression by regulating the K63 polyubiquitination profile in lupus Tregs . In addition, defective K63 polyubiquitination of STAT-3 is related to increased pSTAT-3 expression, and might promote the loss of suppressive capacity of Tregs in lupus patients.
Collapse
Affiliation(s)
- J Romo-Tena
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - S Rajme-López
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - L Aparicio-Vera
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - J Alcocer-Varela
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| | - D Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City, Mexico
| |
Collapse
|
15
|
Kempinska-Podhorodecka A, Milkiewicz M, Wasik U, Ligocka J, Zawadzki M, Krawczyk M, Milkiewicz P. Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. Int J Mol Sci 2017; 18:ijms18020289. [PMID: 28146070 PMCID: PMC5343825 DOI: 10.3390/ijms18020289] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
Primary biliary cholangitis (PBC) is an immune-mediated cholestatic disease. Vitamin D receptor (VDR)-dependent signaling constrains an inflammatory response by targeting the miRNA155-SOCS1 (suppressor of cytokine signaling 1) axis. The VDR-miRNA155-SOCS1 pathway was investigated in the context of the autoimmune response associated with PBC. Human liver tissues from non-cirrhotic PBC (n = 22), cirrhotic PBC (n = 22), cirrhotic primary sclerosing cholangitis (PSC, n = 13), controls (n = 23), and peripheral blood mononuclear cells (PBMC) obtained from PBC (n = 16) and PSC (n = 10) patients and healthy subjects (n = 11) were used for molecular analyses. VDR mRNA and protein expressions were substantially reduced in PBC livers (51% and 59%, respectively). Correspondingly, the decrease of SOCS1 protein expression in PBC livers, after normalization to a marker of lymphocytes and forkhead family transcriptional regulator box P3 (FOXP3, marker of Treg), was observed, and this phenomenon was accompanied by enhanced miRNA155 expression. In PSC livers, protein expressions of VDR and SOCS1 were comparable to the controls. However, in PBM cells, protein expressions of VDR and SOCS1 were considerably decreased in both PBC and PSC. We demonstrated that VDR/miRNA155-modulated SOCS1 expression is decreased in PBC which may lead to insufficient negative regulation of cytokine signaling. These findings suggest that the decreased VDR signaling in PBC could be of importance in the pathogenesis of PBC.
Collapse
MESH Headings
- Cholangitis, Sclerosing/etiology
- Cholangitis, Sclerosing/metabolism
- Cholangitis, Sclerosing/pathology
- Gene Expression Regulation
- Humans
- Immunohistochemistry
- Immunomodulation
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Liver Cirrhosis, Biliary/genetics
- Liver Cirrhosis, Biliary/metabolism
- Liver Cirrhosis, Biliary/pathology
- MicroRNAs/genetics
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/metabolism
- Signal Transduction
- Suppressor of Cytokine Signaling 1 Protein/genetics
- Suppressor of Cytokine Signaling 1 Protein/metabolism
Collapse
Affiliation(s)
| | - Malgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland.
| | - Urszula Wasik
- Department of Medical Biology, Pomeranian Medical University, 70-111 Szczecin, Poland.
| | - Joanna Ligocka
- Department of General Transplant and Liver Surgery, Medical University of Warsaw, 02-097 Warszawa, Poland.
| | - Michał Zawadzki
- Department of General Transplant and Liver Surgery, Medical University of Warsaw, 02-097 Warszawa, Poland.
| | - Marek Krawczyk
- Department of General Transplant and Liver Surgery, Medical University of Warsaw, 02-097 Warszawa, Poland.
| | - Piotr Milkiewicz
- Translation Medicine Group, Pomeranian Medical University, 70-111 Szczecin, Poland.
- Liver and Internal Medicine Unit, Medical University of Warsaw, 02-097 Warszawa, Poland.
| |
Collapse
|
16
|
Fujiwara M, Anstadt EJ, Clark RB. Cbl-b Deficiency Mediates Resistance to Programmed Death-Ligand 1/Programmed Death-1 Regulation. Front Immunol 2017; 8:42. [PMID: 28184224 PMCID: PMC5266705 DOI: 10.3389/fimmu.2017.00042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/11/2017] [Indexed: 01/22/2023] Open
Abstract
Casitas B-lineage lymphoma-b (Cbl-b) is an E3 ubiquitin ligase that negatively regulates T cell activation. Cbl-b−/− T cells are hyper-reactive and co-stimulation independent, and Cbl-b−/− mice demonstrate robust T cell and NK cell-mediated antitumor immunity. As a result of these murine studies, Cbl-b is considered a potential target for therapeutic manipulation in human cancer immunotherapy. The PD-L1/PD-1 pathway of immune regulation is presently an important therapeutic focus in tumor immunotherapy, and although Cbl-b−/− mice have been shown to be resistant to several immuno-regulatory mechanisms, the sensitivity of Cbl-b−/− mice to PD-L1-mediated suppression has not been reported. We now document that Cbl-b−/− T cells and NK cells are resistant to PD-L1/PD-1-mediated suppression. Using a PD-L1 fusion protein (PD-L1 Ig), this resistance is shown for both in vitro proliferative responses and IFN-γ production and is not associated with decreased PD-1 expression on Cbl-b−/− cells. In coculture studies, Cbl-b−/− CD8+, but not CD4+ T cells, diminish the PD-L1 Ig-mediated suppression of bystander naïve WT CD8+ T cells. Using an in vivo model of B16 melanoma in which numerous liver metastases develop in WT mice in a PD-1 dependent manner, Cbl-b−/− mice develop significantly fewer liver metastases without the administration of anti-PD-1 antibody. Overall, our findings identify a new mode of immuno-regulatory resistance associated with Cbl-b deficiency and suggest that resistance to PD-L1/PD-1-mediated suppression is a novel mechanism by which Cbl-b deficiency leads to enhanced antitumor immunity. Our results suggest that targeting Cbl-b in cancer immunotherapy offers the opportunity to simultaneously override numerous relevant “checkpoints,” including sensitivity to regulatory T cells, suppression by TGF-β, and immune regulation by both CTLA-4 and, as we now report, by the PD-L1/PD-1 pathway.
Collapse
Affiliation(s)
- Mai Fujiwara
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Emily J Anstadt
- Department of Immunology, University of Connecticut Health Center , Farmington, CT , USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
17
|
Anstadt EJ, Fujiwara M, Wasko N, Nichols F, Clark RB. TLR Tolerance as a Treatment for Central Nervous System Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2016; 197:2110-8. [PMID: 27503211 DOI: 10.4049/jimmunol.1600876] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The role of TLR signaling in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) is unclear. This role is especially controversial in models of adoptive transfer EAE in which no adjuvant and no TLR ligands are administered. We recently reported that a microbiome-derived TLR2 ligand, Lipid 654 (L654), is present in healthy human serum but significantly decreased in the serum of MS patients. This suggested that microbiome products that gain access to the systemic circulation, rather than being proinflammatory, may normally play an immune-regulatory role by maintaining a state of relative TLR tolerance. Therefore, a loss of microbiome-mediated TLR tolerance, as suggested by lower serum levels of L654, may play a role in the pathogenesis of MS. As proof of concept we asked whether administering low-level TLR2 ligands in adoptive transfer EAE induces TLR2 tolerance and attenuates disease. We administered low-level Pam2CSK4 or L654 to mice receiving encephalitogenic cells and in doing so induced both TLR2 tolerance and attenuation of EAE. Disease attenuation was accompanied in the CNS by a decrease in macrophage activation, a decrease in a specific proinflammatory macrophage population, and a decrease in Th17 cells. In addition, disease attenuation was associated with an increase in splenic type 1 regulatory T cells. Kinetic tolerance induction studies revealed a critical period for TLR2 involvement in adoptive transfer EAE. Overall, these results suggest that inducing TLR tolerance may offer a new approach to treating CNS autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Emily J Anstadt
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| | - Mai Fujiwara
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| | - Nicholas Wasko
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| | - Frank Nichols
- School of Dental Medicine, University of Connecticut School of Medicine, Farmington, CT 06032
| | - Robert B Clark
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06032; and
| |
Collapse
|
18
|
Mercadante ER, Lorenz UM. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression. Front Immunol 2016; 7:193. [PMID: 27242798 PMCID: PMC4870238 DOI: 10.3389/fimmu.2016.00193] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/02/2016] [Indexed: 01/10/2023] Open
Abstract
Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype.
Collapse
Affiliation(s)
- Emily R Mercadante
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| | - Ulrike M Lorenz
- Department of Microbiology Immunology and Cancer Biology, Beirne Carter Center for Immunology Research, University of Virginia , Charlottesville, VA , USA
| |
Collapse
|
19
|
Fujiwara M, Anstadt EJ, Khanna KM, Clark RB. Cbl-b-deficient mice express alterations in trafficking-related molecules but retain sensitivity to the multiple sclerosis therapeutic agent, FTY720. Clin Immunol 2015; 158:103-13. [PMID: 25829233 PMCID: PMC4420730 DOI: 10.1016/j.clim.2015.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
The variable response to therapy in multiple sclerosis (MS) suggests a need for personalized approaches based on individual genetic differences. GWAS have linked CBLB gene polymorphisms with MS and recent evidence demonstrated that these polymorphisms can be associated with abnormalities in T cell function and response to interferon-β therapy. Cbl-b is an E3 ubiquitin ligase that regulates T cell activation and Cbl-b-deficient (Cbl-b(-/-)) mice show T cell abnormalities described in MS patients. We now show that Cbl-b(-/-) T cells demonstrate significant lymph node trafficking abnormalities. We thus asked whether the MS-approved drug, FTY720, postulated to trap T cells in lymphoid tissues, is less effective in the context of Cbl-b dysfunction. We now report that FTY720 significantly inhibits EAE in Cbl-b(-/-) mice. Our results newly document a role for Cbl-b in T cell trafficking but suggest nevertheless that MS patients with Cbl-b abnormalities may still be excellent candidates for FTY720 treatment.
Collapse
Affiliation(s)
- Mai Fujiwara
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Emily J Anstadt
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Kamal M Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Robert B Clark
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06032, USA; Department of Medicine, University of Connecticut Health Center, Farmington, CT 06032, USA.
| |
Collapse
|
20
|
Webb GJ, Adams DH. Modeling idiosyncrasy: a novel animal model of drug-induced liver injury. Hepatology 2015; 61:1124-6. [PMID: 25418789 DOI: 10.1002/hep.27617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/17/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Gwilym J Webb
- Centre for Liver Research & NIHR BRU in Liver Disease, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
21
|
Lutz-Nicoladoni C, Wolf D, Sopper S. Modulation of Immune Cell Functions by the E3 Ligase Cbl-b. Front Oncol 2015; 5:58. [PMID: 25815272 PMCID: PMC4356231 DOI: 10.3389/fonc.2015.00058] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/24/2015] [Indexed: 01/10/2023] Open
Abstract
Maintenance of immunological tolerance is a critical hallmark of the immune system. Several signaling checkpoints necessary to balance activating and inhibitory input to immune cells have been described so far, among which the E3 ligase Cbl-b appears to be a central player. Cbl-b is expressed in all leukocyte subsets and regulates several signaling pathways in T cells, NK cells, B cells, and different types of myeloid cells. In most cases, Cbl-b negatively regulates activation signals through antigen or pattern recognition receptors and co-stimulatory molecules. In line with this function, cblb-deficient immune cells display lower activation thresholds and cblb knockout mice spontaneously develop autoimmunity and are highly susceptible to experimental autoimmunity. Interestingly, genetic association studies link CBLB-polymorphisms with autoimmunity also in humans. Vice versa, the increased activation potential of cblb-deficient cells renders them more potent to fight against malignancies or infections. Accordingly, several reports have shown that cblb knockout mice reject tumors, which mainly depends on cytotoxic T and NK cells. Thus, targeting Cbl-b may be an interesting strategy to enhance anti-cancer immunity. In this review, we summarize the findings on the molecular function of Cbl-b in different cell types and illustrate the potential of Cbl-b as target for immunomodulatory therapies.
Collapse
Affiliation(s)
- Christina Lutz-Nicoladoni
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| | - Dominik Wolf
- Medical Clinic III for Oncology, Haematology and Rheumatology, University Clinic Bonn (UKB) , Bonn , Germany
| | - Sieghart Sopper
- Department of Hematology and Oncology, Medical University Innsbruck , Innsbruck , Austria ; Tumor Immunology Laboratory, Tyrolean Cancer Research Institute , Innsbruck , Austria
| |
Collapse
|
22
|
Banica LM, Besliu AN, Pistol GC, Stavaru C, Vlad V, Predeteanu D, Ionescu R, Stefanescu M, Matache C. Dysregulation of anergy-related factors involved in regulatory T cells defects in Systemic Lupus Erythematosus patients: Rapamycin and Vitamin D efficacy in restoring regulatory T cells. Int J Rheum Dis 2014; 19:1294-1303. [PMID: 25351606 DOI: 10.1111/1756-185x.12509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM Systemic Lupus Erythematosus (SLE) patients display dysfunctions in T cell activation and anergy. Therefore the aims of our study were to explore the expression of anergy-related factors in CD4+ T cells in relationship with regulatory T cells (Tregs) frequency in SLE patients and to identify strategies to redress these defects. METHOD Casitas B-cell lymphoma b (Cbl-b) and 'gene related to anergy in lymphocytes' (GRAIL) proteins were analyzed in peripheral blood mononuclear cells (PBMCs) from SLE patients and healthy donors (HD) by immunoblotting. cbl-b, grail, growth response factors (egr)2 and egr3 messenger RNAs (mRNAs) were evaluated by real-time polymerase chain reaction in SLE and HD PBMCs and CD4+ T cells. Phenotypic and functional characterization of CD4+ T cells was performed by flow cytometry. Tregs expansion protocol consisted in culturing CD4+ T cells for 14 or 21 days of experimental activation with anti-CD3 and anti-CD28 monoclonal antibodies, human recombinant interleukin (hrIL)-2, in the absence or presence of rapamycin (Rapa) or 1,25-(OH)2D3 (vitamin D: VitD). RESULTS SLE PBMCs expressed low levels of Cbl-b and GRAIL proteins. Both SLE PBMCs and CD4+ T cells expressed low levels of egr2/3 mRNAs. SLE patients had a reduced number of Tregs with impaired suppressive activity. An association between egr2 mRNA level in CD4+ T cells and Tregs percentage was identified. Experimental activation of CD4+ T cells in the presence of hrIL-2 and Rapa or VitD induced the expansion of SLE Tregs. However, on long-term, only Rapa exposure of SLE CD4+ T cells yielded high numbers of Tregs with sustained suppressive activity. CONCLUSION Our results suggest a new strategy to correct defects in CD4+ T cell tolerance mechanisms that may prove beneficial in SLE.
Collapse
Affiliation(s)
- Leontina M Banica
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania.,Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Alina N Besliu
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Gina C Pistol
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Crina Stavaru
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Violeta Vlad
- Department of Rheumatology and Internal Medicine, Sf. Maria Clinical Hospital, Bucharest, Romania
| | - Denisa Predeteanu
- Department of Rheumatology and Internal Medicine, Sf. Maria Clinical Hospital, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ruxandra Ionescu
- Department of Rheumatology and Internal Medicine, Sf. Maria Clinical Hospital, Bucharest, Romania.,Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Stefanescu
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| | - Cristiana Matache
- Cantacuzino National Institute of Research and Development for Microbiology and Immunology, Cellular and Molecular Immunity Laboratory, Bucharest, Romania
| |
Collapse
|
23
|
Pan F, Barbi J. Ubiquitous points of control over regulatory T cells. J Mol Med (Berl) 2014; 92:555-69. [PMID: 24777637 DOI: 10.1007/s00109-014-1156-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/04/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
Posttranslational modification by ubiquitin tagging is crucial for regulating the stability, activity and cellular localization of many target proteins involved in processes including DNA repair, cell cycle progression, protein quality control, and signal transduction. It has long been appreciated that ubiquitin-mediated events are important for certain signaling pathways leading to leukocyte activation and the stimulation of effector function. Now it is clear that the activities of molecules and pathways central to immune regulation are also modified and controlled by ubiquitin tagging. Among the mechanisms of immune control, regulatory T cells (or Tregs) are themselves particularly sensitive to such regulation. E3 ligases and deubiquitinases both influence Tregs through their effects on the signaling pathways pertinent to these cells or through the direct, posttranslational regulation of Foxp3. In this review, we will summarize and discuss several examples of ubiquitin-mediated control over multiple aspects of Treg biology including the generation, function and phenotypic fidelity of these cells. Fully explored and exploited, these potential opportunities for Treg modulation may lead to novel immunotherapies for both positive and negative fine-tuning of immune restraint.
Collapse
Affiliation(s)
- Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA,
| | | |
Collapse
|
24
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
25
|
Al-Salihi MA, Herhaus L, Sapkota GP. Regulation of the transforming growth factor β pathway by reversible ubiquitylation. Open Biol 2013; 2:120082. [PMID: 22724073 PMCID: PMC3376735 DOI: 10.1098/rsob.120082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 12/20/2022] Open
Abstract
The transforming growth factor β (TGFβ) signalling pathway plays a central role during embryonic development and in adult tissue homeostasis. It regulates gene transcription through a signalling cascade from cell surface receptors to intracellular SMAD transcription factors and their nuclear cofactors. The extent, duration and potency of signalling in response to TGFβ cytokines are intricately regulated by complex biochemical processes. The corruption of these regulatory processes results in aberrant TGFβ signalling and leads to numerous human diseases, including cancer. Reversible ubiquitylation of pathway components is a key regulatory process that plays a critical role in ensuring a balanced response to TGFβ signals. Many studies have investigated the mechanisms by which various E3 ubiquitin ligases regulate the turnover and activity of TGFβ pathway components by ubiquitylation. Moreover, recent studies have shed new light into their regulation by deubiquitylating enzymes. In this report, we provide an overview of current understanding of the regulation of TGFβ signalling by E3 ubiquitin ligases and deubiquitylases.
Collapse
Affiliation(s)
- Mazin A Al-Salihi
- Medical Research Council-Protein Phosphorylation Unit, Sir James Black Centre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
26
|
Gruber T, Hinterleitner R, Hermann-Kleiter N, Meisel M, Kleiter I, Wang CM, Viola A, Pfeifhofer-Obermair C, Baier G. Cbl-b mediates TGFβ sensitivity by downregulating inhibitory SMAD7 in primary T cells. J Mol Cell Biol 2013; 5:358-68. [PMID: 23709694 DOI: 10.1093/jmcb/mjt017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T cell-intrinsic transforming growth factor β (TGFβ) receptor signaling plays an essential role in controlling immune responses. The RING-type E3 ligase Cbl-b has been shown to mediate the sensitivity of T cells to TGFβ; however, the mechanism underlying this process is unknown. This study shows that SMAD7, an established negative regulator of TGFβ receptor (TGFβR) signaling, is a key downstream effector target of Cbl-b. SMAD7 protein levels, but not SMAD7 mRNA levels, are upregulated in cblb(-/-) T cells. Cbl-b directly interacts with and ubiquitinates SMAD7, suggesting that Cbl-b posttranscriptionally regulates SMAD7. In support of this notion, concomitant genetic loss of SMAD7 in cblb(-/-) mice restored TGFβ sensitivity on T cell cytokine responses and abrogated the tumor rejection phenotype of cblb(-/-) mice. These results demonstrate an essential and non-redundant role for Cbl-b in controlling TGFβR signaling by directly targeting SMAD7 for degradation during T cell responses in vitro and in vivo.
Collapse
Affiliation(s)
- Thomas Gruber
- Department for Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen Z, Luo X, Lu Y, Zhu T, Wang J, Tsun A, Li B. Ubiquitination signals critical to regulatory T cell development and function. Int Immunopharmacol 2013; 16:348-52. [PMID: 23415874 DOI: 10.1016/j.intimp.2013.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/30/2013] [Indexed: 12/11/2022]
Abstract
Protein ubiquitination has emerged as a crucial modulator of the immune system, participating in the control of T cell differentiation, intracellular signal transduction and the induction of immune tolerance. CD4(+)CD25(+)FOXP3(+) regulatory T cells are a unique subset of cells that mediate central and peripheral immune tolerance. In this review, we highlight our current understanding of the molecular mechanisms and signaling pathways that modulate protein ubiquitination in Treg cells, and how ubiquitination determines Treg cell development and function. Understanding how FOXP3 activity is regulated by ubiquitination and deubiquitination under molecular level will promote regulatory T cell therapy for treating inflammation in autoimmune disease, infection, transplantation and cancer.
Collapse
Affiliation(s)
- Zuojia Chen
- Key Laboratory of Molecular Virology & Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 411 Hefei Road, Shanghai, 200025, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Zuo W, Huang F, Chiang YJ, Li M, Du J, Ding Y, Zhang T, Lee HW, Jeong LS, Chen Y, Deng H, Feng XH, Luo S, Gao C, Chen YG. c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-β type II receptor. Mol Cell 2013; 49:499-510. [PMID: 23290524 DOI: 10.1016/j.molcel.2012.12.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 10/23/2012] [Accepted: 11/29/2012] [Indexed: 02/07/2023]
Abstract
Transforming growth factor β (TGF-β) is a potent antiproliferative factor in multiple types of cells. Deregulation of TGF-β signaling is associated with the development of many cancers, including leukemia, though the molecular mechanisms are largely unclear. Here, we show that Casitas B-lineage lymphoma (c-Cbl), a known proto-oncogene encoding an ubiquitin E3 ligase, promotes TGF-β signaling by neddylating and stabilizing the type II receptor (TβRII). Knockout of c-Cbl decreases the TβRII protein level and desensitizes hematopoietic stem or progenitor cells to TGF-β stimulation, while c-Cbl overexpression stabilizes TβRII and sensitizes leukemia cells to TGF-β. c-Cbl conjugates neural precursor cell-expressed, developmentally downregulated 8 (NEDD8), a ubiquitin-like protein, to TβRII at Lys556 and Lys567. Neddylation of TβRII promotes its endocytosis to EEA1-positive early endosomes while preventing its endocytosis to caveolin-positive compartments, therefore inhibiting TβRII ubiquitination and degradation. We have also identified a neddylation-activity-defective c-Cbl mutation from leukemia patients, implying a link between aberrant TβRII neddylation and leukemia development.
Collapse
Affiliation(s)
- Wei Zuo
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The transforming growth factor β (TGFβ) superfamily of signal transduction molecules plays crucial roles in the regulation of cell behavior. TGFβ regulates gene transcription through Smad proteins and signals via non-Smad pathways. The TGFβ pathway is strictly regulated, and perturbations lead to tumorigenesis. Several pathway components are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. Smurfs are well known negative regulators of TGFβ, which function as E3 ligases recruited by adaptors such as I-Smads. TGFβ signaling can also be enhanced by E3 ligases, such as Arkadia, that target repressors for degradation. It is becoming clear that E3 ligases often target multiple pathways, thereby acting as mediators of signaling cross-talk. Regulation via ubiquitination involves a complex network of E3 ligases, adaptor proteins, and deubiquitinating enzymes (DUBs), the last-mentioned acting by removing ubiquitin from its targets. Interestingly, also non-degradative ubiquitin modifications are known to play important roles in TGFβ signaling. Ubiquitin modifications thus play a key role in TGFβ signal transduction, and in this review we provide an overview of known players, focusing on recent advances.
Collapse
Affiliation(s)
- Miriam De Boeck
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
30
|
Current world literature. Curr Opin Rheumatol 2011; 23:497-503. [PMID: 21844756 DOI: 10.1097/bor.0b013e32834a96c0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Dissanayake D, Gronski MA, Lin A, Elford AR, Ohashi PS. Immunological perspective of self versus tumor antigens: insights from the RIP-gp model. Immunol Rev 2011; 241:164-79. [PMID: 21488897 DOI: 10.1111/j.1600-065x.2011.01014.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-reactive T cells in the body are controlled by mechanisms of peripheral tolerance that limit their activation and induction of immune pathology. Our understanding of these mechanisms has been advanced by the use of tissue-specific promoters to express neo-self-antigens. Here, we present findings using the RIP-gp (rat insulin promoter-glycoprotein) transgenic mouse, which expresses the lymphocytic choriomeningitis virus glycoprotein (LCMV-gp) specifically in the pancreatic β islet cells. T cells responsive to this antigen remain ignorant of the LCMV-gp expressed by the islets, and breaking tolerance is dependent upon the maturation status of antigen-presenting cells, the avidity of the T-cell receptor ligation, and the level of major histocompatibility complex expression in the pancreas. Furthermore, decreased activity of Casitas B-lineage lymphoma b, a negative regulator of T-cell receptor signaling, can allow recognition and destruction of the pancreatic islets. This review discusses the roles of these factors in the context of anti-tissue responses, both in the setting of autoimmunity and in anti-tumor immunity.
Collapse
Affiliation(s)
- Dilan Dissanayake
- Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
32
|
Lutz‐Nicoladoni C, Wallner S, Stoitzner P, Pircher M, Gruber T, Wolf AM, Gastl G, Penninger JM, Baier G, Wolf D. Reinforcement of cancer immunotherapy by adoptive transfer of
cblb
‐deficient CD8
+
T cells combined with a DC vaccine. Immunol Cell Biol 2011; 90:130-4. [DOI: 10.1038/icb.2011.11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christina Lutz‐Nicoladoni
- Tyrolean Cancer Research Institute, Innsbruck Medical University Tyrol Austria
- Internal Medicine V, Hematology and Oncology, Innsbruck Medical University Tyrol Austria
| | - Stephanie Wallner
- Tyrolean Cancer Research Institute, Innsbruck Medical University Tyrol Austria
- Internal Medicine V, Hematology and Oncology, Innsbruck Medical University Tyrol Austria
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University Tyrol Austria
| | - Magdalena Pircher
- Tyrolean Cancer Research Institute, Innsbruck Medical University Tyrol Austria
- Internal Medicine V, Hematology and Oncology, Innsbruck Medical University Tyrol Austria
| | - Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University Tyrol Austria
| | - Anna Maria Wolf
- Tyrolean Cancer Research Institute, Innsbruck Medical University Tyrol Austria
- Internal Medicine V, Hematology and Oncology, Innsbruck Medical University Tyrol Austria
| | - Günther Gastl
- Tyrolean Cancer Research Institute, Innsbruck Medical University Tyrol Austria
- Internal Medicine V, Hematology and Oncology, Innsbruck Medical University Tyrol Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences Vienna Austria
| | - Gottfried Baier
- Department for Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University Tyrol Austria
| | - Dominik Wolf
- Tyrolean Cancer Research Institute, Innsbruck Medical University Tyrol Austria
- Internal Medicine V, Hematology and Oncology, Innsbruck Medical University Tyrol Austria
| |
Collapse
|