1
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Delattre L, Naasri S, Solano AG, Therriault H, Bergeron-Fortier S, Moreau V, Liberelle B, Crescenzo GD, Lauzon MA, Faucheux N, Paquette B, Virgilio N. The role of pore size and mechanical properties on the accumulation, retention and distribution of F98 glioblastoma cells in macroporous hydrogels. Biomed Mater 2024; 19:045041. [PMID: 38870993 DOI: 10.1088/1748-605x/ad581b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Glioblastoma (GBM) accounts for half of all central nervous system tumors. Once the tumor is removed, many GBM cells remain present near the surgical cavity and infiltrate the brain up to a distance of 20-30 mm, resulting in recurrence a few months later. GBM remains incurable due to the limited efficiency of current treatments, a result of the blood-brain barrier and sensitivity of healthy brain tissues to chemotherapy and radiation. A new therapeutic paradigm under development to treat GBM is to attract and accumulate GBM cells in a cancer cell trap inserted in the surgical cavity after tumor resection. In this work, porous gels were prepared using porous polylactide molds obtained from melt-processed co-continuous polymer blends of polystyrene and polylactide, with an average pore size ranging from 5 μm to over 500 μm. In order to efficiently accumulate and retain GBM brain cancer cells within a macroporous sodium alginate-based hydrogel trap, the pores must have an average diameter superior to 100 μm, with the best results obtained at 225 μm. In that case, the accumulation and retention of F98 GBM cells were more homogeneous, especially when functionalized with RGD adhesion peptides. At an alginate concentration of 1% w/v, the compression modulus reaches 15 kPa, close to the average value of 1-2 kPa reported for brain tissues, while adhesion and retention were also superior compared to 2% w/v gels. Overall, 1% w/v gels with 225 μm pores functionalized with the RGD peptide display the best performances.
Collapse
Affiliation(s)
- Lisa Delattre
- Department of Chemical Engineering, Research Center for High Performance Polymer and Composite Systems (CREPEC), Polytechnique Montréal, Montréal H3C 3A7 Québec, Canada
| | - Sahar Naasri
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4 Québec, Canada
| | - Angela Giraldo Solano
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4 Québec, Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4 Québec, Canada
| | - Simon Bergeron-Fortier
- Department of Chemical Engineering, Research Center for High Performance Polymer and Composite Systems (CREPEC), Polytechnique Montréal, Montréal H3C 3A7 Québec, Canada
| | - Vaiana Moreau
- Department of Chemical Engineering, Research Center for High Performance Polymer and Composite Systems (CREPEC), Polytechnique Montréal, Montréal H3C 3A7 Québec, Canada
| | - Benoît Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3C 3A7 Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3C 3A7 Québec, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, J1K 2R1 Sherbrooke, Québec, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, J1K 2R1 Sherbrooke, Québec, Canada
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4 Québec, Canada
| | - Nick Virgilio
- Department of Chemical Engineering, Research Center for High Performance Polymer and Composite Systems (CREPEC), Polytechnique Montréal, Montréal H3C 3A7 Québec, Canada
| |
Collapse
|
3
|
Liang S, Dang B, Chen S, Mi H. Prognostic value and immunological role of cathepsin S gene in pan‑cancer. Oncol Lett 2024; 27:41. [PMID: 38108072 PMCID: PMC10722551 DOI: 10.3892/ol.2023.14175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023] Open
Abstract
The cathepsin S (CTSS) gene encodes a lysine cysteine protease and serves an important role in the development of autoimmune diseases, inflammation and nervous system diseases. Furthermore, CTSS is implicated in tumor invasion and metastasis by the induction of tumor angiogenesis and the degradation of the tumor extracellular matrix. Nevertheless, the precise impact of CTSS on predicting pan-cancer prognosis and its influence on the tumor microenvironment and immune infiltration in human cancers remains unknown. This present study employed a comprehensive array of bioinformatic methods to evaluate the expression of CTSS and its associations with prognosis, clinicopathological characteristics, tumor microenvironment, tumor immune infiltration, tumor mutational burden and microsatellite instability across numerous cancer types. The current study demonstrated abnormal expression and distinct genomic alteration profiles of CTSS in many of the cancers tested. Furthermore, CTSS expression exhibited close associations with the prognosis of numerous cancers. High CTSS expression was significantly associated with better overall survival and disease-specific survival in bladder urothelial carcinoma (BLCA) and skin cutaneous melanoma (SKCM) but worse outcomes in brain lower grade glioma (LGG) and uveal melanoma (UVM). Moreover, CTSS demonstrated significant correlations with tumor mutational burden and microsatellite instability in 8 and 12 cancer types respectively, as well as different responses in immunotherapy sub-cohorts, especially in melanoma and bladder cancers. CTSS expression showed a positive correlation with stromal and immune cell scores in the four aforementioned cancers. Moreover, CTSS expression was correlated with the number of infiltrating CD8+ T cells, CD4+ T cells and macrophages. Conversely, CTSS was negatively associated with resting Mast cells, resting NK cells and resting memory CD4+ T cell infiltration in BLCA, SKCM and kidney renal clear cell carcinoma (KIRC). Furthermore, CTSS expression was correlated with immune-related gene expression, notably PDCD1, LAG3, PDCD1 and TIGIT in BLCA, KIRC, SKCM, LGG and UVM. Functional enrichment analysis suggested that CTSS could drive a dynamic adjustment of biological functions and pathways in BLCA, SKCM, LGG and UVM, including immune response regulating signaling pathways, regulation of lymphocyte activation and T cell receptor singling pathways. The current study suggested that CTSS could be an essential biomarker for prognosis and immune infiltration features in multiple cancers.
Collapse
Affiliation(s)
- Shengsheng Liang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Bowen Dang
- Department of Urology, The First People's Hospital of Yulin, Yulin, Guangxi Zhuang Autonomous Region 537000, P.R. China
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hua Mi
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
4
|
Goncalves BG, Banerjee IA. A computational and laboratory approach for the investigation of interactions of peptide conjugated natural terpenes with EpHA2 receptor. J Mol Model 2023; 29:204. [PMID: 37291458 DOI: 10.1007/s00894-023-05596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
CONTEXT Ephrin type A receptor 2 (EphA2) is a well-known drug target for cancer treatment due to its overexpression in numerous types of cancers. Thus, it is crucial to determine the binding interactions of this receptor with both the ligand-binding domain (LBD) and the kinase-binding domain (KBD) through a targeted approach in order to modulate its activity. In this work, natural terpenes with inherent anticancer properties were conjugated with short peptides YSAYP and SWLAY that are known to bind to the LBD of EphA2 receptor. We examined the binding interactions of six terpenes (maslinic acid, levopimaric acid, quinopimaric acid, oleanolic, polyalthic, and hydroxybetulinic acid) conjugated to the above peptides with the ligand-binding domain (LBD) of EphA2 receptor computationally. Additionally, following the "target-hopping approach," we also examined the interactions of the conjugates with the KBD. Our results indicated that most of the conjugates showed higher binding interactions with the EphA2 kinase domain compared to LBD. Furthermore, the binding affinities of the terpenes increased upon conjugating the peptides with the terpenes. In order to further investigate the specificity toward EphA2 kinase domain, we also examined the binding interactions of the terpenes conjugated to VPWXE (x = norleucine), as VPWXE has been shown to bind to other RTKs. Our results indicated that the terpenes conjugated to SWLAY in particular showed high efficacy toward binding to the KBD. We also designed conjugates where in the peptide portion and the terpenes were separated by a butyl (C4) group linker to examine if the binding interactions could be enhanced. Docking studies showed that the conjugates with linkers had enhanced binding with the LBD compared to those without linkers, though binding remained slightly higher without linkers toward the KBD. As a proof of concept, maslinate and oleanolate conjugates of each of the peptides were then tested with F98 tumor cells which are known to overexpress EphA2 receptor. Results indicated that the oleanolate-amido-SWLAY conjugates were efficacious in reducing the cell proliferation of the tumor cells and may be potentially developed and further studied for targeting tumor cells overexpressing the EphA2 receptor. To test if these conjugates could bind to the receptor and potentially function as kinase inhibitors, we conducted SPR analysis and ADP-Glo assay. Our results indicated that OA conjugate with SWLAY showed the highest inhibition. METHODS Docking studies were carried out using AutoDock Vina, v.1.2.0; Molecular Dynamics and MMGBSA calculations were carried out through Schrodinger Software DESMOND.
Collapse
Affiliation(s)
- Beatriz G Goncalves
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA
| | - Ipsita A Banerjee
- Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY, 10458, USA.
| |
Collapse
|
5
|
Lensoside Aβ as an Adjuvant to the Anti-Glioma Potential of Sorafenib. Cancers (Basel) 2021; 13:cancers13112637. [PMID: 34072003 PMCID: PMC8198162 DOI: 10.3390/cancers13112637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Flavonoids are plant polyphenolic secondary metabolites, commonly consumed in the human diet. Lensoside Aβ is a quercetin glycoside isolated from the aerial parts of lentil (Lens culinaris) organs. The activity of this secondary metabolite, especially in terms of its anticancer potential, has been poorly studied. Currently, there are no published data about the effect of this flavonoid on gliomas, which are so-far incurable, aggressive neoplasms of the central nervous system with a highly infiltrative character. In this study, we found that lensoside Aβ itself exhibits poor anti-glioma properties but exerts a strongly potentiated effect in combination with sorafenib (inhibitor of Raf kinase) on apoptosis induction in cancer cells. Our results have shown that sorafenib with lensoside Aβ seems to be a promising combination that might be useful in glioma therapy. Additionally, the former observation, pointing to the key role of flavonoids as adjuvants in chemotherapy, is confirmed. Abstract Aim: The anti-glioma effect of lensoside Aβ alone and in combination with sorafenib (pro-survival Raf kinase inhibitor) was evaluated for the first time in terms of programmed cell death induction in anaplastic astrocytoma and glioblastoma multiforme cell lines as an experimental model. Apoptosis, autophagy, and necrosis were identified microscopically (fluorescence and scanning microscopes) and confirmed by flow cytometry (mitochondrial membrane potential MMP and cell death). The expression of apoptotic (caspase 3) and autophagic markers (beclin 1) as well as Raf kinase were estimated by immunoblotting. The FTIR method was used to determine the interaction of the studied drugs with lipid and protein groups within cells, while the modes of drug action within the cells were assessed with the FLIM technique. Results: Lensoside Aβ itself does not exhibit anti-glioma activity but significantly enhances the anti-cancer potential of sorafenib, initiating mainly apoptosis of up to 90% of cells. It was correlated with an increased level of active caspase 3, a reduced MMP value, and a lower level of Raf kinase. The interaction with membrane structures led to morphological changes typical of programmed death. Conclusions: Our results indicate that lensoside Aβ plays an important role as an adjuvant in chemotherapy with sorafenib and may be a potential candidate in anti-glioma combination therapy.
Collapse
|
6
|
Hirota Y, Hayashi M, Miyauchi Y, Ishii Y, Tanaka Y, Fujimoto K. LAPTM4α is targeted from the Golgi to late endosomes/lysosomes in a manner dependent on the E3 ubiquitin ligase Nedd4-1 and ESCRT proteins. Biochem Biophys Res Commun 2021; 556:9-15. [PMID: 33836347 DOI: 10.1016/j.bbrc.2021.03.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/20/2023]
Abstract
Lysosome-associated protein transmembrane 4α (LAPTM4α) is a four transmembrane-spanning protein primarily localized in endosomes and lysosomes and has several putative lysosomal targeting signals at its C-terminal cytoplasmic domain, including tyrosine-based motifs (YxxΦ) and PY motifs (L/PxxY). LAPTM4α has been previously shown to be ubiquitinated by the E3 ubiquitin ligase Nedd4-1 through binding to its PY motifs and sorted to lysosomes, however, the molecular mechanisms underlying the localization of LAPTM4α to endosomes/lysosomes have not yet been fully elucidated. In the present study, we show that LAPTM4α binds Nedd4-1 in a manner dependent on PY motifs, while the PY motifs and Nedd4-1 are not necessarily required for LAPTM4α ubiquitination. The binding of LAPTM4α with Nedd4-1, however, is necessary for an effective sorting of LAPTM4α from the Golgi to late endosomes/lysosomes. An unexpected finding is that LAPTM4α is localized in the lumen, but not in the limiting membrane, of late endosomes, and degraded in lysosomes over time. Interestingly, we further found that siRNA knockdown of endosomal sorting complexes required for transport (ESCRT) components that mediate sorting of ubiquitinated membrane proteins into intralumenal vesicles (ILVs) of endosomes selectively blocks the transport of LAPTM4α to endosomes. Collectively, these results suggest that trafficking of LAPTM4α from the Golgi to endosomes is promoted by the interaction with Nedd4-1, which further requires ESCRT components. Furthermore, our findings highlight a novel function for ESCRT proteins in mediating protein and/or vesicle trafficking from the Golgi to endosomes/lysosomes.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| | - Masaharu Hayashi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuu Miyauchi
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keiko Fujimoto
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Hoa N, Ge L, Korach KS, Levin ER. Estrogen receptor beta maintains expression of KLF15 to prevent cardiac myocyte hypertrophy in female rodents. Mol Cell Endocrinol 2018; 470:240-250. [PMID: 29127073 PMCID: PMC6242344 DOI: 10.1016/j.mce.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Maintaining a healthy, anti-hypertrophic state in the heart prevents progression to cardiac failure. In humans, angiotensin II (AngII) indirectly and directly stimulates hypertrophy and progression, while estrogens acting through estrogen receptor beta (ERβ) inhibit these AngII actions. The KLF15 transcription factor has been purported to provide anti-hypertrophic action. In cultured neonatal rat cardiomyocytes, we found AngII inhibited KLF1 expression and nuclear localization, substantially prevented by estradiol (E2) or β-LGND2 (β-LGND2), an ERβ agonist. AngII stimulation of transforming growth factor beta expression in the myocytes activated p38α kinase via TAK1 kinase, inhibiting KLF15 expression. All was comparably reduced by E2 or β-LGND2. Knockdown of KLF15 in the myocytes induced myocyte hypertrophy and limited the anti-hypertrophic actions of E2 and β-LGND2. Key aspects were confirmed in an in-vivo model of cardiac hypertrophy. Our findings define additional anti-hypertrophic effects of ERβ supporting testing specific receptor agonists in humans to prevent progression of cardiac disease.
Collapse
Affiliation(s)
- Neil Hoa
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | - Lisheng Ge
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA
| | | | - Ellis R Levin
- Division of Endocrinology, Department of Veterans Affairs Medical Center, Long Beach, CA, 90822, USA; Department of Medicine, University of California, Irvine, CA, 92717, USA; Department of Biochemistry, University of California, Irvine, CA, 92717, USA.
| |
Collapse
|
8
|
Angelucci C, D'Alessio A, Lama G, Binda E, Mangiola A, Vescovi AL, Proietti G, Masuelli L, Bei R, Fazi B, Ciafrè SA, Sica G. Cancer stem cells from peritumoral tissue of glioblastoma multiforme: the possible missing link between tumor development and progression. Oncotarget 2018; 9:28116-28130. [PMID: 29963265 PMCID: PMC6021333 DOI: 10.18632/oncotarget.25565] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 05/19/2018] [Indexed: 12/15/2022] Open
Abstract
In glioblastoma multiforme (GBM), cancer stem cells (CSCs) are thought to be responsible for gliomagenesis, resistance to treatment and recurrence. Unfortunately, the prognosis for GBM remains poor and recurrence frequently occurs in the peritumoral tissue within 2 cm from the tumor edge. In this area, a population of CSCs has been demonstrated which may recapitulate the tumor after surgical resection. In the present study, we aimed to characterize CSCs derived from both peritumoral tissue (PCSCs) and GBM (GCSCs) in order to deepen their significance in GBM development and progression. The stemness of PCSC/GCSC pairs obtained from four human GBM surgical specimens was investigated by comparing the expression of specific stem cell markers such as Nestin, Musashi-1 and SOX2. In addition, the growth rate, the ultrastructural features and the expression of other molecules such as c-Met, pMet and MAP kinases, involved in cell migration/invasion, maintenance of tumor stemness and/or resistance to treatments were evaluated. Since it has been recently demonstrated the involvement of the long non-coding RNAs (lncRNAs) in the progression of gliomas, the expression of H19 lncRNA, as well as of one of its two mature products miR-675-5p was evaluated in neurospheres. Our results show significant differences between GCSCs and PCSCs in terms of proliferation, ultrastructural peculiarities and, at a lower extent, stemness profile. These differences might be important in view of their potential role as a therapeutic target.
Collapse
Affiliation(s)
- Cristiana Angelucci
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Alessio D'Alessio
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Gina Lama
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Elena Binda
- Cancer Stem Cells Unit, IRCSS Casa Sollievo della Sofferenza, ISBReMIT-Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Opera di San Pio da Pietrelcina, S. Giovanni Rotondo, Foggia, Italy
| | - Annunziato Mangiola
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Angelo L Vescovi
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy.,IRCSS Casa Sollievo della Sofferenza, ISBReMIT-Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, Opera di San Pio da Pietrelcina, S. Giovanni Rotondo, Foggia, Italy.,Hyperstem SA, Lugano, Switzerland
| | - Gabriella Proietti
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara Fazi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| |
Collapse
|
9
|
Martinvalet D. The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses. Cell Death Dis 2018; 9:336. [PMID: 29491398 PMCID: PMC5832423 DOI: 10.1038/s41419-017-0237-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity.
Collapse
Affiliation(s)
- Denis Martinvalet
- Department of Cell Physiology and Metabolism, Geneva Medical School, 1211, Geneva, Switzerland.
| |
Collapse
|
10
|
Bassoy EY, Kasahara A, Chiusolo V, Jacquemin G, Boydell E, Zamorano S, Riccadonna C, Pellegatta S, Hulo N, Dutoit V, Derouazi M, Dietrich PY, Walker PR, Martinvalet D. ER-mitochondria contacts control surface glycan expression and sensitivity to killer lymphocytes in glioma stem-like cells. EMBO J 2017; 36:1493-1512. [PMID: 28283580 DOI: 10.15252/embj.201695429] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is a highly heterogeneous aggressive primary brain tumor, with the glioma stem-like cells (GSC) being more sensitive to cytotoxic lymphocyte-mediated killing than glioma differentiated cells (GDC). However, the mechanism behind this higher sensitivity is unclear. Here, we found that the mitochondrial morphology of GSCs modulates the ER-mitochondria contacts that regulate the surface expression of sialylated glycans and their recognition by cytotoxic T lymphocytes and natural killer cells. GSCs displayed diminished ER-mitochondria contacts compared to GDCs. Forced ER-mitochondria contacts in GSCs increased their cell surface expression of sialylated glycans and reduced their susceptibility to cytotoxic lymphocytes. Therefore, mitochondrial morphology and dynamism dictate the ER-mitochondria contacts in order to regulate the surface expression of certain glycans and thus play a role in GSC recognition and elimination by immune effector cells. Targeting the mitochondrial morphology, dynamism, and contacts with the ER could be an innovative strategy to deplete the cancer stem cell compartment to successfully treat glioblastoma.
Collapse
Affiliation(s)
- Esen Yonca Bassoy
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Atsuko Kasahara
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Valentina Chiusolo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Guillaume Jacquemin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Emma Boydell
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Sebastian Zamorano
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cristina Riccadonna
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Serena Pellegatta
- Department of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milan, Italy
| | - Nicolas Hulo
- Biomathematical and Biostatistical Analysis, Institute of Genetics and Genomics University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Madiha Derouazi
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Amal Therapeutics, Geneva, Switzerland
| | - Pierre Yves Dietrich
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Paul R Walker
- Department of Oncology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Denis Martinvalet
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Hoa NT, Ge L, Martini F, Chau V, Ahluwalia A, Kruse CA, Jadus MR. Temozolomide induces the expression of the glioma Big Potassium (gBK) ion channel, while inhibiting fascin-1 expression: possible targets for glioma therapy. Expert Opin Ther Targets 2016; 20:1155-67. [PMID: 27359377 DOI: 10.1080/14728222.2016.1208172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Temozolomide (TMZ) improves Glioblastoma Multiforme (GBM) patient survival. The invasive behavior of the glioma cells is the cause of GBM relapse. The glioma BK ion channel (gBK) may provide glioma cells with a mechanism to invade surrounding tissue. gBK contains epitopes that cytolytic T lymphocytes (CTLs) can recognize and kill glioma cells. Fascin-1 is an actin crosslinking molecule that supports microvilli; these membrane protrusions provide a physical defense against CTLs. TMZ was investigated to determine its effect on gBK and fascin-1 expression. RESEARCH DESIGN AND METHODS Human glioma cells cultured in TMZ were analyzed for their altered mRNA and gBK protein levels by using quantitative real time PCR, immunostaining and cellular functional assays. RESULTS TMZ slowed glioma cell growth and inhibited their transmigratory properties due to loss of fascin-1. TMZ induced increased gBK and HLA expression and allowed these TMZ-treated cells to become better targets for gBK-specific CTLs. CONCLUSIONS Besides its traditional chemotherapeutic effect, TMZ can have four other targeted pathways: 1) slowed glioma cell growth; 2) inhibited glioma cell transmigration; 3) increased HLA-A2 and gBK tumor antigen production; 4) increased CTL-mediated cytolysis of the TMZ treated glioma cells due to the loss of their defensive membrane protrusions supported by fascin-1.
Collapse
Affiliation(s)
- Neil T Hoa
- a Research Service HCG, Department Veterans Affairs Medical Center , VA Long Beach Healthcare System , Long Beach , CA , USA
| | - Lisheng Ge
- a Research Service HCG, Department Veterans Affairs Medical Center , VA Long Beach Healthcare System , Long Beach , CA , USA
| | - Filippo Martini
- a Research Service HCG, Department Veterans Affairs Medical Center , VA Long Beach Healthcare System , Long Beach , CA , USA.,b Laboratory of Pharmaco-Toxicological Analysis; Department of Pharmacy & Biotechnology (FaBiT) , Alma Mater Studiorum - University of Bologna , Bologna , Italy
| | - Vincent Chau
- a Research Service HCG, Department Veterans Affairs Medical Center , VA Long Beach Healthcare System , Long Beach , CA , USA
| | - Amrita Ahluwalia
- a Research Service HCG, Department Veterans Affairs Medical Center , VA Long Beach Healthcare System , Long Beach , CA , USA
| | - Carol A Kruse
- c Department of Neurosurgery, David Geffen School of Medicine , University of California , Los Angeles , CA , USA
| | - Martin R Jadus
- a Research Service HCG, Department Veterans Affairs Medical Center , VA Long Beach Healthcare System , Long Beach , CA , USA.,d Pathology and Laboratory Medicine Service , Veterans Affairs Medical Center , Long Beach , CA , USA.,e Department of Pathology and Laboratory Medicine , University of California , Orange , CA , USA.,f Chao Comprehensive Cancer Center , University of California , Orange , CA , USA
| |
Collapse
|
12
|
Shao S, Guo T, Koh CC, Gillessen S, Joerger M, Jochum W, Aebersold R. Minimal sample requirement for highly multiplexed protein quantification in cell lines and tissues by PCT-SWATH mass spectrometry. Proteomics 2015; 15:3711-21. [DOI: 10.1002/pmic.201500161] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Shiying Shao
- Division of Endocrinology, Tongji Hospital; Huazhong University of Science & Technology; Wuhan P. R. China
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
| | - Tiannan Guo
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
| | - Chiek Ching Koh
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
| | - Silke Gillessen
- Department of Oncology/Hematology; Kantonsspital St. Gallen; St. Gallen Switzerland
| | - Markus Joerger
- Department of Oncology/Hematology; Kantonsspital St. Gallen; St. Gallen Switzerland
| | - Wolfram Jochum
- Institute of Pathology; Kantonsspital St. Gallen; St. Gallen Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology; Eidgenössische Technische Hochschule (ETH); Zurich Switzerland
- Faculty of Science; University of Zurich; Zurich Switzerland
| |
Collapse
|
13
|
Beck BH, Kim H, O’Brien R, Jadus MR, Gillespie GY, Cloud GA, Hoa NT, Langford CP, Lopez RD, Harkins LE, Lamb Jr. LS. Dynamics of Circulating γδ T Cell Activity in an Immunocompetent Mouse Model of High-Grade Glioma. PLoS One 2015; 10:e0122387. [PMID: 25955158 PMCID: PMC4425513 DOI: 10.1371/journal.pone.0122387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/23/2015] [Indexed: 12/13/2022] Open
Abstract
Human γδ T cells are potent effectors against glioma cell lines in vitro and in human/mouse xenograft models of glioblastoma, however, this effect has not been investigated in an immunocompetent mouse model. In this report, we established GL261 intracranial gliomas in syngeneic WT C57BL/6 mice and measured circulating γδ T cell count, phenotype, Vγ/Vδ repertoire, tumor histopathology, NKG2D ligands expression, and T cell invasion at day 10-12 post-injection and at end stage. Circulating γδ T cells transiently increased and upregulated Annexin V expression at post-tumor day 10-12 followed by a dramatic decline in γδ T cell count at end stage. T cell receptor repertoire showed no changes in Vγ1, Vγ4, Vγ7 or Vδ1 subsets from controls at post-tumor day 10-12 or at end stage except for an end-stage increase in the Vδ4 population. Approximately 12% of γδ T cells produced IFN-γ. IL-17 and IL-4 producing γδ T cells were not detected. Tumor progression was the same in TCRδ-/- C57BL/6 mice as that observed in WT mice, suggesting that γδ T cells exerted neither a regulatory nor a sustainable cytotoxic effect on the tumor. WT mice that received an intracranial injection of γδ T cells 15m following tumor placement showed evidence of local tumor growth inhibition but this was insufficient to confer a survival advantage over untreated controls. Taken together, our findings suggest that an early nonspecific proliferation of γδ T cells followed by their depletion occurs in mice implanted with syngeneic GL261 gliomas. The mechanism by which γδ T cell expansion occurs remains a subject for further investigation of the mechanisms responsible for this immune response in the setting of high-grade glioma.
Collapse
MESH Headings
- Animals
- Brain/immunology
- Brain/metabolism
- Brain Neoplasms/blood
- Brain Neoplasms/immunology
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Glioma/blood
- Glioma/immunology
- Glioma/pathology
- Humans
- Interleukin-17/immunology
- Interleukin-4/immunology
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/blood
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Benjamin H. Beck
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
| | - Hyunggoon Kim
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
| | - Rebecca O’Brien
- Integrated Department of Immunology, National Jewish Health, Denver, Colorado, United States of America
| | - Martin R. Jadus
- Department of Pathology, University of California Irvine/Veterans Affairs Medical Center/Long Beach, Long Beach, California, 80206, United States of America
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
| | - Gretchen A. Cloud
- UAB Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine; Birmingham, Alabama, 35294, United States of America
| | - Neil T. Hoa
- Department of Pathology, University of California Irvine/Veterans Affairs Medical Center/Long Beach, Long Beach, California, 80206, United States of America
| | - Catherine P. Langford
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
| | - Richard D. Lopez
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
| | - Lualhati E. Harkins
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
| | - Lawrence S. Lamb Jr.
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ge L, Hoa NT, Wilson Z, Arismendi-Morillo G, Kong XT, Tajhya RB, Beeton C, Jadus MR. Big Potassium (BK) ion channels in biology, disease and possible targets for cancer immunotherapy. Int Immunopharmacol 2014; 22:427-43. [PMID: 25027630 PMCID: PMC5472047 DOI: 10.1016/j.intimp.2014.06.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 11/18/2022]
Abstract
The Big Potassium (BK) ion channel is commonly known by a variety of names (Maxi-K, KCNMA1, slo, stretch-activated potassium channel, KCa1.1). Each name reflects a different physical property displayed by this single ion channel. This transmembrane channel is found on nearly every cell type of the body and has its own distinctive roles for that tissue type. The BKα channel contains the pore that releases potassium ions from intracellular stores. This ion channel is found on the cell membrane, endoplasmic reticulum, Golgi and mitochondria. Complex splicing pathways produce different isoforms. The BKα channels can be phosphorylated, palmitoylated and myristylated. BK is composed of a homo-tetramer that interacts with β and γ chains. These accessory proteins provide a further modulating effect on the functions of BKα channels. BK channels play important roles in cell division and migration. In this review, we will focus on the biology of the BK channel, especially its role, and its immune response towards cancer. Recent proteomic studies have linked BK channels with various proteins. Some of these interactions offer further insight into the role that BK channels have with cancers, especially with brain tumors. This review shows that BK channels have a complex interplay with intracellular components of cancer cells and still have plenty of secrets to be discovered.
Collapse
Affiliation(s)
- Lisheng Ge
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Neil T Hoa
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | - Zechariah Wilson
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA
| | | | - Xiao-Tang Kong
- Department of Neuro-Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajeev B Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin R Jadus
- Research Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Pathology and Laboratory Medicine Service, VA Long Beach Healthcare System, 5901 E. 7th Street, Long Beach, CA 90822, USA; Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA; Pathology and Laboratory Medicine, Med Sci I, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Memmel S, Sukhorukov VL, Höring M, Westerling K, Fiedler V, Katzer A, Krohne G, Flentje M, Djuzenova CS. Cell surface area and membrane folding in glioblastoma cell lines differing in PTEN and p53 status. PLoS One 2014; 9:e87052. [PMID: 24498019 PMCID: PMC3909012 DOI: 10.1371/journal.pone.0087052] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/17/2013] [Indexed: 01/22/2023] Open
Abstract
Glioblastoma multiforme (GBM) is characterized by rapid growth, invasion and resistance to chemo−/radiotherapy. The complex cell surface morphology with abundant membrane folds, microvilli, filopodia and other membrane extensions is believed to contribute to the highly invasive behavior and therapy resistance of GBM cells. The present study addresses the mechanisms leading to the excessive cell membrane area in five GBM lines differing in mutational status for PTEN and p53. In addition to scanning electron microscopy (SEM), the membrane area and folding were quantified by dielectric measurements of membrane capacitance using the single-cell electrorotation (ROT) technique. The osmotic stability and volume regulation of GBM cells were analyzed by video microscopy. The expression of PTEN, p53, mTOR and several other marker proteins involved in cell growth and membrane synthesis were examined by Western blotting. The combined SEM, ROT and osmotic data provided independent lines of evidence for a large variability in membrane area and folding among tested GBM lines. Thus, DK-MG cells (wild type p53 and wild type PTEN) exhibited the lowest degree of membrane folding, probed by the area-specific capacitance Cm = 1.9 µF/cm2. In contrast, cell lines carrying mutations in both p53 and PTEN (U373-MG and SNB19) showed the highest Cm values of 3.7–4.0 µF/cm2, which corroborate well with their heavily villated cell surface revealed by SEM. Since PTEN and p53 are well-known inhibitors of mTOR, the increased membrane area/folding in mutant GBM lines may be related to the enhanced protein and lipid synthesis due to a deregulation of the mTOR-dependent downstream signaling pathway. Given that membrane folds and extensions are implicated in tumor cell motility and metastasis, the dielectric approach presented here provides a rapid and simple tool for screening the biophysical cell properties in studies on targeting chemo- or radiotherapeutically the migration and invasion of GBM and other tumor types.
Collapse
Affiliation(s)
- Simon Memmel
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Vladimir L. Sukhorukov
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
- * E-mail: (VLS); (CSD)
| | - Marcus Höring
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Katherine Westerling
- Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Vanessa Fiedler
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Georg Krohne
- Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
| | - Cholpon S. Djuzenova
- Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Germany
- * E-mail: (VLS); (CSD)
| |
Collapse
|
16
|
Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity. PLoS One 2013; 8:e80898. [PMID: 24282558 PMCID: PMC3839911 DOI: 10.1371/journal.pone.0080898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/17/2013] [Indexed: 12/23/2022] Open
Abstract
Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7) copy number variation (CNV) in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers.
Collapse
|
17
|
Arismendi-Morillo G, Hoa NT, Ge L, Jadus MR. Mitochondrial network in glioma's invadopodia displays an activated state both in situ and in vitro: potential functional implications. Ultrastruct Pathol 2013; 36:409-14. [PMID: 23216239 DOI: 10.3109/01913123.2012.694582] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gliomas are typically characterized by their infiltrative nature, and the prognosis can be linked to the invasive nature of the tumoral cells. Glioblastoma multiforme are very invasive cancers and this contributes to their lethality. The invadopodia are considered essential for their motility. Human glioma cell invadopodia were examined with transmission electron and immunofluorescent microscopy. By electron microscopy, in situ gliomas (fibrillary astrocytoma, anaplastic astrocytoma, glioblastoma multiforme, pilocytic astrocytoma) show mitochondria with a dense matrix condensed configuration, indicating an active state. The mitochondria were frequently in close contact with an extended smooth endoplasmic reticulum displaying an endoplasmic reticulum subfraction associated with mitochondria. Mitochondria were seen within the filopodia that were penetrating into the extracellular matrix. The activated mitochondria and smooth endoplasmic reticulum were also detected within the invadopdia, which was associated microblood vessels. Fluorescent microscopy confirmed that D54 and U251 glioma cells growing in vitro also contained filopodia with mitochondria. The U251 glioma cells' filopodia that penetrated through 1.2-μm pores of transwell chambers also contained mitocondria, suggesting that the mitochondria are actively involved in the invasion process. Migration and invasion of tumor cells requires an increase in cellular motility and involves formation of lamellipodia, protrusions of the plasma membrane, and individual filopodia [ 1 ]. Gliomas are typically characterized by their infiltrative nature, resulting in a poorly demarcated interface between tumor and normal brain tissue. Their poor prognosis can be linked to the invasive nature of these cells. The motility of these tumor cells is correlated with the presence of invadopodia [ 2 ], and, consequently, more insight is necessary into their structural and molecular aspects. Evidence of robust invadopodia activity in glioblastoma multiforme cells has been reported [ 3 , 4 ]. Because of the significant impact of invadopodia in oncological events such as cell invasion and matrix degradation, more insight into structural and molecular aspects is needed [ 2 ]. The dynamic assembly of invadopodia is still not well understood [ 2 ], and little is known of the alterations in mitochondrial structure and function that contribute to cell mobility [ 5 ]. This paper describes two prominent structural features of the mitochondrial network present within the glioma´s invadopodia that we have recently observed. We believe these two features (activated mitochondria and smooth ER, along with mitochondria contained within the filopodia) might provide researchers with possible targets for future therapies that can control glioma invasiveness.
Collapse
|
18
|
Bovenberg MSS, Degeling MH, Tannous BA. Cell-based immunotherapy against gliomas: from bench to bedside. Mol Ther 2013; 21:1297-305. [PMID: 23648695 DOI: 10.1038/mt.2013.80] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/17/2013] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) comprises 51% of all gliomas and is the most malignant form of brain tumors with a median survival of 18-21 months. Standard-of-care treatment includes maximal surgical resection of the tumor mass in combination with radiation and chemotherapy. However, as the poor survival rate indicates, these treatments have not been effective in preventing disease progression. Cellular immunotherapy is currently being explored as therapeutic approach to treat malignant brain tumors. In this review, we discuss advances in active, passive, and vaccine-based immunotherapeutic strategies for gliomas both at the bench and in the clinic.
Collapse
Affiliation(s)
- M Sarah S Bovenberg
- Department of Neurology, Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
19
|
Priester M, Copanaki E, Vafaizadeh V, Hensel S, Bernreuther C, Glatzel M, Seifert V, Groner B, Kögel D, Weissenberger J. STAT3 silencing inhibits glioma single cell infiltration and tumor growth. Neuro Oncol 2013; 15:840-52. [PMID: 23486688 DOI: 10.1093/neuonc/not025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Diffuse infiltration remains the fulcrum of glioblastoma's incurability, leading inevitably to recurrence. Therefore, uncovering the pathological mechanism is imperative. Because signal transducer and activator of transcription 3 (STAT3) correlates with glioma malignancy and predicts poor clinical outcome, we determined its role in glioma single cell infiltration and tumor growth. METHODS STAT3 was silenced in Tu-2449 glioma cells via lentiviral gene transfer. Target gene expression was measured by real-time reverse transcription PCR, Western blotting, and immunohistochemistry. Microvilli were visualized by staining with wheat germ agglutinin. Migration and invasion were measured by Scratch and Matrigel chamber assays. Diffuse infiltration was studied in 350-μm-thick organotypic tissue cultures over 14 days using cells tagged with enhanced green fluorescent protein and live confocal laser scanning microscopy. Survival of tumor-bearing syngeneic, immunocompetent B6C3F1 mice was analyzed by Kaplan-Meier plots. RESULTS STAT3 silencing reduced cell migration and invasion in vitro and stopped single cell infiltration ex vivo, while STAT3-expressing cells disseminated through the neuropil at ∼100 µm/day. STAT3 silencing reduced transcription of several tumor progression genes. Mice with intracranial STAT3 knockdown tumors had a significant (P< .0007) survival advantage over controls, yielding 27% long-term survival. STAT3 knockdown reduced podoplanin expression 50-fold and inhibited concurrent microvilli formation. STAT3 knockdown tumors exhibited a weaker podoplanin immunoreactivity compared with controls. Podoplanin staining was diffuse, preferentially at tumor margins, and absent in normal brain. CONCLUSIONS Our results show compelling evidence that STAT3 is a key driver of diffuse infiltration and glioma growth and might therefore represent a promising target for an anti-invasive therapy.
Collapse
Affiliation(s)
- Maike Priester
- Experimental Neurosurgery, Goethe University Hospital, Neuroscience Center, Heinrich-Hoffmann-Straße 7, 60592 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ge L, Cornforth AN, Hoa NT, Delgado C, Chiou SK, Zhou YH, Jadus MR. Differential glioma-associated tumor antigen expression profiles of human glioma cells grown in hypoxia. PLoS One 2012; 7:e42661. [PMID: 22957023 PMCID: PMC3434178 DOI: 10.1371/journal.pone.0042661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 07/10/2012] [Indexed: 12/31/2022] Open
Abstract
Human U251 and D54 glioma cells were tested for expression of 25 glioma-associated tumor antigen precursor proteins (TAPP) under hypoxic (1% O2) or normoxic (21% O2) conditions. Hypoxic glioma cell lines increased their mRNA expression for nine TAPP (Aim2, Art-4, EphA2, EZH2, Fosl1, PTH-rP, Sox 11, Whsc2 and YKL-40), as assessed by quantitative reverse transcriptase real-time/polymerase chain reaction (qRT-PCR). Increased differences with three hypoxic-induced TAPP: EZH2, Whsc2 and YKL-40 were shown at the protein levels by fluorescent antibody staining and quantitative electrophoretic analysis. Two TAPP (MRP3 and Trp1) were down-regulated by hypoxia in glioma cell lines. Growing the glioma cells under hypoxia for 13 days, followed by returning them back to normoxic conditions for 7 days, and restored the original normoxic TAPP profile. Thus, hypoxia was an environmental factor that stimulated the transient expression of these antigens. Intracranial xenografts grown in nude mice derived from U251 cells that had been cultured under neurosphere stem cell conditions showed increased expression of Whsc2 or YKL-40, demonstrating that these in vitro properties of glioma also occur in vivo. Whsc2-specific cytotoxic T lymphocytes killed the hypoxic U251 glioma cells better than normoxic glioma cells. The antigens expressed by hypoxic tumor cells may be a better source of starting tumor material for loading dendritic cells for novel immunotherapy of glioma using tumor-associated antigens.
Collapse
Affiliation(s)
- Lisheng Ge
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | | | - Neil T. Hoa
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
- Research Service Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Christina Delgado
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
- Research Service Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Shiun Kwei Chiou
- Research Service Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
| | - Yi Hong Zhou
- Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California Irvine, Orange, California, United States of America
- Department of Neurological Surgery, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
| | - Martin R. Jadus
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
- Research Service Healthcare Group, Veterans Affairs Medical Center, Long Beach, California, United States of America
- Neuro-Oncology Program, Chao Comprehensive Cancer Center, University of California Irvine, Orange, California, United States of America
- Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
|
22
|
Szabo AT, Carpentier AF. Immunotherapy in human glioblastoma. Rev Neurol (Paris) 2011; 167:668-72. [PMID: 21885075 DOI: 10.1016/j.neurol.2011.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 07/26/2011] [Indexed: 12/23/2022]
Abstract
Glioblastoma patients spontaneously develop anti-tumour immune responses. However, the tumour itself develops several mechanisms that allow the tumor to escape the immune system. Clinical trials using infusion of activated autologous immune cells, or active immunotherapy with tumor antigens and dendritic cells have successfully induced anti-tumour immunity and some radiological responses. More recently, approaches targeting the mechanisms of tolerance have shown promising data in melanoma, and are currently under investigations in gliomas. However, large randomised trials are still needed to prove the usefulness of cancer vaccines in brain tumors.
Collapse
Affiliation(s)
- A T Szabo
- Service de neurologie, hôpital Avicenne, Assistance publique-Hôpitaux de Paris, 125 route de Stalingrad, Bobigny, France
| | | |
Collapse
|