1
|
Srinivasan S, Armitage J, Nilsson J, Waithman J. Transcriptional rewiring in CD8 + T cells: implications for CAR-T cell therapy against solid tumours. Front Immunol 2024; 15:1412731. [PMID: 39399500 PMCID: PMC11466849 DOI: 10.3389/fimmu.2024.1412731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
T cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity. Numerous strategies are being developed to overcome these barriers, which include improving culture conditions and manufacturing protocols, implementing novel CAR designs, and novel approaches to engineering the T cell phenotype. In this review, we describe the various emerging strategies to improve CAR T cell therapy for solid tumours. We specifically focus on new strategies to modulate cell function and fate that have precipitated from the growing knowledge of transcriptional circuits driving T cell differentiation, with the ultimate goal of driving more productive anti-tumour T cell immunity. Evidence shows that enrichment of particular phenotypic subsets of T cells in the initial cell product correlates to improved therapeutic responses and clinical outcomes. Furthermore, T cell exhaustion and poor persistence are major factors limiting therapeutic efficacy. The latest preclinical work shows that targeting specific master regulators and transcription factors can overcome these key barriers, resulting in superior T cell therapeutic products. This can be achieved by targeting key transcriptional circuits promoting memory-like phenotypes or sustaining key effector functions within the hostile tumour microenvironment. Additional discussion points include emerging considerations for the field such as (i) targeting permutations of transcription factors, (ii) transient expression systems, (iii) tissue specificity, and (iv) expanding this strategy beyond CAR-T cell therapy and cancer.
Collapse
Affiliation(s)
- Shamini Srinivasan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jesse Armitage
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Jonas Nilsson
- Melanoma Discovery Lab, Harry Perkins Institute of Medical Research, Centre of Medical Research, The University of Western Australia, Perth, WA, Australia
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jason Waithman
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Cancer Centre, Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
2
|
Mann BT, Sanz M, Clohosey M, Langlands K, Chitrakar A, Moreno C, Vitalle J, Iannone MA, Ruiz-Mateos E, Deleage C, Siegel M, Soriano-Sarabia N. Dual role of circulating and mucosal Vδ1 T cells in the control of and contribution to persistent HIV-1 infection. RESEARCH SQUARE 2024:rs.3.rs-4784403. [PMID: 39149467 PMCID: PMC11326412 DOI: 10.21203/rs.3.rs-4784403/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Curative strategies for human immunodeficiency virus (HIV-1) infection are hindered by incomplete characterization of the latent reservoir and limited enhancement of anti-HIV immune responses. In this study, we identified a novel dual role for peripheral and tissue-resident Vδ1 T cells within the gastrointestinal mucosa of virally suppressed people with HIV. Phenotypic analyses identified an increased frequency of highly differentiated, cytotoxic effector Vδ1 T cells that exerted potent inhibition of HIV-1 replication in vitro coinciding with direct increases in cytolytic function. Conversely, we detected an enrichment of HIV-1 DNA in tissue-resident CD4+Vδ1 T cells in situ. Despite low CD4 expression, we found circulating Vδ1 T cells also contained HIV-1 DNA which was replication-competent. We show that TCR-mediated activation of peripheral Vδ1 T cells induced de novo upregulation of CD4 providing a plausible mechanism for increased permissibility to infection. These findings highlight juxtaposing roles for Vδ1 T cells in HIV-1 persistence including significant contribution to tissue reservoirs.
Collapse
Affiliation(s)
- Brendan T Mann
- Departments of Microbiology, Immunology and Tropical Medicine and The George Washington University, Washington, DC, USA
| | - Marta Sanz
- Departments of Microbiology, Immunology and Tropical Medicine and The George Washington University, Washington, DC, USA
| | - Matthew Clohosey
- Departments of UNC-HIV Cure Center, Department of Medicine and University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kayley Langlands
- Departments of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Alisha Chitrakar
- Departments of Microbiology, Immunology and Tropical Medicine and The George Washington University, Washington, DC, USA
| | - Carles Moreno
- Departments of Microbiology, Immunology and Tropical Medicine and The George Washington University, Washington, DC, USA
| | - Joana Vitalle
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Marie Anne Iannone
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Marc Siegel
- Departments of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Natalia Soriano-Sarabia
- Departments of Microbiology, Immunology and Tropical Medicine and The George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Elizaldi SR, Hawes CE, Verma A, Shaan Lakshmanappa Y, Dinasarapu AR, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Pal PB, Beckman D, Ott S, Raeman R, Lifson J, Morrison JH, Iyer SS. Chronic SIV-Induced neuroinflammation disrupts CCR7+ CD4+ T cell immunosurveillance in the rhesus macaque brain. J Clin Invest 2024; 134:e175332. [PMID: 38470479 PMCID: PMC11060742 DOI: 10.1172/jci175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
CD4+ T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-Seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4+ T cells resembling lymph node central memory (TCM) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of TCM. Brain CCR7+ CD4+ T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside CNS border tissues. Sequestering TCM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4+ T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL757 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4+ T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4+ T cells in CNS immune surveillance, and their decline during chronic SIV highlights their responsiveness to neuroinflammation.
Collapse
Affiliation(s)
| | - Chase E. Hawes
- Graduate Group in Immunology, UCD, Davis, California, USA
| | - Anil Verma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | | | - Ashok R. Dinasarapu
- Department of Neurology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Brent T. Schlegel
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Li
- Bioinformatics Core, UCD, Davis, California, USA
| | | | - Zhong-Min Ma
- California National Primate Research Center, UCD, Davis, California, USA
| | - Pabitra B. Pal
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Danielle Beckman
- California National Primate Research Center, UCD, Davis, California, USA
| | - Sean Ott
- California National Primate Research Center, UCD, Davis, California, USA
| | - Reben Raeman
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, Maryland, USA
| | - John H. Morrison
- California National Primate Research Center, UCD, Davis, California, USA
- Department of Neurology, School of Medicine, and
| | - Smita S. Iyer
- Department of Pathology, School of Medicine, University of Pittsburgh, Pennsylvania, USA
- California National Primate Research Center, UCD, Davis, California, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UCD, Davis, California, USA
| |
Collapse
|
5
|
Klocke C, Moran A, Adey A, McWeeney S, Wu G. Identification of Cellular Interactions in the Tumor Immune Microenvironment Underlying CD8 T Cell Exhaustion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566384. [PMID: 38014233 PMCID: PMC10680664 DOI: 10.1101/2023.11.09.566384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
While immune checkpoint inhibitors show success in treating a subset of patients with certain late-stage cancers, these treatments fail in many other patients as a result of mechanisms that have yet to be fully characterized. The process of CD8 T cell exhaustion, by which T cells become dysfunctional in response to prolonged antigen exposure, has been implicated in immunotherapy resistance. Single-cell RNA sequencing (scRNA-seq) produces an abundance of data to analyze this process; however, due to the complexity of the process, contributions of other cell types to a process within a single cell type cannot be simply inferred. We constructed an analysis framework to first rank human skin tumor samples by degree of exhaustion in tumor-infiltrating CD8 T cells and then identify immune cell type-specific gene-regulatory network patterns significantly associated with T cell exhaustion. Using this framework, we further analyzed scRNA-seq data from human tumor and chronic viral infection samples to compare the T cell exhaustion process between these two contexts. In doing so, we identified transcription factor activity in the macrophages of both tissue types associated with this process. Our framework can be applied beyond the tumor immune microenvironment to any system involving cell-cell communication, facilitating insights into key biological processes that underpin the effective treatment of cancer and other complicated diseases.
Collapse
|
6
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
7
|
Brown AC, Cohen CJ, Mielczarek O, Migliorini G, Costantino F, Allcock A, Davidson C, Elliott KS, Fang H, Lledó Lara A, Martin AC, Osgood JA, Sanniti A, Scozzafava G, Vecellio M, Zhang P, Black MH, Li S, Truong D, Molineros J, Howe T, Wordsworth BP, Bowness P, Knight JC. Comprehensive epigenomic profiling reveals the extent of disease-specific chromatin states and informs target discovery in ankylosing spondylitis. CELL GENOMICS 2023; 3:100306. [PMID: 37388915 PMCID: PMC10300554 DOI: 10.1016/j.xgen.2023.100306] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 07/01/2023]
Abstract
Ankylosing spondylitis (AS) is a common, highly heritable inflammatory arthritis characterized by enthesitis of the spine and sacroiliac joints. Genome-wide association studies (GWASs) have revealed more than 100 genetic associations whose functional effects remain largely unresolved. Here, we present a comprehensive transcriptomic and epigenomic map of disease-relevant blood immune cell subsets from AS patients and healthy controls. We find that, while CD14+ monocytes and CD4+ and CD8+ T cells show disease-specific differences at the RNA level, epigenomic differences are only apparent upon multi-omics integration. The latter reveals enrichment at disease-associated loci in monocytes. We link putative functional SNPs to genes using high-resolution Capture-C at 10 loci, including PTGER4 and ETS1, and show how disease-specific functional genomic data can be integrated with GWASs to enhance therapeutic target discovery. This study combines epigenetic and transcriptional analysis with GWASs to identify disease-relevant cell types and gene regulation of likely pathogenic relevance and prioritize drug targets.
Collapse
Affiliation(s)
- Andrew C. Brown
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Carla J. Cohen
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Olga Mielczarek
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Horizon Discovery (PerkinElmer) Cambridge Research Park, 8100 Beach Dr., Waterbeach, Cambridge CB25 9TL, UK
| | - Gabriele Migliorini
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Félicie Costantino
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- UVSQ, INSERM UMR1173, Infection et Inflammation, Laboratory of Excellence INFLAMEX, Université Paris-Saclay, Paris, France
- Rheumatology Department, AP-HP, Ambroise Paré Hospital, Paris, France
| | - Alice Allcock
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Connor Davidson
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | | | - Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Centre for Translational Medicine at Shanghai, Ruijin Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Alicia Lledó Lara
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alice C. Martin
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Julie A. Osgood
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Anna Sanniti
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Giuseppe Scozzafava
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Matteo Vecellio
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- Centro Ricerche Fondazione Italiana Ricerca sull’Artrite (FIRA), Fondazione Pisana per la Scienza ONLUS, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme (Pisa), Italy
| | - Ping Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Mary Helen Black
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Shuwei Li
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Dongnhu Truong
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Julio Molineros
- Data Science, Population Analytics, Janssen R&D, Spring House, PA 19002, USA
| | - Trevor Howe
- Data Science, External Innovation, Janssen R&D, London W1G 0BG, UK
| | - B. Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- National Institute for Health Research, Comprehensive Biomedical Research Centre, Oxford OX4 2PG, UK
| |
Collapse
|
8
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
9
|
Wong WK, Yin B, Lam CYK, Huang Y, Yan J, Tan Z, Wong SHD. The Interplay Between Epigenetic Regulation and CD8 + T Cell Differentiation/Exhaustion for T Cell Immunotherapy. Front Cell Dev Biol 2022; 9:783227. [PMID: 35087832 PMCID: PMC8787221 DOI: 10.3389/fcell.2021.783227] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Effective immunotherapy treats cancers by eradicating tumourigenic cells by activated tumour antigen-specific and bystander CD8+ T-cells. However, T-cells can gradually lose cytotoxicity in the tumour microenvironment, known as exhaustion. Recently, DNA methylation, histone modification, and chromatin architecture have provided novel insights into epigenetic regulations of T-cell differentiation/exhaustion, thereby controlling the translational potential of the T-cells. Thus, developing strategies to govern epigenetic switches of T-cells dynamically is critical to maintaining the effector function of antigen-specific T-cells. In this mini-review, we 1) describe the correlation between epigenetic states and T cell phenotypes; 2) discuss the enzymatic factors and intracellular/extracellular microRNA imprinting T-cell epigenomes that drive T-cell exhaustion; 3) highlight recent advances in epigenetic interventions to rescue CD8+ T-cell functions from exhaustion. Finally, we express our perspective that regulating the interplay between epigenetic changes and transcriptional programs provides translational implications of current immunotherapy for cancer treatments.
Collapse
Affiliation(s)
- Wai Ki Wong
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Bohan Yin
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ching Ying Katherine Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Yingying Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Jiaxiang Yan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
10
|
Ets1 Promotes the Differentiation of Post-Selected iNKT Cells through Regulation of the Expression of Vα14Jα18 T Cell Receptor and PLZF. Int J Mol Sci 2021; 22:ijms222212199. [PMID: 34830080 PMCID: PMC8621504 DOI: 10.3390/ijms222212199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Ets1 is essential for the development/differentiation of invariant Natural Killer T (iNKT) cells at multiple stages. However, its mechanisms of action and target genes in iNKT cells are still elusive. Here, we show that Ets1 is required for the optimal expression of the Vα14Jα18 T cell receptor (TCR) in post-selected thymic iNKT cells and their immediate differentiation. Ets1 is also critical for maintaining the peripheral homeostasis of iNKT cells, which is a role independent of the expression of the Vα14Jα18 TCR. Genome-wide transcriptomic analyses of post-selected iNKT cells further reveal that Ets1 controls leukocytes activation, proliferation differentiation, and leukocyte-mediated immunity. In addition, Ets1 regulates the expression of ICOS and PLZF in iNKT cells. More importantly, restoring the expression of PLZF and the Vα14Jα18 TCR partially rescues the differentiation of iNKT cells in the absence of Ets1. Taken together, our results establish a detailed molecular picture of how Ets1 regulates the stepwise differentiation of iNKT cells.
Collapse
|
11
|
Seo H, González-Avalos E, Zhang W, Ramchandani P, Yang C, Lio CWJ, Rao A, Hogan PG. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat Immunol 2021; 22:983-995. [PMID: 34282330 PMCID: PMC8319109 DOI: 10.1038/s41590-021-00964-8] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1; Fos-Jun) cooperate to promote the effector functions of T cells, but NFAT in the absence of AP-1 imposes a negative feedback program of T cell hyporesponsiveness (exhaustion). Here, we show that basic leucine zipper ATF-like transcription factor (BATF) and interferon regulatory factor 4 (IRF4) cooperate to counter T cell exhaustion in mouse tumor models. Overexpression of BATF in CD8+ T cells expressing a chimeric antigen receptor (CAR) promoted the survival and expansion of tumor-infiltrating CAR T cells, increased the production of effector cytokines, decreased the expression of inhibitory receptors and the exhaustion-associated transcription factor TOX and supported the generation of long-lived memory T cells that controlled tumor recurrence. These responses were dependent on BATF-IRF interaction, since cells expressing a BATF variant unable to interact with IRF4 did not survive in tumors and did not effectively delay tumor growth. BATF may improve the antitumor responses of CAR T cells by skewing their phenotypes and transcriptional profiles away from exhaustion and towards increased effector function.
Collapse
Affiliation(s)
- Hyungseok Seo
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Edahí González-Avalos
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Wade Zhang
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Bioengineering Graduate Program, Bioengineering Department, University of California, San Diego, La Jolla, CA, USA
| | - Payal Ramchandani
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Contiguous BS/MS Program, Biology Department, University of California, San Diego, La Jolla, CA, USA
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Chao Yang
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Chan-Wang J Lio
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Patrick G Hogan
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
12
|
Buhelt S, Laigaard HM, von Essen MR, Ullum H, Oturai A, Sellebjerg F, Søndergaard HB. IL2RA Methylation and Gene Expression in Relation to the Multiple Sclerosis-Associated Gene Variant rs2104286 and Soluble IL-2Rα in CD8 + T Cells. Front Immunol 2021; 12:676141. [PMID: 34386002 PMCID: PMC8353370 DOI: 10.3389/fimmu.2021.676141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 01/22/2023] Open
Abstract
CD8+ T cells are involved in the pathogenesis of multiple sclerosis (MS). The interleukin-2 receptor α (IL-2Rα) is important for CD8+ T cell function, and single nucleotide polymorphisms (SNPs) in the IL2RA gene encoding IL-2Rα increase the risk of MS. Therefore, in isolated CD8+ T cells we investigated IL2RA gene methylation and gene expression in relation to the MS-associated IL2RA SNP rs2104286 and soluble IL-2Rα (sIL-2Rα). We have identified allele specific methylation of the CpG-site located in intron 1 that is perturbed by the rs2104286 SNP in CD8+ T cells from genotype-selected healthy subjects (HS). However, methylation of selected CpG-sites in the promotor or 5'UTR region of the IL2RA gene was neither associated with the rs2104286 SNP nor significantly correlated with IL2RA gene expression in HS. In CD8+ T cells from HS, we explored expression of immune relevant genes but observed only few associations with the rs2104286 SNP. However, we found that sIL-2Rα correlated negatively with expression of 55 immune relevant genes, including the IL-7 receptor gene, with Spearman's rho between -0.49 and -0.32. Additionally, in HS by use of flow cytometry we observed that the IL-7 receptor on naïve CD8+ T cells correlated negatively with sIL-2Rα and was downregulated in carriers of the rs2104286 MS-associated risk genotype. Collectively, our study of resting CD8+ T cells indicates that the rs2104286 SNP has a minor effect and sIL-2Rα may negatively regulate the CD8+ T cell response.
Collapse
Affiliation(s)
- Sophie Buhelt
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Hannah-Marie Laigaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Annette Oturai
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
13
|
Eken A, Cansever M, Okus FZ, Erdem S, Nain E, Azizoglu ZB, Haliloglu Y, Karakukcu M, Ozcan A, Devecioglu O, Aksu G, Arikan Ayyildiz Z, Topal E, Karakoc Aydiner E, Kiykim A, Metin A, Cipe F, Kaya A, Artac H, Reisli I, Guner SN, Uygun V, Karasu G, Dönmez Altuntas H, Canatan H, Oukka M, Ozen A, Chatila TA, Keles S, Baris S, Unal E, Patiroglu T. ILC3 deficiency and generalized ILC abnormalities in DOCK8-deficient patients. Allergy 2020; 75:921-932. [PMID: 31596517 DOI: 10.1111/all.14081] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Dedicator of cytokinesis 8 (DOCK8) deficiency is the main cause of the autosomal recessive hyper-IgE syndrome (HIES). We previously reported the selective loss of group 3 innate lymphoid cell (ILC) number and function in a Dock8-deficient mouse model. In this study, we sought to test whether DOCK8 is required for the function and maintenance of ILC subsets in humans. METHODS Peripheral blood ILC1-3 subsets of 16 DOCK8-deficient patients recruited at the pretransplant stage, and seven patients with autosomal dominant (AD) HIES due to STAT3 mutations, were compared with those of healthy controls or post-transplant DOCK8-deficient patients (n = 12) by flow cytometry and real-time qPCR. Sorted total ILCs from DOCK8- or STAT3-mutant patients and healthy controls were assayed for survival, apoptosis, proliferation, and activation by IL-7, IL-23, and IL-12 by cell culture, flow cytometry, and phospho-flow assays. RESULTS DOCK8-deficient but not STAT3-mutant patients exhibited a profound depletion of ILC3s, and to a lesser extent ILC2s, in their peripheral blood. DOCK8-deficient ILC1-3 subsets had defective proliferation, expressed lower levels of IL-7R, responded less to IL-7, IL-12, or IL-23 cytokines, and were more prone to apoptosis compared with those of healthy controls. CONCLUSION DOCK8 regulates human ILC3 expansion and survival, and more globally ILC cytokine signaling and proliferation. DOCK8 deficiency leads to loss of ILC3 from peripheral blood. ILC3 deficiency may contribute to the susceptibility of DOCK8-deficient patients to infections.
Collapse
|
14
|
Specific subfamilies of transposable elements contribute to different domains of T lymphocyte enhancers. Proc Natl Acad Sci U S A 2020; 117:7905-7916. [PMID: 32193341 PMCID: PMC7148579 DOI: 10.1073/pnas.1912008117] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) compose nearly half of mammalian genomes and provide building blocks for cis-regulatory elements. Using high-throughput sequencing, we show that 84 TE subfamilies are overrepresented, and distributed in a lineage-specific fashion in core and boundary domains of CD8+ T cell enhancers. Endogenous retroviruses are most significantly enriched in core domains with accessible chromatin, and bear recognition motifs for immune-related transcription factors. In contrast, short interspersed elements (SINEs) are preferentially overrepresented in nucleosome-containing boundaries. A substantial proportion of these SINEs harbor a high density of the enhancer-specific histone mark H3K4me1 and carry sequences that match enhancer boundary nucleotide composition. Motifs with regulatory features are better preserved within enhancer-enriched TE copies compared to their subfamily equivalents located in gene deserts. TE-rich and TE-poor enhancers associate with both shared and unique gene groups and are enriched in overlapping functions related to lymphocyte and leukocyte biology. The majority of T cell enhancers are shared with other immune lineages and are accessible in common hematopoietic progenitors. A higher proportion of immune tissue-specific enhancers are TE-rich compared to enhancers specific to other tissues, correlating with higher TE occurrence in immune gene-associated genomic regions. Our results suggest that during evolution, TEs abundant in these regions and carrying motifs potentially beneficial for enhancer architecture and immune functions were particularly frequently incorporated by evolving enhancers. Their putative selection and regulatory cooption may have accelerated the evolution of immune regulatory networks.
Collapse
|
15
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
16
|
Partial trisomy 21 contributes to T-cell malignancies induced by JAK3-activating mutations in murine models. Blood Adv 2019; 2:1616-1627. [PMID: 29986854 DOI: 10.1182/bloodadvances.2018016089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 02/05/2023] Open
Abstract
JAK3-activating mutations are commonly seen in chronic or acute hematologic malignancies affecting the myeloid, megakaryocytic, lymphoid, and natural killer (NK) cell compartment. Overexpression models of mutant JAK3 or pharmacologic inhibition of its kinase activity have highlighted the role that these constitutively activated mutants play in the T-cell, NK cell, and megakaryocytic lineages, but to date, the functional impact of JAK3 mutations at an endogenous level remains unknown. Here, we report a JAK3A572V knockin mouse model and demonstrate that activated JAK3 leads to a progressive and dose-dependent expansion of CD8+ T cells in the periphery before colonization of the bone marrow. This phenotype is dependent on the γc chain of cytokine receptors and presents several features of the human leukemic form of cutaneous T-cell lymphoma (L-CTCL), including skin involvements. We also showed that the JAK3A572V-positive malignant cells are transplantable and phenotypically heterogeneous in bone marrow transplantation assays. Interestingly, we revealed that activated JAK3 functionally cooperates with partial trisomy 21 in vivo to enhance the L-CTCL phenotype, ultimately leading to a lethal and fully penetrant disorder. Finally, we assessed the efficacy of JAK3 inhibition and showed that CTCL JAK3A572V-positive T cells are sensitive to tofacitinib, which provides additional preclinical insights into the use of JAK3 inhibitors in these disorders. Altogether, this JAK3A572V knockin model is a relevant new tool for testing the efficacy of JAK inhibitors in JAK3-related hematopoietic malignancies.
Collapse
|
17
|
Brill L, Lavon I, Vaknin-Dembinsky A. Reduced expression of the IL7Ra signaling pathway in Neuromyelitis optica. J Neuroimmunol 2018; 324:81-89. [PMID: 30248528 DOI: 10.1016/j.jneuroim.2018.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/19/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022]
Abstract
Neuromyelitis optica (NMO) is a chronic inflammatory demyelinating autoimmune disease of the central nervous system that most commonly affects the optic nerves and spinal cord. To characterize the immunological pathways involved in NMO, whole blood RNA expression array was performed using Nanostring nCounter technology. Two major clusters of genes were found associated with NMO: T cell-associated genes and the TNF/NF-kB signaling pathway. Analysis of the genes within the first cluster confirmed significantly reduced expression of IL7Ra (CD127) in the peripheral blood of NMO patients vs that in healthy controls. IL7Ra upstream transcription factors and its downstream survival signaling pathway were also markedly reduced. In line with the essential role of IL7Ra in T cell maturation and survival, a significantly lower number of naïve T cells, and reduced T cell survival signaling mediated by increased BID (BH3-interacting domain death agonist) expression and increased apoptosis was observed. Cumulatively, these findings indicate that the IL7Ra signaling pathway may play a role in the autoimmune process in NMO.
Collapse
Affiliation(s)
- Livnat Brill
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel
| | - Iris Lavon
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel; Leslie and Michael Center for Neuro-oncology, Hadassah-Medical Center, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, the Agnes-Ginges Center for Neurogenetics, Hadassah- Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Israel.
| |
Collapse
|
18
|
Foxp1 controls mature B cell survival and the development of follicular and B-1 B cells. Proc Natl Acad Sci U S A 2018; 115:3120-3125. [PMID: 29507226 PMCID: PMC5866538 DOI: 10.1073/pnas.1711335115] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many patients with B cell lymphoma carry alterations in the gene coding for the transcription factor Foxp1. High Foxp1 expression has been linked to poor prognosis in those malignancies; however, the physiological functions of Foxp1 in mature B cells remain unknown. By employing genetic mouse models, we show that Foxp1 deletion results in reduced B cell numbers and impaired antibody production upon T cell-independent immunization. Foxp1-deficient mature B cells are impaired in survival and exhibit an increased proliferation capacity, and transcriptional analysis identified defective expression of the prosurvival Bcl-xl gene. Our results provide insight into the regulation of mature B cell survival by Foxp1 and have implications for understanding the role of Foxp1 in the development of B cell malignancies. The transcription factor Foxp1 is critical for early B cell development. Despite frequent deregulation of Foxp1 in B cell lymphoma, the physiological functions of Foxp1 in mature B cells remain unknown. Here, we used conditional gene targeting in the B cell lineage and report that Foxp1 disruption in developing and mature B cells results in reduced numbers and frequencies of follicular and B-1 B cells and in impaired antibody production upon T cell-independent immunization in vivo. Moreover, Foxp1-deficient B cells are impaired in survival even though they exhibit an increased capacity to proliferate. Transcriptional analysis identified defective expression of the prosurvival Bcl-2 family gene Bcl2l1 encoding Bcl-xl in Foxp1-deficient B cells, and we identified Foxp1 binding in the regulatory region of Bcl2l1. Transgenic overexpression of Bcl2 rescued the survival defect in Foxp1-deficient mature B cells in vivo and restored peripheral B cell numbers. Thus, our results identify Foxp1 as a physiological regulator of mature B cell survival mediated in part via the control of Bcl-xl expression and imply that this pathway might contribute to the pathogenic function of aberrant Foxp1 expression in lymphoma.
Collapse
|
19
|
Abstract
There has been speculation as to how bi-potent CD4(+) CD8(+) double-positive precursor thymocytes choose their distinct developmental fate, becoming either CD4(+) helper or CD8(+) cytotoxic T cells. Based on the clear correlation of αβT cell receptor (TCR) specificity to major histocompatibility complex (MHC) classes with this lineage choice, various studies have attempted to resolve this question by examining the cellular signaling events initiated by TCR engagements, a strategy referred to as a 'top-down' approach. On the other hand, based on the other correlation of CD4/CD8 co-receptor expression with its selected fate, other studies have addressed this question by gradually unraveling the sequential mechanisms that control the phenotypic outcome of this fate decision, a method known as the 'bottom-up' approach. Bridging these two approaches will contribute to a more comprehensive understanding of how TCR signals are coupled with developmental programs in the nucleus. Advances made during the last two decades seemed to make these two approaches more closely linked. For instance, identification of two transcription factors, ThPOK and Runx3, which play central roles in the development of helper and cytotoxic lineages, respectively, provided significant insights into the transcriptional network that controls a CD4/CD8 lineage choice. This review summarizes achievements made using the 'bottom-up' approach, followed by a perspective on future pathways toward coupling TCR signaling with nuclear programs.
Collapse
Affiliation(s)
- Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
20
|
Transcriptional regulation of the IL-7Rα gene by dexamethasone and IL-7 in primary human CD8 T cells. Immunogenetics 2016; 69:13-27. [PMID: 27541597 DOI: 10.1007/s00251-016-0948-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/08/2016] [Indexed: 01/09/2023]
Abstract
Interleukin-7 is essential for the development and maintenance of T cells, and the expression of the IL-7 receptor is tightly regulated at every stage of the T cell's lifespan. In mature CD8 T cells, IL-7 plays important roles in cell survival, peripheral homeostasis, and cytolytic function. The IL-7 receptor alpha-chain (CD127) is expressed at high levels on naïve and memory cells, but it is rapidly downregulated upon IL-7 stimulation. In this study, we illustrate the dynamicity of the CD127 promoter and show that it possesses positive as well as negative regulatory sites involved in upregulating and downregulating CD127 expression, respectively. We cloned the CD127 gene promoter and identified key cis-regulatory elements required for CD127 expression in mature resting primary CD8 T cells. The core promoter necessary for efficient basal transcription is contained within the first 262 bp upstream of the TATA box. Additional positive regulatory elements are located between -1200 and -2406 bp, conferring a further 2- to 4-fold enhancement in gene expression. While transcription of the CD127 gene is increased directly through a glucocorticoid response element located between -2255 and -2269 bp upstream of the TATA box, we identified a suppressive region that lies upstream of 1760 bp from the TATA box, which is likely involved in the IL-7-mediated suppression of CD127 transcription. Finally, we illustrated IL-7 does not bias alternative splicing of CD127 transcripts in primary human CD8 T cells.
Collapse
|
21
|
Tousen Y, Matsumoto Y, Matsumoto C, Nishide Y, Nagahata Y, Kobayashi I, Ishimi Y. The combined effects of soya isoflavones and resistant starch on equol production and trabecular bone loss in ovariectomised mice. Br J Nutr 2016; 116:247-57. [PMID: 27197747 DOI: 10.1017/s0007114516001537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Equol is a metabolite of the soya isoflavone (ISO) daidzein that is produced by intestinal microbiota. Equol has greater oestrogenic activity compared with other ISO, and it prevents bone loss in postmenopausal women. Resistant starch (RS), which has a prebiotic activity and is a dietary fibre, was reported to promote equol production. Conversely, the intestinal microbiota is reported to directly regulate bone health by reducing inflammatory cytokine levels and T-lymphocytes in bone. The present study evaluated the combined effects of diet supplemented with ISO and RS on intestinal microbiota, equol production, bone mineral density (BMD) and inflammatory gene expression in the bone marrow of ovariectomised (OVX) mice. Female ddY strain mice, aged 8 weeks, were either sham-operated (Sham, n 7) or OVX. OVX mice were randomly divided into the following four groups (seven per group): OVX control (OVX); OVX fed 0·05 % ISO diet (OVX+ISO); OVX fed 9 % RS diet (OVX+RS); and OVX fed 0·05 % ISO- and 9 % RS diet (OVX+ISO+RS). After 6 weeks, treatment with the combination of ISO and RS increased equol production, prevented the OVX-induced decline in trabecular BMD in the distal femur by modulating the enteric environment and altered OVX-induced inflammation-related gene expression in the bone marrow. However, there were no significant differences in bone parameters between the ISO+RS and ISO-alone groups in OVX mice. Our findings suggest that the combination of ISO and RS might alter intestinal microbiota and immune status in the bone marrow, resulting in attenuated bone resorption in OVX mice.
Collapse
Affiliation(s)
- Yuko Tousen
- 1Department of Food Function and Labeling,National Institute of Health and Nutrition,National Institutes of Biomedical Innovation, Health and Nutrition,1-23-1 Toyama,Shinjuku-ku,Tokyo 162-8636,Japan
| | - Yu Matsumoto
- 1Department of Food Function and Labeling,National Institute of Health and Nutrition,National Institutes of Biomedical Innovation, Health and Nutrition,1-23-1 Toyama,Shinjuku-ku,Tokyo 162-8636,Japan
| | - Chiho Matsumoto
- 1Department of Food Function and Labeling,National Institute of Health and Nutrition,National Institutes of Biomedical Innovation, Health and Nutrition,1-23-1 Toyama,Shinjuku-ku,Tokyo 162-8636,Japan
| | - Yoriko Nishide
- 1Department of Food Function and Labeling,National Institute of Health and Nutrition,National Institutes of Biomedical Innovation, Health and Nutrition,1-23-1 Toyama,Shinjuku-ku,Tokyo 162-8636,Japan
| | - Yuya Nagahata
- 3Product Development Laboratory,J-OIL MILLS,Inc.,11 Kagetoricho,Totsuka-ku,Yokohama,Kanagawa 245-0064,Japan
| | - Isao Kobayashi
- 3Product Development Laboratory,J-OIL MILLS,Inc.,11 Kagetoricho,Totsuka-ku,Yokohama,Kanagawa 245-0064,Japan
| | - Yoshiko Ishimi
- 1Department of Food Function and Labeling,National Institute of Health and Nutrition,National Institutes of Biomedical Innovation, Health and Nutrition,1-23-1 Toyama,Shinjuku-ku,Tokyo 162-8636,Japan
| |
Collapse
|
22
|
Abstract
Memory CD8 T cells generated after acute viral infections or live vaccines can persist for extended periods, in some instances for life, and play an important role in protective immunity. This long-lived immunity is achieved in part through cytokine-mediated homeostatic proliferation of memory T cells while maintaining the acquired capacity for rapid recall of effector cytokines and cytolytic molecules. The ability of memory CD8 T cells to retain their acquired properties, including their ability to remain poised to recall effector functions, is a truly impressive feat given that these acquired properties can be maintained for decades without exposure to cognate antigen. Here, we discuss general mechanisms for acquisition and maintenance of transcriptional programs in memory CD8 T cells and the potential role of epigenetic programming in maintaining the phenotypic and functional heterogeneity of cellular subsets among the pool of memory cells.
Collapse
Affiliation(s)
- Ben Youngblood
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Department of Immunology, St Jude Children's Research Hospital262 Danny Thomas Place, Memphis, TN 38105-3678USA
| | - J. Scott Hale
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| |
Collapse
|
23
|
Xiong QF, Huang P, Zhao L, Yang YF, Feng XN, Zhao H, Wang HL. Pegylated interferon α enhances recovery of memory T cells in hepatitis B e antigen positive chronic hepatitis B patients. Shijie Huaren Xiaohua Zazhi 2014; 22:3980-3985. [DOI: 10.11569/wcjd.v22.i26.3980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the change of peripheral CD8+ memory T lymphocyte subsets in hepatitis B e antigen positive patients with chronic hepatitis B (CHB) during peginterferon-alph 2b (PEG-IFNα-2b) treatment.
METHODS: Thirty hepatitis B e antigen positive patients with CHB were recruited and received PEG-IFNα-2b treatment for 24 wk. Before and at the 12th and 24th wk of treatment, flow cytometry was used to detect the peripheral CD8+ memory T lymphocyte subsets. Real-time PCR was used to detect the level of HBV DNA. Markers of hepatitis B virus infection were detected by ELISA assay, and serum level of alanine aminotransferase (ALT) was measured using an automatic biochemical analyzer.
RESULTS: Treatment for 24 wk with PEG-IFN-2b resulted in HBeAg seroconversion to negative in 6.7% patients, and the response rate was 36.7%. The response rate was significantly higher in patients with lower viral load (VL). At weeks 12 and 24, serum ALT levels in patients with CHB were significantly lower than pretreatment values. The level of HBV DNA and the percentage of naïve lymphocytes (T naïve) in patients with CHB at week 12 were significantly lower than pretreatment values, but there were no significant differences between at weeks 24 and 12. The percentages of central memory T cells (TCM) and effector memory T cells (TEM) increased gradually during PEG-IFNα-2b treatment. The levels of ALT and HBV DNA and the proportion of naïve T cells significantly decreased in the responders at 12 and 24 wk (P < 0.05), and the proportion of TEM significantly increased at 12 and 24 wk (P < 0.05). The proportion of TCM had no significant difference between the responders and non-responders at 12 wk (P > 0.05), but significantly increased in the responders at 24 wk (P < 0.05). TTEM had no significant changes at different time points and in the responders.
CONCLUSION: PEG-IFNα-2b treatment enhances recovery of memory T cell subset in CHB patients by down-regulating naïve T cells and up-regulating effector cells. CD8+ memory T lymphocyte subsets may be used as biomarkers for predicting the outcome of treatment.
Collapse
|
24
|
Zaunders JJ, Lévy Y, Seddiki N. Exploiting differential expression of the IL-7 receptor on memory T cells to modulate immune responses. Cytokine Growth Factor Rev 2014; 25:391-401. [PMID: 25130296 DOI: 10.1016/j.cytogfr.2014.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 is a non-redundant growth, differentiation and survival factor for human T lymphocytes. Most circulating, mature T cells express the receptor for IL-7, but not all. Importantly, CD4 Tregs express greatly reduced levels of IL-7R compared to conventional CD4 T cells, presenting an opportunity to selectively target the latter cells with either more IL-7 to boost responses, or to block IL-7 signalling to limit responses. This article reviews what is known about regulation of IL-7R expression, and recent progress in therapeutic approaches related to IL-7 and its receptor.
Collapse
Affiliation(s)
- John J Zaunders
- Centre for Applied Medical Research, St. Vincent's Hospital, Australia; Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yves Lévy
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France; AP-HP, Hôpital H. Mondor-A. Chenevier, Service d'immunologie Clinique et maladies infectieuses, Créteil, 94000, France
| | - Nabila Seddiki
- Inserm, U955, Equipe 16, Créteil, 94000, France; Université Paris Est, Faculté de médecine, Créteil, 94000, France; Vaccine Research Institute (VRI), Créteil, 94000, France.
| |
Collapse
|
25
|
Kared H, Saeed S, Klein MB, Shoukry NH. CD127 expression, exhaustion status and antigen specific proliferation predict sustained virologic response to IFN in HCV/HIV co-infected individuals. PLoS One 2014; 9:e101441. [PMID: 25007250 PMCID: PMC4090061 DOI: 10.1371/journal.pone.0101441] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/05/2014] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of morbidity and mortality in the HIV co-infected population. Interferon-alpha (IFN-α) remains a major component of anti-HCV therapy despite its deleterious effects on the immune system. Furthermore, IFN-α was recently shown to diminish the size of the latent HIV reservoir. The objectives of this study were to monitor the impact of IFN-α on T cell phenotype and proliferation of HIV and HCV-specific T cells during IFN therapy, and to identify immune markers that can predict the response to IFN in HICV/HIV co-infected patients. We performed longitudinal analyses of T cell numbers, phenotype and function in co-infected patients undergoing IFN-α therapy with different outcomes including IFN-α non-responders (NR) (n = 9) and patients who achieved sustained virologic response (SVR) (n = 19). We examined the expression of activation (CD38, HLA-DR), functional (CD127) and exhaustion markers (PD1, Tim-3, CD160 and CD244) on total CD4 and CD8 T cells before, during and after therapy. In addition, we examined the HIV- and HCV-specific proliferative responses against HIV-p24 and HCV-NS3 proteins. Frequencies of CD127+ CD4 T cells were higher in SVR than in NR patients at baseline. An increase in CD127 expression on CD8 T cells was observed after IFN-α therapy in all patients. In addition, CD8 T cells from NR patients expressed a higher exhaustion status at baseline. Finally, SVR patients exhibited higher proliferative response against both HIV and HCV antigens at baseline. Altogether, SVR correlated with higher expression of CD127, lower T cell exhaustion status and better HIV and HCV proliferative responses at baseline. Such factors might be used as non-invasive methods to predict the success of IFN–based therapies in co-infected individuals.
Collapse
Affiliation(s)
- Hassen Kared
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Sahar Saeed
- Department of Medicine, Divisions of Infectious Diseases/Chronic Viral Illness Service, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Marina B. Klein
- Department of Medicine, Divisions of Infectious Diseases/Chronic Viral Illness Service, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
26
|
The CD4/CD8 lineages: central decisions and peripheral modifications for T lymphocytes. Curr Top Microbiol Immunol 2014; 373:113-29. [PMID: 23612990 DOI: 10.1007/82_2013_323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
CD4(+) helper and CD8(+) cytotoxic T cells, two major subsets of αβTCR expressing lymphocytes, are differentiated from common precursor CD4(+)CD8(+) double-positive (DP) thymocytes. Bifurcation of the CD4(+)/CD8(+) lineages in the thymus is a multilayered process and is thought to culminate in a loss of developmental plasticity between these functional subsets. Advances in the last decade have deepened our understanding of the transcription control mechanisms governing CD4 versus CD8 lineage commitment. Reciprocal expression and antagonistic interplay between two transcription factors, ThPOK and Runx3, is crucial for driving thymocyte decisions between these two cell fates. Here, we first focus on the regulation of ThPOK expression and its role in directing helper T cell development. We then discuss a novel aspect of the ThPOK/Runx3 axis in modifying CD4(+) T cell function upon exposure to gut microenvironment.
Collapse
|
27
|
Abstract
T cells are essential for immune defenses against pathogens, such that viability of naïve T cells before antigen encounter is critical to preserve a polyclonal repertoire and prevent immunodeficiencies. The viability of naïve T cells before antigen recognition is ensured by IL-7, which drives expression of the prosurvival factor Bcl-2. Quiescent naïve T cells have low basal activity of the transcription factor NF-κB, which was assumed to have no functional consequences. In contrast to this postulate, our data show that basal nuclear NF-κB activity plays an important role in the transcription of IL-7 receptor α-subunit (CD127), enabling responsiveness of naïve T cells to the prosurvival effects of IL-7 and allowing T-cell persistence in vivo. Moreover, we show that this property of basal NF-κB activity is shared by mouse and human naïve T cells. Thus, NF-κB drives a distinct transcriptional program in T cells before antigen encounter by controlling susceptibility to IL-7. Our results reveal an evolutionarily conserved role of NF-κB in T cells before antigenic stimulation and identify a novel molecular pathway that controls T-cell homeostasis.
Collapse
|
28
|
Tal N, Shochat C, Geron I, Bercovich D, Izraeli S. Interleukin 7 and thymic stromal lymphopoietin: from immunity to leukemia. Cell Mol Life Sci 2014; 71:365-78. [PMID: 23625073 PMCID: PMC11113825 DOI: 10.1007/s00018-013-1337-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/10/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
Cancer is often caused by deregulation of normal developmental processes. Here, we review recent research on the aberrant activation of two hematopoietic cytokine receptors in acute lymphoid leukemias. Somatic events in the genes for thymic stromal lymphopoietin and Interleukin 7 receptors as well as in their downstream JAK kinases result in constitutive ligand-independent activation of survival and proliferation in B and T lymphoid precursors. Drugs targeting these receptors or the signaling pathways might provide effective therapies of these leukemias.
Collapse
Affiliation(s)
- Noa Tal
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Shochat
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Ifat Geron
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Biological Sciences and Department of Medicine Stem Cell Program, University of California San Diego, La Jolla, California USA
| | - Dani Bercovich
- Migal Galilee Technology Center, Kiryat Shmona, Israel
- Tel Hai College, 12210 Upper Galilee, Israel
| | - Shai Izraeli
- Cancer Research Center, Sheba Medical Center, Edmond and Lily Safra Children’s Hospital, Tel Hashomer, 52621 Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
29
|
Ets-1 facilitates nuclear entry of NFAT proteins and their recruitment to the IL-2 promoter. Proc Natl Acad Sci U S A 2013; 110:15776-81. [PMID: 24019486 DOI: 10.1073/pnas.1304343110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
E26 transformation-specific sequence 1 (Ets-1), the prototype of the ETS family of transcription factors, is critical for the expression of IL-2 by murine Th cells; however, its mechanism of action is still unclear. Here we show that Ets-1 is also essential for optimal production of IL-2 by primary human Th cells. Although Ets-1 negatively regulates the expression of Blimp1, a known suppressor of IL-2 expression, ablation of B lymphocyte-induced maturation protein 1 (Blimp1) does not rescue the expression of IL-2 by Ets-1-deficient Th cells. Instead, Ets-1 physically and functionally interacts with the nuclear factor of activated T-cells (NFAT) and is required for the recruitment of NFAT to the IL-2 promoter. In addition, Ets-1 is located in both the nucleus and cytoplasm of resting Th cells. Nuclear Ets-1 quickly exits the nucleus in response to calcium-dependent signals and competes with NFAT proteins for binding to protein components of noncoding RNA repressor of NFAT complex (NRON), which serves as a cytoplasmic trap for phosphorylated NFAT proteins. This nuclear exit of Ets-1 precedes rapid nuclear entry of NFAT and Ets-1 deficiency results in impaired nuclear entry, but not dephosphorylation, of NFAT proteins. Thus, Ets-1 promotes the expression of IL-2 by modulating the activity of NFAT.
Collapse
|
30
|
Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv Biol Regul 2013; 53:211-222. [PMID: 23234870 DOI: 10.1016/j.jbior.2012.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/09/2012] [Indexed: 06/01/2023]
Abstract
Interleukin-7 (IL-7), a cytokine produced in the bone marrow, thymus and other organs, is mandatory for normal human T-cell development and peripheral homeostasis. Different studies, including phase I clinical trials, have indicated the potential therapeutic value of recombinant IL-7 in the context of anti-cancer immunotherapy and as a booster of immune reconstitution. However, the two main pathways activated by IL-7, JAK/STAT5 and PI3K/Akt/mTOR, have both been implicated in cancer and there is considerable evidence that IL-7 and its receptor (IL-7R), formed by IL-7Rα (encoded by IL7R) and γc, may partake in T-cell acute lymphoblastic leukemia (T-ALL) development. In this context, the most compelling data comes from recent studies demonstrating that around 10% of T-ALL patients display IL7R gain-of-function mutations leading, in most cases, to disulfide bond-dependent homodimerization of two mutant receptors and consequent constitutive activation of downstream signaling, with ensuing cell transformation in vitro and tumorigenic ability in vivo. Here, we review the data on the involvement of IL-7 and IL-7R in T-ALL, further discussing the peculiarities of IL-7R-mediated signaling in human leukemia T-cells that may be of therapeutic value, namely regarding the potential use of PI3K and mTOR pharmacological inhibitors.
Collapse
Affiliation(s)
- Daniel Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Unversidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | | | | |
Collapse
|
31
|
Vosshenrich CAJ, Di Santo JP. Developmental programming of natural killer and innate lymphoid cells. Curr Opin Immunol 2013; 25:130-8. [PMID: 23490162 DOI: 10.1016/j.coi.2013.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
Abstract
In recent years we have witnessed a blooming interest in innate lymphoid cell (ILC) biology thanks to the discovery of novel lineages of ILC that are phenotypically and functionally distinct from NK cells. While the importance of these novel ILC subsets as essential functional components of the early immune responses are now clearly established, many questions remain as to how early ILC developmental fates are determined and how specific effector functions associated with individual ILC subsets are achieved. As the founding member of the ILC family, properties of NK cells have defining attributes that characterize this group of innate effectors. Analysing their developmental rules may provide clues to principles that guide ILC development in general.
Collapse
|
32
|
Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci 2013; 70:3375-90. [PMID: 23288305 DOI: 10.1007/s00018-012-1243-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The Ets1 transcription factor is a member of the Ets gene family and is highly conserved throughout evolution. Ets1 is known to regulate a number of important biological processes in normal cells and in tumors. In particular, Ets1 has been associated with regulation of immune cell function and with an aggressive behavior in tumors that express it at high levels. Here we review and summarize the general features of Ets1 and describe its roles in immunity and autoimmunity, with a focus on its roles in B lymphocytes. We also review evidence that suggests that Ets1 may play a role in malignant transformation of hematopoietic malignancies including B cell malignancies.
Collapse
|
33
|
Abstract
After their development in the thymus, mature T cells are maintained in the periphery by two sets of survival signals, namely TCR signals from contact with self-peptide/MHC ligands and the cytokine receptor signals from binding IL-7 and IL-15. These signals cooperate to maximize the utility of finite resources to support a diverse pool of mature T cells. It is becoming increasingly clear that multiple mechanisms exist to regulate expression of IL-7R at the transcriptional and post-translational levels. The interplay between TCR signals and IL-7R signals are also important in regulation of IL-7R expression. This review will focus on regulation of T cell homeostasis by IL-7R signaling, with an emphasis on the cross talk between signals from TCR and IL-7R.
Collapse
Affiliation(s)
- Florent Carrette
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles D. Surh
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
- WCU program, Division of IBB, POSTECH, Pohang, 790-784, Korea
| |
Collapse
|
34
|
Ramirez K, Chandler KJ, Spaulding C, Zandi S, Sigvardsson M, Graves BJ, Kee BL. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 2012; 36:921-32. [PMID: 22608498 DOI: 10.1016/j.immuni.2012.04.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/02/2012] [Accepted: 04/19/2012] [Indexed: 01/01/2023]
Abstract
Multiple transcription factors guide the development of mature functional natural killer (NK) cells, yet little is known about their function. We used global gene expression and genome-wide binding analyses combined with developmental and functional studies to unveil three roles for the ETS1 transcription factor in NK cells. ETS1 functions at the earliest stages of NK cell development to promote expression of critical transcriptional regulators including T-BET and ID2, NK cell receptors (NKRs) including NKp46, Ly49H, and Ly49D, and signaling molecules essential for NKR function. As a consequence, Ets1(-/-) NK cells fail to degranulate after stimulation through activating NKRs. Nonetheless, these cells are hyperresponsive to cytokines and have characteristics of chronic stimulation including increased expression of inhibitory NKRs and multiple activation-associated genes. Therefore, ETS1 regulates a broad gene expression program in NK cells that promotes target cell recognition while limiting cytokine-driven activation.
Collapse
Affiliation(s)
- Kevin Ramirez
- Committee on Immunology, The University of Chicago, Chicago, IL 60615, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Xiong Y, Bosselut R. CD4-CD8 differentiation in the thymus: connecting circuits and building memories. Curr Opin Immunol 2012; 24:139-45. [PMID: 22387323 PMCID: PMC3773541 DOI: 10.1016/j.coi.2012.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/22/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
The proper choice of the CD4-helper or CD8-cytotoxic lineages by developing T cells is crucial for the generation of an antigen-responsive and functionally fit T cell repertoire. Here we present a brief overview of the transcriptional control of this process, with emphasis on two issues. The study of Cd4 expression, that had previously generated important paradigms for transcriptional regulation in eukaryotic cells, now brings new twists to the concept of 'epigenetic memory'. And connections are emerging between transcriptional regulators critical for commitment to either lineage. The present review attempts to integrate these findings and discusses the still elusive mechanisms that match CD4-CD8 lineage differentiation to MHC specificity.
Collapse
Affiliation(s)
- Yumei Xiong
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Dong H, Franklin NA, Roberts DJ, Yagita H, Glennie MJ, Bullock TNJ. CD27 stimulation promotes the frequency of IL-7 receptor-expressing memory precursors and prevents IL-12-mediated loss of CD8(+) T cell memory in the absence of CD4(+) T cell help. THE JOURNAL OF IMMUNOLOGY 2012; 188:3829-38. [PMID: 22422886 DOI: 10.4049/jimmunol.1103329] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fully functional CD8(+) T cell memory is highly dependent upon CD4(+) T cell support. CD4(+) T cells play a critical role in inducing the expression of CD70, the ligand for CD27, on dendritic cells. In this study, we demonstrate that CD27 stimulation during primary CD8(+) T cell responses regulates the ability to mount secondary CD8(+) T cell responses. CD27 stimulation during vaccinia and dendritic cell immunization controls the expression of the IL-7R (CD127), which has been shown to be necessary for memory CD8(+) T cell survival. Furthermore, CD27 stimulation during primary CD8(+) T cell responses to vaccinia virus restrained the late expression on memory precursor cells of cytokine receptors that support terminal differentiation. The formation of CD8(+) T cell memory precursors and secondary CD8(+) T cell responses was restored in the absence of CD27 costimulation when endogenous IL-12 was not available. Similarly, the lesion in CD8(+) T cell memory that occurs in the absence of CD4(+) T cells did not occur in mice lacking IL-12. These data indicate that CD4(+) T cell help and, by extension, CD27 stimulation support CD8(+) T cell memory by modulating the expression of cytokine receptors that influence the differentiation and survival of memory CD8(+) T cells.
Collapse
Affiliation(s)
- Han Dong
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
37
|
IL-7: the global builder of the innate lymphoid network and beyond, one niche at a time. Semin Immunol 2012; 24:190-7. [PMID: 22421575 DOI: 10.1016/j.smim.2012.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/15/2012] [Indexed: 12/28/2022]
Abstract
The development and homeostasis of adaptive and innate lymphocytes is dependent on the stromal cytokine IL-7. The initial priming of immune responses to pathogenic challenges is executed by innate lymphoid cells (ILCs) with programmed capacity to rapidly secrete effector cytokines. How ILCs are controlled by IL-7 in distinct anatomical locale has evolved into a more complex problem as IL-7 receptor is not only expressed on ILCs, but also on surrounding neighbors, including vascular endothelium and mesenchymal cells that compete for limiting IL-7. For the generation of γδ T and B cells IL-7 is required for the production of antigen receptors, and it is likely that IL-7 performs critical function in facilitating ILC effector programming in addition to its regulatory actions on cell survival and proliferation. Most of our current understanding of the highly calibrated regulatory circuits of IL-7 function and IL-7 receptor signaling has derived from studies of adaptive, conventional lymphocytes. Here we highlight recent advances in mapping the gene circuits and cellular interactions that regulate temporospatial activities of IL-7 in diverse macro and micro niches that have direct relevance to deciphering the sphere of impact of IL-7 on ILC differentiation.
Collapse
|
38
|
Uchiumi F, Miyazaki S, Tanuma SI. [Biological functions of the duplicated GGAA-motifs in various human promoter regions]. YAKUGAKU ZASSHI 2011; 131:1787-800. [PMID: 22129877 DOI: 10.1248/yakushi.131.1787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription is one of the most fundamental cellular functions and is an enzyme-complex mediated reaction that converts DNA sequences into mRNA. TATA-box is known to be an important motif for transcription. However, there are majority of promoters that have no TATA-box. They are called as TATA-less promoters and possess other elements that determine the transcription start site (TSS) of the genes. Multiple protein factors including ETS family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ETS binding motifs play important roles in regulation of various promoters. Here, we propose that the duplication and multiplication of the GGAA motifs are responsible for the initiation of transcription from TATA-less promoters.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | |
Collapse
|
39
|
Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 2011; 11:330-42. [PMID: 21508983 DOI: 10.1038/nri2970] [Citation(s) in RCA: 426] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-7 (IL-7) is required for T cell development and for maintaining and restoring homeostasis of mature T cells. IL-7 is a limiting resource under normal conditions, but it accumulates during lymphopaenia, leading to increased T cell proliferation. The administration of recombinant human IL-7 to normal or lymphopenic mice, non-human primates and humans results in widespread T cell proliferation, increased T cell numbers, modulation of peripheral T cell subsets and increased T cell receptor repertoire diversity. These effects raise the prospect that IL-7 could mediate therapeutic benefits in several clinical settings. This Review summarizes the biology of IL-7 and the results of its clinical use that are available so far to provide a perspective on the opportunities for clinical application of this cytokine.
Collapse
Affiliation(s)
- Crystal L Mackall
- Immunology Section, Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
40
|
Leng RX, Pan HF, Chen GM, Feng CC, Fan YG, Ye DQ, Li XP. The dual nature of Ets-1: Focus to the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 2011; 10:439-43. [DOI: 10.1016/j.autrev.2011.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/29/2011] [Indexed: 12/21/2022]
|
41
|
The possible functions of duplicated ets (GGAA) motifs located near transcription start sites of various human genes. Cell Mol Life Sci 2011; 68:2039-51. [PMID: 21461879 PMCID: PMC3101357 DOI: 10.1007/s00018-011-0674-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/28/2011] [Accepted: 03/17/2011] [Indexed: 12/19/2022]
Abstract
Transcription is one of the most fundamental nuclear functions and is an enzyme complex-mediated reaction that converts DNA sequences into mRNA. Analyzing DNA sequences of 5′-flanking regions of several human genes that respond to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in HL-60 cells, we have identified that the ets (GGAA) motifs are duplicated, overlapped, or clustered within a 500-bp distance from the most 5′-upstream region of the cDNA. Multiple protein factors including Ets family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ets motifs play important roles in regulation of various promoters. Here, we propose a molecular mechanism, defined by the presence of duplication and multiplication of the GGAA motifs, that is responsible for the initiation of transcription of several genes and for the recruitment of binding proteins to the transcription start site (TSS) of TATA-less promoters.
Collapse
|