1
|
Refurbishment of NK cell effector functions through their receptors by depleting the activity of nTreg cells in Dalton’s Lymphoma-induced tumor microenvironment: an in vitro and in vivo study. Cancer Immunol Immunother 2022; 72:1429-1444. [DOI: 10.1007/s00262-022-03339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
|
2
|
Matsubara H, Niwa A, Nakahata T, Saito MK. Induction of human pluripotent stem cell-derived natural killer cells for immunotherapy under chemically defined conditions. Biochem Biophys Res Commun 2019; 515:1-8. [DOI: 10.1016/j.bbrc.2019.03.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
3
|
Radke JR, Routes JM, Cook JL. E1A oncogene induced sensitization to NK cell induced apoptosis requires PIDD and Caspase-2. Cell Death Discov 2019; 5:110. [PMID: 31285853 PMCID: PMC6602934 DOI: 10.1038/s41420-019-0189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022] Open
Abstract
Expression of the adenovirus E1A oncogene sensitizes tumor cells to innate immune rejection by NK cells. This increased NK sensitivity is only partly explained by an E1A-induced increase in target cell surface expression of NKG2D ligands. The post-recognition mechanisms by which E1A sensitizes cells to the apoptotic cell death response to NK injury remains to be defined. E1A sensitizes cells to apoptotic stimuli through two distinct mechanisms-repression of NF-κB-dependent antiapoptotic responses and enhancement of caspase-2 activation and related mitochondrial injury. The current studies examined the roles of each of these post-NKG2D-recognition pathways in the increased sensitivity of E1A-positive target cells to NK killing. Sensitization to NK-induced apoptosis was independent of E1A-mediated repression of cellular NF-κB responses but was dependent on the expression of both caspase-2 and the upstream, caspase-2 activating molecule, PIDD. Target cells lacking caspase-2 or PIDD expression retained E1A-induced increased expression of the NKG2D ligand, RAE-1. NK cell-induced mitochondrial injury of E1A-expressing cells did not require expression of the mitochondrial molecules, Bak or Bax. These results define a PIDD/caspase-2-dependent pathway, through which E1A sensitizes cells to NK-mediated cytolysis independently of and complementarily to E1A-enhanced NKG2D/RAE-1 ligand expression.
Collapse
Affiliation(s)
- Jay R Radke
- 1Research Section, Boise VA Hospital and Idaho Veterans Research and Education Foundation, Boise, ID 83702 USA
| | - John M Routes
- 2Section of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - James L Cook
- 3Research Section, Edward Hines, Jr. VA Hospital, Hines, Maywood, IL 60141 USA.,4Division of Infectious Diseases, Department of Microbiology and Immunology, and the Infectious Diseases and Immunology Research Institute, Loyola University Chicago-Stritch School of Medicine, Maywood, IL 60153 USA
| |
Collapse
|
4
|
Eisenberg V, Shamalov K, Meir S, Hoogi S, Sarkar R, Pinker S, Markel G, Porgador A, Cohen CJ. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor. Front Immunol 2017; 8:1212. [PMID: 29085357 PMCID: PMC5649149 DOI: 10.3389/fimmu.2017.01212] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022] Open
Abstract
Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR) continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK) cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs). In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Vasyl Eisenberg
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Katerina Shamalov
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shimrit Meir
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Shiran Hoogi
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Rhitajit Sarkar
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel.,ASAS, Amity University Haryana, Manesar, India
| | - Shirel Pinker
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Gal Markel
- The Ella Lemelbaum Institute of Immuno-Oncology, Institute of Oncology, Sheba Medical Center, Tel Hashomer, Israel
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Cyrille J Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Zhang C, Oberoi P, Oelsner S, Waldmann A, Lindner A, Tonn T, Wels WS. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity. Front Immunol 2017; 8:533. [PMID: 28572802 PMCID: PMC5435757 DOI: 10.3389/fimmu.2017.00533] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022] Open
Abstract
Significant progress has been made in recent years toward realizing the potential of natural killer (NK) cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs) composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future prospects of CAR-engineered NK-92 cells as off-the-shelf cellular therapeutics, with special emphasis on ErbB2 (HER2)-specific NK-92 cells that are approaching clinical application.
Collapse
Affiliation(s)
- Congcong Zhang
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pranav Oberoi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Sarah Oelsner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Anja Waldmann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Aline Lindner
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Torsten Tonn
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Red Cross Blood Donation Service North-East, Institute for Transfusion Medicine, Dresden, Germany.,Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Li K, Gordon AC, Zheng L, Li W, Guo Y, Sun J, Zhang G, Han G, Larson AC, Zhang Z. Clinically applicable magnetic-labeling of natural killer cells for MRI of transcatheter delivery to liver tumors: preclinical validation for clinical translation. Nanomedicine (Lond) 2016; 10:1761-74. [PMID: 26080698 DOI: 10.2217/nnm.15.24] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To test the hypothesis that MRI can monitor intraportal vein (IPV) transcatheter delivery of clinically applicable heparin-protamine-ferumoxytol (HPF) nanocomplex-labeled natural killer (NK) cells to liver tumor. MATERIALS & METHODS Liver tumor rat models underwent catheterization for IPV infusion of HPF-labeled NK cells (NK-92MI cell line). MRI measurements within tumor and adjacent liver tissues were compared pre- and post-NK cell infusion. Histology studies were used to identify NK cells in the target tumors. RESULTS For first time, we demonstrated that MRI tracks HPF-labeled NK cells migration within liver following IPV delivery. CONCLUSION IPV transcatheter infusion permitted selective delivery of NK cells to liver tissues and MRI allowed tracking NK cell biodistributions within the tumors.
Collapse
Affiliation(s)
- Kangan Li
- Department of Radiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P. R. China.,Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| | - Andrew C Gordon
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Linfeng Zheng
- Department of Radiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P. R. China.,Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| | - Weiguo Li
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Yang Guo
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Jing Sun
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA
| | - Guixiang Zhang
- Department of Radiology, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai 200080, P. R. China
| | - Guohong Han
- Department of Liver Disease & Digestive Interventional Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Andrew C Larson
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| | - Zhuoli Zhang
- Departments of Radiology, Northwestern University, 737 N Michigan Ave, Suite 1600, Chicago, IL 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, 675 N St Clair, 21st Floor, Suite 100, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Wei R, Hu Y, Dong F, Xu X, Hu A, Gao G. Hepatoma cell-derived leptin downregulates the immunosuppressive function of regulatory T-cells to enhance the anti-tumor activity of CD8+ T-cells. Immunol Cell Biol 2015; 94:388-99. [PMID: 26639061 DOI: 10.1038/icb.2015.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023]
Abstract
The adaptive immune response against hepatocellular carcinoma (HCC) could be a therapeutic target to restrain HCC initiation and growth. The interactions between hepatoma cells and immune cells modify the anti-tumor immunity to influence hepatoma cell survival. To explore the potential interplay between hepatoma cells and anti-HCC T-cells, we conducted a HCC induction mouse model to analyze the phenotypic and functional alterations of T-cell subsets. We found that both hepatoma tissues and hepatoma cell lines substantially produced higher leptin, which is an adipokine usually expressed in fat tissue, than normal liver tissue or hepatocytes. We also found that regulatory T-cells (Tregs), effector CD4(+) T-cells and CD8(+) T-cells upregulated expression of leptin receptor (LEPR) in spleens and livers after HCC induction. In vitro study showed that macrophages and dendritic cells isolated from HCC livers upregulated LEPR expression on T-cells. Leptin inhibited Treg activation and function in vitro, demonstrated by lower expression of TGF-β, IL-10, CTLA4 and GITR in Tregs, as wells weaker suppression of CD8(+) T-cell proliferation and production of cytotoxic mediators. In addition, silencing LEPR in Tregs favored tumor growth in a hepatoma cell line allograft model. Taken together, our study suggests that hepatoma cells could enhance anti-HCC immunity through secreting leptin to down-regulate Treg activity and subsequently promote CD8(+) T-cell response.
Collapse
Affiliation(s)
- Renxiong Wei
- Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo City, China
| | - Yaoren Hu
- Liver Disease Branch, Ningbo No.2 Hospital, Ningbo City, China
| | - Feibo Dong
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo City, China
| | - Xiaozhen Xu
- Liver Disease Branch, Ningbo No.2 Hospital, Ningbo City, China
| | - Airong Hu
- Liver Disease Branch, Ningbo No.2 Hospital, Ningbo City, China
| | - Guosheng Gao
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo City, China
| |
Collapse
|
8
|
Zhou Z, Yu X, Zhang J, Tian Z, Zhang C. TLR7/8 agonists promote NK-DC cross-talk to enhance NK cell anti-tumor effects in hepatocellular carcinoma. Cancer Lett 2015; 369:298-306. [PMID: 26433159 DOI: 10.1016/j.canlet.2015.09.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer worldwide and the third leading cause of cancer death. Immunotherapy is considered a promising treatment with the aim to boost or arouse HCC-specific immune responses. TLR7 and TLR8 agonists are effective immunomodulators and have been applied topically for the treatment of certain skin tumors and viral infections. Here, we explored the role of TLR7 and TLR8 agonists on the activation of dendritic cells (DCs) and natural killer (NK) cells. We demonstrated that these agonists could directly activate NK cells, promoting the maturation of immature DCs. Meanwhile, DCs also assisted in the function of NK cells, resulting in enhanced anti-tumor immune responses to HCC. Importantly, the combination therapy with NK cells stimulated with DCs and TLR7/8 agonist Gardiquimod (GDQ) significantly suppresses the growth of human HepG2 liver carcinoma xenografts. This study provides a new immunotherapeutic approach for human HCC based on DC-NK cross-talk and also suggests that TLR7 and/or TLR8 agonists, particularly GDQ, may serve as potent innate and adaptive immune response immunomodulators in tumor therapy.
Collapse
Affiliation(s)
- Zhixia Zhou
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Xin Yu
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Cai Zhang
- Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
9
|
Hadad U, Thauland TJ, Martinez OM, Butte MJ, Porgador A, Krams SM. NKp46 Clusters at the Immune Synapse and Regulates NK Cell Polarization. Front Immunol 2015; 6:495. [PMID: 26441997 PMCID: PMC4585260 DOI: 10.3389/fimmu.2015.00495] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell surface expressed inhibitory and activating receptors. NKp46 is a major NK cell-activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However, the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study, we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.
Collapse
Affiliation(s)
- Uzi Hadad
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA ; The Shraga Segal Department of Microbiology and Immunology and Genetics, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Stanford University , Stanford, CA , USA
| | - Olivia M Martinez
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Stanford University , Stanford, CA , USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Sheri M Krams
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA
| |
Collapse
|
10
|
An NCR1-based chimeric receptor endows T-cells with multiple anti-tumor specificities. Oncotarget 2015; 5:10949-58. [PMID: 25431955 PMCID: PMC4279421 DOI: 10.18632/oncotarget.1919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
The Ral (Ras-like) GTP-binding proteins (RalA and RalB), as effectors of the proto-oncogene Natural killer (NK) cells are an important component of the anti-tumor response. Tumor recognition by NK cells was found to be partly triggered by molecules termed natural cytotoxic receptors (NCRs). Adoptive transfer of genetically-engineered tumor-reactive T-lymphocytes can mediate remarkable tumor regressions mostly in melanoma and leukemia patients. Yet, the application of such treatments to other cancers is needed and dependent on the isolation of receptors that could facilitate efficient recognition of these malignancies. Herein, we aimed at combining NK tumor recognition capability with the genetic modification of T-cells to provide the latter with a means to recognize several tumors in a non-MHC restricted way. Consequently, we generated and evaluated several chimeric receptors based on the extracellular domain of NCR1 (NKp46) fused to multiple signaling moieties and assess their antitumor activity when retrovirally expressed in T-cells. Following co-culture with different tumors, primary human T-lymphocytes expressing a chimeric NCR1 molecule recognized target cells derived from lung, cervical carcinoma, leukemia and pancreatic cancer. In addition, this receptor mediated an upregulation of surface activation markers and significant antitumor cytotoxicity both in vitro and in vivo. These results have meaningful implications for the immunotherapeutic treatment of cancer using gene-modified T-cells.
Collapse
|
11
|
Abstract
Natural killer (NK) cells are effector cells of the innate immune system that can lyse target cells without prior sensitization and have an important role in host defense to pathogens and transformed cells. A balance between negative and positive signals transmitted via germ line-encoded inhibitory and activating receptors controls the function of NK cells. Although the concept of "missing-self" would suggest that NK cells could target foreign allografts, the prevailing dogma has been that NK cells are not active participants in the mechanisms that culminate in the rejection of solid organ allografts. Recent studies, however, challenge this conclusion and instead implicate NK cells in contributing to both graft rejection and tolerance to an allograft. In this review, we highlight recent studies with the goal of understanding the complex NK cell interactions that impact alloimmunity.
Collapse
Affiliation(s)
- Uzi Hadad
- Division of Abdominal Transplantation, Department of Surgery and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
12
|
Van Elssen CH, Oth T, Germeraad WT, Bos GM, Vanderlocht J. Natural Killer Cells: The Secret Weapon in Dendritic Cell Vaccination Strategies. Clin Cancer Res 2014; 20:1095-103. [DOI: 10.1158/1078-0432.ccr-13-2302] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
|
14
|
Cell mediated innate responses of cattle and swine are diverse during foot-and-mouth disease virus (FMDV) infection: a unique landscape of innate immunity. Immunol Lett 2013; 152:135-43. [PMID: 23727070 PMCID: PMC7112845 DOI: 10.1016/j.imlet.2013.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/21/2022]
Abstract
Harnessing the innate immunity can protect domestic animals from viruses. Innate immune cells have potential capacity to afford protection against infection. Understanding the innate and adaptive immunity will aid rational vaccine design.
Pathogens in general and pathogenic viruses in particular have evolved a myriad of mechanisms to escape the immune response of mammalian species. Viruses that cause acute disease tend to bear characteristics that make them very contagious, as survival does not derive from chronicity of infection, but spread of disease throughout the herd. Foot-and-mouth disease virus (FMDV) is one of the most contagious viruses known. Upon infection of susceptible species, cloven-hoofed animals, the virus proliferates rapidly and causes a vesicular disease within 2–4 days. Disease symptoms resolve by 10 days to 2 weeks and in most cases, virus can no longer be detected. Periods of fever and viremia are usually brief, 1–3 days. In vivo control of virus infection and clearance of the virus during and following acute infection is of particular interest. The interaction of this virus with cells mediating the early, innate immune response has been analyzed in a number of recent studies. In most reports, the virus has a distinct inhibitory effect on the response of cells early in infection. Here we review these new data and discuss the dynamics of the interaction of virus with different cell types mediating the immune response to infection.
Collapse
|
15
|
Través PG, Pimentel-Santillana M, Carrasquero LMG, Pérez-Sen R, Delicado EG, Luque A, Izquierdo M, Martín-Sanz P, Miras-Portugal MT, Boscá L. Selective impairment of P2Y signaling by prostaglandin E2 in macrophages: implications for Ca2+-dependent responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4226-35. [PMID: 23479225 DOI: 10.4049/jimmunol.1203029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular nucleotides have been recognized as important modulators of inflammation via their action on specific pyrimidine receptors (P2). This regulation coexists with the temporal framework of proinflammatory and proresolution mediators released by the cells involved in the inflammatory response, including macrophages. Under proinflammatory conditions, the expression of cyclooxygenase-2 leads to the release of large amounts of PGs, such as PGE2, that exert their effects through EP receptors and other intracellular targets. The effect of these PGs on P2 receptors expressed in murine and human macrophages was investigated. In thioglycollate-elicited and alternatively activated macrophages, PGE2 selectively impairs P2Y but not P2X7 Ca(2+) mobilization. This effect is absent in LPS-activated cells and is specific for PGE2 because it cannot be reproduced by other PGs with cyclopentenone structure. The inhibition of P2Y responses by PGE2 involves the activation of nPKCs (PKCε) and PKD that can be abrogated by selective inhibitors or by expression of dominant-negative forms of PKD. The inhibition of P2Y signaling by PGE2 has an impact on the cell migration elicited by P2Y agonists in thioglycollate-elicited and alternatively activated macrophages, which provide new clues to understand the resolution phase of inflammation, when accumulation of PGE2, anti-inflammatory and proresolving mediators occurs.
Collapse
Affiliation(s)
- Paqui G Través
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria e Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhao G, Rodriguez BL. Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int J Nanomedicine 2012; 8:61-71. [PMID: 23293520 PMCID: PMC3534304 DOI: 10.2147/ijn.s37859] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liposomes are biodegradable and can be used to deliver drugs at a much higher concentration in tumor tissues than in normal tissues. Both passive and active drug delivery by liposomal nanoparticles can significantly reduce the toxic side effects of anticancer drugs and enhance the therapeutic efficacy of the drugs delivered. Active liposomal targeting to tumors is achieved by recognizing specific tumor receptors through tumor-specific ligands or antibodies coupled onto the surface of the liposomes, or by stimulus-sensitive drug carriers such as acid-triggered release or enzyme-triggered drug release. Tumors are often composed of tumor cells and nontumor cells, which include endothelial cells, pericytes, fibroblasts, stromal, mesenchymal cells, innate, and adaptive immune cells. These nontumor cells thus form the tumor microenvironment, which could be targeted and modified so that it is unfavorable for tumor cells to grow. In this review, we briefly summarized articles that had taken advantage of liposomal nanoparticles as a carrier to deliver anticancer drugs to the tumor microenvironment, and how they overcame obstacles such as nonspecific uptake, interaction with components in blood, and toxicity. Special attention is devoted to the liposomal targeting of anticancer drugs to the endothelium of tumor neovasculature, tumor associated macrophages, fibroblasts, and pericytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Gang Zhao
- Institute of Materia Medica, Shandong Academy of Medical Science, Shandong, China
| | | |
Collapse
|
17
|
Molecular action of lenalidomide in lymphocytes and hematologic malignancies. Adv Hematol 2012; 2012:513702. [PMID: 22888354 PMCID: PMC3409527 DOI: 10.1155/2012/513702] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 05/12/2012] [Accepted: 06/18/2012] [Indexed: 01/10/2023] Open
Abstract
The immunomodulatory agent, lenalidomide, is a structural analogue of thalidomide approved by the US Food and Drug Administration for the treatment of myelodysplastic syndrome (MDS) and multiple myeloma (MM). This agent is also currently under active investigation for the treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), as well as in drug combinations for some solid tumors and mantle cell lymphoma (MCL). Although treatment with lenalidomide has translated into a significant extension in overall survival in MM and MDS and has superior safety and efficacy relative to thalidomide, the mechanism of action as it relates to immune modulation remains elusive. Based on preclinical models and clinical trials, lenalidomide, as well as other structural thalidomide derivatives, enhances the proliferative and functional capacity of T-lymphocytes and amplifies costimulatory signaling pathways that activate effector responses and suppress inflammation. This paper summarizes our current understanding of T- and natural killer (NK) cell pathways that are modified by lenalidomide in hematopoietic neoplasms to inform future decisions about potential combination therapies.
Collapse
|
18
|
Fu J, Zhang A, Ju X. Tolerogenic dendritic cells as a target for the therapy of immune thrombocytopenia. Clin Appl Thromb Hemost 2012; 18:469-75. [PMID: 22387587 DOI: 10.1177/1076029612438612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease in which platelets are destroyed by special antiplatelet autoantibodies produced by B cells. Dendritic cells (DCs) are professional antigen-presenting cells involved in humoral immunity and cellular immunity and among them DCs that induce autoimmune tolerance are called tolerogenic DCs (tDCs). As a promising immunotherapeutic strategy for ITP, tDCs have received increasing attention. In this review, we describe the significant role of DCs in regulating autoimmune balances, introduce the manipulation strategies to generate tDCs, summarize recent progress on the experimental application of tDCs for ITP therapy, and finally discuss the perspectives of tolerogenic vaccination for ITP treatment in the clinic.
Collapse
Affiliation(s)
- Jinqiu Fu
- Shandong University, Shandong, China
| | | | | |
Collapse
|
19
|
Pham B, Piard-Ruster K, Silva R, Gallo A, Esquivel CO, Martinez OM, Krams SM. Changes in natural killer cell subsets in pediatric liver transplant recipients. Pediatr Transplant 2012; 16:176-82. [PMID: 22360401 PMCID: PMC3306774 DOI: 10.1111/j.1399-3046.2012.01653.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NK cells are important in the immune response against tumors and virally infected cells. A balance between inhibitory and activating receptors controls the effector functions of NK cells. We examined the fate of circulating NK cells and the expression of the NK cell-activating receptors in pediatric liver transplant recipients. Blood specimens were collected from 38 pediatric liver transplant recipients before transplant, and at one wk, one, three, six, and nine months, and one yr post-transplant. PBMCs were isolated and analyzed for the levels of NK cell activation receptors NKp30, NKp46, and NKG2D in the CD56(dim) CD16(+) and CD56(bright) CD16(+/-) subsets of NK cells. We demonstrated that there is a significant decrease in the percentage of circulating NK cells post-transplant (pretransplant 7.69 ± 1.54 vs. one wk post-transplant 1.73 ± 0.44) in pediatric liver transplant recipients. Interestingly, NKp30 expression is significantly increased, while NKp46 and NKG2D levels remain stable on the NK cells that persist at one wk post-transplant. These data indicate that the numbers and subsets of circulating NK cells are altered in children after liver transplantation.
Collapse
Affiliation(s)
- Betty Pham
- Division of Abdominal Transplantation, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305-5492, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Increased evidence of cross-talk between NK cells and other immune cells has enhanced the possibilities of exploiting the interplay between the activation and inhibition of NK cells for immunotherapeutic purposes. The battery of receptors possessed by NK cells help them to efficiently detect aberrant and infected cells and embark on the signaling pathways necessary to eliminate them. Endogenous expansion of NK cells and their effector mechanisms are under exploration for enhancing adoptive immunotherapy prospects in combination with immunostimulatory and cell-death-sensitizing treatments against cancer, viral infections and other pathophysiological autoimmune conditions. Various modes of NK cell manipulation are being undertaken to overcome issues such as relapse and graft rejections associated with adoptive immunotherapy. While tracing the remarkable properties of NK cells and the major developments in this field, we highlight the role of immune cooperativity in the betterment of current immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anshu Malhotra
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
| | - Anil Shanker
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|