1
|
Yi M, Li T, Niu M, Zhang H, Wu Y, Wu K, Dai Z. Targeting cytokine and chemokine signaling pathways for cancer therapy. Signal Transduct Target Ther 2024; 9:176. [PMID: 39034318 PMCID: PMC11275440 DOI: 10.1038/s41392-024-01868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 07/23/2024] Open
Abstract
Cytokines are critical in regulating immune responses and cellular behavior, playing dual roles in both normal physiology and the pathology of diseases such as cancer. These molecules, including interleukins, interferons, tumor necrosis factors, chemokines, and growth factors like TGF-β, VEGF, and EGF, can promote or inhibit tumor growth, influence the tumor microenvironment, and impact the efficacy of cancer treatments. Recent advances in targeting these pathways have shown promising therapeutic potential, offering new strategies to modulate the immune system, inhibit tumor progression, and overcome resistance to conventional therapies. In this review, we summarized the current understanding and therapeutic implications of targeting cytokine and chemokine signaling pathways in cancer. By exploring the roles of these molecules in tumor biology and the immune response, we highlighted the development of novel therapeutic agents aimed at modulating these pathways to combat cancer. The review elaborated on the dual nature of cytokines as both promoters and suppressors of tumorigenesis, depending on the context, and discussed the challenges and opportunities this presents for therapeutic intervention. We also examined the latest advancements in targeted therapies, including monoclonal antibodies, bispecific antibodies, receptor inhibitors, fusion proteins, engineered cytokine variants, and their impact on tumor growth, metastasis, and the tumor microenvironment. Additionally, we evaluated the potential of combining these targeted therapies with other treatment modalities to overcome resistance and improve patient outcomes. Besides, we also focused on the ongoing research and clinical trials that are pivotal in advancing our understanding and application of cytokine- and chemokine-targeted therapies for cancer patients.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Haoxiang Zhang
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, 350001, People's Republic of China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Baysal MA, Chakraborty A, Tsimberidou AM. Enhancing the Efficacy of CAR-T Cell Therapy: A Comprehensive Exploration of Cellular Strategies and Molecular Dynamics. JOURNAL OF CANCER IMMUNOLOGY 2024; 6:20-28. [PMID: 39119270 PMCID: PMC11308461 DOI: 10.33696/cancerimmunol.6.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The emergence of chimeric antigen receptor T cell (CAR-T cell) therapy has revolutionized cancer treatment, particularly for hematologic malignancies. This commentary discusses developments in CAR-T cell therapy, focusing on the molecular mechanisms governing T cell fate and differentiation. Transcriptional and epigenetic factors play a pivotal role in determining the specificity, effectiveness, and durability of CAR-T cell therapy. Understanding these mechanisms is crucial to improve the efficacy and decrease the adverse events associated with CAR-T cell therapies, unlocking the full potential of these approaches. T cell differentiation in CAR-T cell product manufacturing plays an important role in clinical outcomes. A positive correlation exists between the clinical efficacy of CAR-T cell therapy and signatures of memory, whereas a negative correlation has been observed with signatures of effector function or exhaustion. The effectiveness of CAR-T cell products is likely influenced by T-cell frequency and by their ability to proliferate, which is closely linked to early T cell differentiation. The differentiation process involving distinct T memory cell subsets is initiated upon antigen elimination, indicating infection resolution. In chronic infections or cancer, T cells may undergo exhaustion, marked by continuous inhibitory receptor expression, decreased cytokine production, and diminished proliferative capacity. Other cell subsets, such as CD4+ T cells, innate-like T lymphocytes, NKT cells, and cord blood-derived hematopoietic stem cells, offer unique advantages in developing the next-generation CAR-T cell-based therapies. Future research should focus on optimizing T-cell-enhancing approaches and developing strategies to potentially cure patients with hematological diseases and solid tumors.
Collapse
Affiliation(s)
- Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhijit Chakraborty
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Bulliard Y, Andersson BS, Baysal MA, Damiano J, Tsimberidou AM. Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol 2023; 16:108. [PMID: 37880715 PMCID: PMC10601191 DOI: 10.1186/s13045-023-01504-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
T cell differentiation is a highly regulated, multi-step process necessary for the progressive establishment of effector functions, immunological memory, and long-term control of pathogens. In response to strong stimulation, as seen in severe or chronic infections or cancer, T cells acquire a state of hypo-responsiveness known as exhaustion, limiting their effector function. Recent advances in autologous chimeric antigen receptor (CAR)-T cell therapies have revolutionized the treatment of hematologic malignancies by taking advantage of the basic principles of T cell biology to engineer products that promote long-lasting T cell response. However, many patients' malignancies remain unresponsive to treatment or are prone to recur. Discoveries in T cell biology, including the identification of key regulators of differentiation and exhaustion, offer novel opportunities to have a durable impact on the fate of CAR-T cells after infusion. Such next-generation CAR-T cell therapies and their clinical implementation may result in the next leap forward in cancer treatment for selected patients. In this context, this review summarizes the foundational principles of T cell differentiation and exhaustion and describes how they can be utilized and targeted to further improve the design and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Damiano
- Appia Bio, 6160 Bristol Pkwy, Culver City, CA, 90230, USA
| | - Apostolia M Tsimberidou
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
5
|
Birnbaum L, Sullivan EC, Do P, Uricoli B, Raikar SS, Porter CC, Henry CJ, Dreaden EC. Multicolor Light-Induced Immune Activation via Polymer Photocaged Cytokines. Biomacromolecules 2023; 24:1164-1172. [PMID: 36745712 PMCID: PMC10015458 DOI: 10.1021/acs.biomac.2c01207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Indexed: 02/08/2023]
Abstract
Cytokines act as potent, extracellular signals of the human immune system and can elicit striking treatment responses in patients with autoimmune disease, tissue damage, and cancer. Yet, despite their therapeutic potential, recombinant cytokine-mediated immune responses remain difficult to control as their administration is often systemic, whereas their intended sites of action are localized. To address the challenge of spatially and temporally constraining cytokine signals, we recently devised a strategy whereby recombinant cytokines are reversibly inactivated via chemical modification with photo-labile polymers that respond to visible LED light. Extending this approach to enable both in vivo and multicolor immune activation, here we describe a strategy whereby cytokines appended with heptamethine cyanine-polyethylene glycol are selectively re-activated ex vivo using tissue-penetrating near-infrared (NIR) light. We show that NIR LED light illumination of caged, pro-inflammatory cytokines restores cognate receptor signaling and potentiates the activity of T cell-engager cancer immunotherapies ex vivo. Using combinations of visible- and NIR-responsive cytokines, we further demonstrate multiwavelength optical control of T cell cytolysis ex vivo, as well as the ability to perform Boolean logic using multicolored light and orthogonally photocaged cytokine pairs as inputs and T cell activity as outputs. Together, this work demonstrates a novel approach to control extracellular immune cell signals using light, a strategy that in the future may improve our understanding of and ability to treat cancer and other diseases.
Collapse
Affiliation(s)
- Lacey
A. Birnbaum
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Emily C. Sullivan
- Molecular
and Systems Pharmacology Graduate Program, Emory University School of Medicine, Atlanta, Georgia 30307, United States
| | - Priscilla Do
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Biaggio Uricoli
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Sunil S. Raikar
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Christopher C. Porter
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Curtis J. Henry
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
| | - Erik C. Dreaden
- Coulter
Department of Biomedical Engineering, Georgia
Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- Winship
Cancer Institute of Emory University, Atlanta, Georgia 30322, United States
- Department
of Pediatrics, Emory School of Medicine, Atlanta, Georgia 30322, United States
- Aflac
Cancer and Blood Disorders Center of Children’s Healthcare
of Atlanta, Atlanta, Georgia 30322, United States
- Petit Institute
for Bioengineering and Bioscience, Georgia
Institute of Technology, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
HDAC Inhibition for Optimized Cellular Immunotherapy of NY-ESO-1-Positive Soft Tissue Sarcoma. Biomedicines 2022; 10:biomedicines10020373. [PMID: 35203582 PMCID: PMC8962361 DOI: 10.3390/biomedicines10020373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Adoptive cell therapy with NY-ESO-1-specific T cells is a promising option for the treatment of soft tissue sarcoma (STS) but achieves only transient tumor control in the majority of cases. A strategy to optimize this cell therapeutic approach might be the modulation of the expression of the cancer-testis antigen NY-ESO-1 using histone deacetylase inhibitors (HDACis). In this study, the ex vivo effect of combining NY-ESO-1-specific T cells with the clinically approved pan HDACis panobinostat or vorionstat was investigated. Our data demonstrated that STS cells were sensitive to HDACis. Administration of HDACi prior to NY-ESO-1-specific T cells exerted enhanced lysis against the NY-ESO-1+ STS cell line SW982. This correlated with an increase in the NY-ESO-1 and HLA-ABC expression of SW982 cells, as well as increased CD25 expression on NY-ESO-1-specific T cells. Furthermore, the immune reactivity of NY-ESO-1-specific CD8+ T cells in terms of cytokine release was enhanced by HDACis. In summary, pretreatment with HDACis represents a potential means of enhancing the cytotoxic efficacy of NY-ESO-1-specific T cells against NY-ESO-1-positive STS.
Collapse
|
7
|
Tian L, Wang S, Jiang S, Liu Z, Wan X, Yang C, Zhang L, Zheng Z, Wang B, Li L. Luteolin as an adjuvant effectively enhances CTL anti-tumor response in B16F10 mouse model. Int Immunopharmacol 2021; 94:107441. [PMID: 33611060 DOI: 10.1016/j.intimp.2021.107441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Luteolin, a naturally found dietary flavonoid, has a wide range of beneficial biological effects, including effects against tumors and oxidants. Studies proved that luteolin can modulate immune responses. In this study, we investigated the function of luteolin as an antitumor vaccine adjuvant (to treat malignant melanoma) in vitro and in vivo. We found that Luteolin may activated the PI3K-Akt pathways in APCs (Antigen Presenting Cells), induced the activation of APCs, enhanced CTL (Cytotoxic T Lymphocyte) responses, and inhibited tolerogenic T cells. To prove the role of CD8+T cells in immune process, we sorted the CD8+T cells from the immunized mice and transferred them to the B16F10 tumor-bearing mice, the result showed that the survival rate was improved. We also observed that in the mice immunized with Luteolin as an adjuvant, the tumor growth was significantly reduced. Taken together, the result demonstrated that luteolin showed promising properties as a vaccine adjuvant for treating malignant melanoma.
Collapse
Affiliation(s)
- Le Tian
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Shuang Wang
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Shasha Jiang
- Department of Pathogenic Biology, Qingdao University, Qingdao, China
| | - Zeyuan Liu
- Department of Special Medicine, Qingdao University, Qingdao, China
| | - Xueqi Wan
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Chaochao Yang
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Li Zhang
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Zheng Zheng
- School of Basic Medical, Qingdao University, Qingdao, China
| | - Bin Wang
- Department of Pathogenic Biology, Qingdao University, Qingdao, China
| | - Ling Li
- School of Basic Medical, Qingdao University, Qingdao, China.
| |
Collapse
|
8
|
Lai X, Hao W, Friedman A. TNF-α inhibitor reduces drug-resistance to anti-PD-1: A mathematical model. PLoS One 2020; 15:e0231499. [PMID: 32310956 PMCID: PMC7170257 DOI: 10.1371/journal.pone.0231499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Drug resistance is a primary obstacle in cancer treatment. In many patients who at first respond well to treatment, relapse occurs later on. Various mechanisms have been explored to explain drug resistance in specific cancers and for specific drugs. In this paper, we consider resistance to anti-PD-1, a drug that enhances the activity of anti-cancer T cells. Based on results in experimental melanoma, it is shown, by a mathematical model, that resistances to anti-PD-1 can be significantly reduced by combining it with anti-TNF-α. The model is used to simulate the efficacy of the combined therapy with different range of doses, different initial tumor volume, and different schedules. In particular, it is shown that under a course of treatment with 3-week cycles where each drug is injected in the first day of either week 1 or week 2, injecting anti-TNF-α one week after anti-PD-1 is the most effective schedule in reducing tumor volume.
Collapse
Affiliation(s)
- Xiulan Lai
- Institute for Mathematical Sciences, Renmin University of China, Beijing, P. R. China
| | - Wenrui Hao
- Department of Mathematics, Pennsylvania State University, State College, PA, United States of America
| | - Avner Friedman
- Mathematical Bioscience Institute & Department of Mathematics, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
9
|
Lai X, Friedman A. Mathematical modeling of cancer treatment with radiation and PD-L1 inhibitor. SCIENCE CHINA MATHEMATICS 2020; 63:465-484. [DOI: 10.1007/s11425-019-1648-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2025]
|
10
|
Friedman A, Siewe N. Overcoming Drug Resistance to BRAF Inhibitor. Bull Math Biol 2020; 82:8. [PMID: 31933021 DOI: 10.1007/s11538-019-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022]
Abstract
One of the most frequently found mutations in human melanomas is in the B-raf gene, making its protein BRAF a key target for therapy. However, in patients treated with BRAF inhibitor (BRAFi), although the response is very good at first, relapse occurs within 6 months, on the average. In order to overcome this drug resistance to BRAFi, various combinations of BRAFi with other drugs have been explored, and some are being applied clinically, such as a combination of BRAF and MEK inhibitors. Experimental data for melanoma in mice show that under continuous treatment with BRAFi, the pro-cancer MDSCs and chemokine CCL2 initially decrease but eventually increase to above their original level, while the anticancer T cells continuously decrease. In this paper, we develop a mathematical model that explains these experimental results. The model is used to explore the efficacy of combinations of BRAFi with anti-CCL2, anti-PD-1 and anti-CTLA-4, with the aim of eliminating or reducing drug resistance to BRAFi.
Collapse
Affiliation(s)
- Avner Friedman
- Mathematical Biosciences Institute & Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nourridine Siewe
- Department of Mathematics, The University of British Columbia Okanagan, Kelowna, BC, Canada.
| |
Collapse
|
11
|
Sachdeva M, Busser BW, Temburni S, Jahangiri B, Gautron AS, Maréchal A, Juillerat A, Williams A, Depil S, Duchateau P, Poirot L, Valton J. Repurposing endogenous immune pathways to tailor and control chimeric antigen receptor T cell functionality. Nat Commun 2019; 10:5100. [PMID: 31723132 PMCID: PMC6853973 DOI: 10.1038/s41467-019-13088-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2019] [Indexed: 12/27/2022] Open
Abstract
Endowing chimeric antigen receptor (CAR) T cells with additional potent functionalities holds strong potential for improving their antitumor activity. However, because potency could be deleterious without control, these additional features need to be tightly regulated. Immune pathways offer a wide array of tightly regulated genes that can be repurposed to express potent functionalities in a highly controlled manner. Here, we explore this concept by repurposing TCR, CD25 and PD1, three major players of the T cell activation pathway. We insert the CAR into the TCRα gene (TRACCAR), and IL-12P70 into either IL2Rα or PDCD1 genes. This process results in transient, antigen concentration-dependent IL-12P70 secretion, increases TRACCAR T cell cytotoxicity and extends survival of tumor-bearing mice. This gene network repurposing strategy can be extended to other cellular pathways, thus paving the way for generating smart CAR T cells able to integrate biological inputs and to translate them into therapeutic outputs in a highly regulated manner. Engineered T cells work as living therapeutics, but are prone to hyperreactivity and exhaustion. Here the authors improve CAR T cell antitumor responses by simultaneously targeting a CAR to TCR locus and IL-12 to PD1 locus, placing the transgenes under a naturally regulated transcriptional network while disrupting unwanted signals.
Collapse
Affiliation(s)
- Mohit Sachdeva
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | - Brian W Busser
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | - Sonal Temburni
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | | | | | - Alan Maréchal
- Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France
| | | | - Alan Williams
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA
| | - Stéphane Depil
- Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France
| | | | - Laurent Poirot
- Cellectis, 8 rue de la Croix Jarry, 75013, Paris, France
| | - Julien Valton
- Cellectis, Inc., 430 East 29th Street, New York, NY, 10016, USA.
| |
Collapse
|
12
|
Liu Y, Di S, Shi B, Zhang H, Wang Y, Wu X, Luo H, Wang H, Li Z, Jiang H. Armored Inducible Expression of IL-12 Enhances Antitumor Activity of Glypican-3-Targeted Chimeric Antigen Receptor-Engineered T Cells in Hepatocellular Carcinoma. THE JOURNAL OF IMMUNOLOGY 2019; 203:198-207. [PMID: 31142602 DOI: 10.4049/jimmunol.1800033] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/28/2019] [Indexed: 12/23/2022]
Abstract
Adoptive immunotherapy based on chimeric antigen receptor-modified T (CAR-T) cells has been demonstrated as one of the most promising therapeutic strategies in the treatment of malignancies. However, CAR-T cell therapy has shown limited efficacy for the treatment of solid tumors. This is, in part, because of tumor heterogeneity and a hostile tumor microenvironment, which could suppress adoptively transferred T cell activity. In this study, we, respectively, engineered human- or murine-derived-armored glypican-3 (GPC3)-specific CAR-T cells capable of inducibly expressing IL-12 (GPC3-28Z-NFAT-IL-12) T cells. The results showed that GPC3-28Z-NFAT-IL-12 T cells could lyse GPC3+ tumor cells specifically and increase cytokine secretion compared with GPC3-28Z T cells in vitro. In vivo, GPC3-28Z-NFAT-IL-12 T cells augmented the antitumor effect when encountering GPC3+ large tumor burdens, which could be attributed to IL-12 increasing IFN-γ production, favoring T cells infiltration and persistence. Furthermore, in immunocompetent hosts, low doses of GPC3-m28Z-mNFAT-mIL-12 T cells exerted superior antitumor efficacy without prior conditioning in comparison with GPC3-m28Z T cells. Also, mIL-12 secretion decreased regulatory T cell infiltration in established tumors. In conclusion, these findings demonstrated that the inducible expression of IL-12 could boost CAR-T function with less potential side effects, both in immunodeficient and immunocompetent hosts. The inducibly expressed IL-12-armored GPC3-CAR-T cells could broaden the application of CAR-T-based immunotherapy to patients intolerant of lymphodepletion chemotherapy and might provide an alternative therapeutic strategy for patients with GPC3+ cancers.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and
| | - Shengmeng Di
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and
| | - Bizhi Shi
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and
| | | | - Yi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and
| | - Xiuqi Wu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and
| | - Hong Luo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and
| | - Huamao Wang
- CARsgen Therapeutics, Shanghai 200233, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and .,CARsgen Therapeutics, Shanghai 200233, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200032, China; and
| |
Collapse
|
13
|
Yeku OO, Purdon TJ, Koneru M, Spriggs D, Brentjens RJ. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep 2017; 7:10541. [PMID: 28874817 PMCID: PMC5585170 DOI: 10.1038/s41598-017-10940-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown limited efficacy for the management of solid tumor malignancies. In ovarian cancer, this is in part due to an immunosuppressive cytokine and cellular tumor microenvironment which suppresses adoptively transferred T cells. We engineered an armored CAR T cell capable of constitutive secretion of IL-12, and delineate the mechanisms via which these CAR T cells overcome a hostile tumor microenvironment. In this report, we demonstrate enhanced proliferation, decreased apoptosis and increased cytotoxicity in the presence of immunosuppressive ascites. In vivo, we show enhanced expansion and CAR T cell antitumor efficacy, culminating in improvement in survival in a syngeneic model of ovarian peritoneal carcinomatosis. Armored CAR T cells mediated depletion of tumor associated macrophages and resisted endogenous PD-L1-induced inhibition. These findings highlight the role of the inhibitory microenvironment and how CAR T cells can be further engineered to maintain efficacy.
Collapse
Affiliation(s)
- Oladapo O Yeku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Mythili Koneru
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - David Spriggs
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
14
|
Su EW, Moore CJ, Suriano S, Johnson CB, Songalia N, Patterson A, Neitzke DJ, Andrijauskaite K, Garrett-Mayer E, Mehrotra S, Paulos CM, Doedens AL, Goldrath AW, Li Z, Cole DJ, Rubinstein MP. IL-2Rα mediates temporal regulation of IL-2 signaling and enhances immunotherapy. Sci Transl Med 2016; 7:311ra170. [PMID: 26511507 PMCID: PMC4805116 DOI: 10.1126/scitranslmed.aac8155] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Interleukin-2 (IL-2) is a lymphocyte growth factor that is an important component of many immune-based cancer therapies. The efficacy of IL-2 is thought to be limited by the expansion of T regulatory cells, which express the high-affinity IL-2 receptor subunit IL-2Rα. IL-15 is under investigation as an alternative to IL-2. Although both cytokines signal through IL-2Rβγ, IL-15 does not bind IL-2Rα and therefore induces less T regulatory cell expansion. However, we found that transferred effector CD8(+) T cells induced curative responses in lymphoreplete mice only with IL-2-based therapy. Although conventional in vitro assays showed similar effector T cell responsiveness to IL-2 and IL-15, upon removal of free cytokine, IL-2 mediated sustained signaling dependent on IL-2Rα. Mechanistically, IL-2Rα sustained signaling by promoting a cell surface IL-2 reservoir and recycling of IL-2 back to the cell surface. Our results demonstrate that IL-2Rα endows T cells with the ability to compete temporally for limited IL-2 via mechanisms beyond ligand affinity. These results suggest that strategies to enhance IL-2Rα expression on tumor-reactive lymphocytes may facilitate the development of more effective IL-2-based therapies.
Collapse
Affiliation(s)
- Ee W Su
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Caitlin J Moore
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Samantha Suriano
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Neizel Songalia
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alicia Patterson
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel J Neitzke
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Andrew L Doedens
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ananda W Goldrath
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA. Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
15
|
Dendritic Cell-Based Immunotherapy Treatment for Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2015; 2015:717530. [PMID: 26167495 PMCID: PMC4488155 DOI: 10.1155/2015/717530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/08/2015] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma and patients diagnosed with this disease had poor outcomes even treated with the combination of conventional treatment (surgery, chemotherapy, and radiation). Dendritic cells (DCs) are the most powerful antigen presenting cells and DC-based vaccination has the potential to target and eliminate GBM cells and enhance the responses of these cells to the existing therapies with minimal damage to the healthy tissues around them. It can enhance recognition of GBM cells by the patients' immune system and activate vast, potent, and long-lasting immune reactions to eliminate them. Therefore, this therapy can prolong the survival of GBM patients and has wide and bright future in the treatment of GBM. Also, the efficacy of this therapy can be strengthened in several ways at some degree: the manipulation of immune regulatory components or costimulatory molecules on DCs; the appropriate choices of antigens for loading to enhance the effectiveness of the therapy; regulation of positive regulators or negative regulators in GBM microenvironment.
Collapse
|
16
|
New insights into IL-12-mediated tumor suppression. Cell Death Differ 2014; 22:237-46. [PMID: 25190142 DOI: 10.1038/cdd.2014.134] [Citation(s) in RCA: 368] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects.
Collapse
|
17
|
Gabeen AA, Abdel-Hamid FF, El-Houseini ME, Fathy SAH. Potential immunotherapeutic role of interleukin-2 and interleukin-12 combination in patients with hepatocellular carcinoma. J Hepatocell Carcinoma 2014; 1:55-63. [PMID: 27508176 PMCID: PMC4918270 DOI: 10.2147/jhc.s56012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Many recent therapeutic interventions are necessary to improve the treatment of hepatocellular carcinoma (HCC), including immunotherapy, which seems to offer one of the new realistic therapeutic modalities. This study aims to investigate the optimization of immunotherapy for HCC patients by appraisal of both interferon (IFN)-γ levels and phenotyping of lymphocytes obtained from peripheral blood and fine-needle aspirates. Methods The isolated lymphocytes were cultured in the presence of interleukins (IL)-2, IL-4, and IL-12. Enzyme-linked immunosorbent assay and flow cytometric techniques were used for the assessment of human IFN-γ production and the studied T-cell subpopulations, respectively. Results Mixed cell populations of peripheral blood lymphocytes and tumor infiltrating lymphocytes treated with IL-2 plus IL-12 showed a marked and significant elevation in IFN-γ levels in their culture media, a significant decrease in the percentage of cluster of differentiation (CD)4+CD25+ regulatory T-cells, and a nonsignificant increase in the percentage of CD8+ cytotoxic T-cells. Meanwhile, IL-2 plus IL-4 treatment demonstrated nonsignificant effects. Conclusion Our data suggested that IL-12 together with IL-2 caused a suppression of CD4+CD25+ regulatory T-cells and an elevation of IFN-γ levels, which play a crucial immunotherapeutic role in the management of HCC patients.
Collapse
|
18
|
Everson RG, Jin RM, Wang X, Safaee M, Scharnweber R, Lisiero DN, Soto H, Liau LM, Prins RM. Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2014; 2:10. [PMID: 24883189 PMCID: PMC4039989 DOI: 10.1186/2051-1426-2-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/31/2014] [Indexed: 12/29/2022] Open
Abstract
Background Immunotherapeutic approaches, such as dendritic cell (DC) vaccination, have emerged as promising strategies in the treatment of glioblastoma. Despite their promise, however, the absence of objective biomarkers and/or immunological monitoring techniques to assess the clinical efficacy of immunotherapy still remains a primary limitation. To address this, we sought to identify a functional biomarker for anti-tumor immune responsiveness associated with extended survival in glioblastoma patients undergoing DC vaccination. Methods 28 patients were enrolled and treated in two different Phase 1 DC vaccination clinical trials at UCLA. To assess the anti-tumor immune response elicited by therapy, we studied the functional responsiveness of pre- and post-vaccination peripheral blood lymphocytes (PBLs) to the immunostimulatory cytokines interferon-gamma (IFN-γ) and interleukin-2 (IL-2) in 21 of these patients for whom we had adequate material. Immune responsiveness was quantified by measuring downstream phosphorylation events of the transcription factors, STAT-1 and STAT-5, via phospho-specific flow cytometry. Results DC vaccination induced a significant decrease in the half-maximal concentration (EC-50) of IL-2 required to upregulate pSTAT-5 specifically in CD3+CD8+ T lymphocytes (p < 0.045). Extended survival was also associated with an increased per cell phosphorylation of STAT-5 in cytotoxic T-cells following IL-2 stimulation when the median post/pre pSTAT-5 ratio was used to dichotomize the patients (p = 0.0015, log-rank survival; hazard ratio = 0.1834, p = 0.018). Patients whose survival was longer than two years had a significantly greater pSTAT-5 ratio (p = 0.015), but, contrary to our expectations, a significantly lower pSTAT-1 ratio (p = 0.038). Conclusions Our results suggest that monitoring the pSTAT signaling changes in PBL may provide a functional immune monitoring measure predictive of clinical efficacy in DC-vaccinated patients.
Collapse
Affiliation(s)
- Richard G Everson
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Richard M Jin
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Safaee
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rudi Scharnweber
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Dominique N Lisiero
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Horacio Soto
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Linda M Liau
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Robert M Prins
- Departments of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA 90095, USA.,Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
19
|
The histone deacetylase inhibitor, LBH589, promotes the systemic cytokine and effector responses of adoptively transferred CD8+ T cells. J Immunother Cancer 2014; 2:8. [PMID: 25054063 PMCID: PMC4105687 DOI: 10.1186/2051-1426-2-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/19/2014] [Indexed: 01/22/2023] Open
Abstract
Background Histone deacetylase (HDAC) inhibitors are a class of agents that have potent antitumor activity with a reported ability to upregulate MHC and costimulatory molecule expression. We hypothesized that epigenetic pharmacological immunomodulation could sensitize tumors to immune mediated cell death with an adoptive T cell therapy. Methods The pan-HDAC inhibitor, LBH589, was combined with gp100 specific T cell immunotherapy in an in vivo B16 melanoma model and in an in vivo non-tumor bearing model. Tumor regression, tumor specific T cell function and phenotype, and serum cytokine levels were evaluated. Results Addition of LBH589 to an adoptive cell transfer therapy significantly decreased tumor burden while sustaining systemic pro-inflammatory levels. Furthermore, LBH589 was able to enhance gp100 specific T cell survival and significantly decrease T regulatory cell populations systemically and intratumorally. Even in the absence of tumor, LBH589 was able to enhance the proliferation, retention, and polyfunctional status of tumor specific T cells, suggesting its effects were T cell specific. In addition, LBH589 induced significantly higher levels of the IL-2 receptor (CD25) and the co-stimulatory molecule OX-40 in T cells. Conclusion These results demonstrate that immunomodulation of adoptively transferred T cells by LBH589 provides a novel mechanism to increase in vivo antitumor efficacy of effector CD8 T cells.
Collapse
|
20
|
Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, Brentjens RJ. Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood 2012; 119:4133-41. [PMID: 22354001 PMCID: PMC3359735 DOI: 10.1182/blood-2011-12-400044] [Citation(s) in RCA: 528] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with tumor-targeted T cells is a promising approach to cancer therapy. Enhanced clinical outcome using this approach requires conditioning regimens with total body irradiation, lymphodepleting chemotherapy, and/or additional cytokine support. However, the need for prior conditioning precludes optimal application of this approach to a significant number of cancer patients intolerant to these regimens. Herein, we present preclinical studies demonstrating that treatment with CD19-specific, chimeric antigen receptor (CAR)-modified T cells that are further modified to constitutively secrete IL-12 are able to safely eradicate established disease in the absence of prior conditioning. We demonstrate in a novel syngeneic tumor model that tumor elimination requires both CD4(+) and CD8(+) T-cell subsets, autocrine IL-12 stimulation, and subsequent IFNγ secretion by the CAR(+) T cells. Importantly, IL-12-secreting, tumor-targeted T cells acquire intrinsic resistance to T regulatory cell-mediated inhibition. Based on these preclinical data, we anticipate that adoptive therapy using CAR-targeted T cells modified to secrete IL-12 will obviate or reduce the need for potentially hazardous conditioning regimens to achieve optimal antitumor responses in cancer patients.
Collapse
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antineoplastic Agents, Alkylating/therapeutic use
- B-Lymphocytes/drug effects
- B7-1 Antigen/genetics
- Combined Modality Therapy
- Cyclophosphamide/therapeutic use
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive
- Interferon-gamma/blood
- Interleukin-12/blood
- Interleukin-12/genetics
- Interleukin-12/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Recombinant Fusion Proteins/genetics
- T-Cell Antigen Receptor Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/transplantation
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Thymoma/drug therapy
- Thymoma/immunology
- Thymoma/therapy
- Thymus Neoplasms/drug therapy
- Thymus Neoplasms/immunology
- Thymus Neoplasms/therapy
- Transplantation Conditioning
- Transplantation, Isogeneic
Collapse
Affiliation(s)
- Hollie J Pegram
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Rubinstein MP, Cloud CA, Garrett TE, Moore CJ, Schwartz KM, Johnson CB, Craig DH, Salem ML, Paulos CM, Cole DJ. Ex vivo interleukin-12-priming during CD8(+) T cell activation dramatically improves adoptive T cell transfer antitumor efficacy in a lymphodepleted host. J Am Coll Surg 2012; 214:700-7; discussion 707-8. [PMID: 22360982 PMCID: PMC3429131 DOI: 10.1016/j.jamcollsurg.2011.12.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical application of adoptive T cell therapy has been hindered by an inability to generate adequate numbers of nontolerized, functionally active, tumor-specific T cells, which can persist in vivo. In order to address this, we evaluated the impact of interleukin (IL)-12 signaling during tumor-specific CD8(+) T cell priming in terms of persistence and antitumor efficacy using an established B16 melanoma tumor adoptive therapy model. STUDY DESIGN B6 mice were injected subcutaneously with B16 melanoma tumor cells. On day 12 of tumor growth, mice were preconditioned with cyclophosphamide (4mg dose, intraperitoneally), and 1 day later were treated by adoptive transfer of tumor-specific pmel-1 CD8(+) T cells primed ex vivo 3 days earlier with both IL-12 and antigen (hGP100(25-33) peptide) or antigen only. Tumors were measured biweekly, and infused donor T cells were analyzed for persistence, localization to the tumor, phenotype, and effector function. RESULTS Adoptive transfer of tumor-specific CD8(+) T cells primed with IL-12 was significantly more effective in reducing tumor burden in mice preconditioned with cyclophosphamide compared with transfer of T cells primed without IL-12. This enhanced antitumor response was associated with increased frequencies of infused T cells in the periphery and tumor as well as elevated expression of effector molecules including granzyme B and interferon-γ (IFNγ). CONCLUSIONS Our findings demonstrate that ex vivo priming of tumor-specific CD8(+) T cells with IL-12 dramatically improves their in vivo persistence and therapeutic ability on transfer to tumor-bearing mice. These findings can be directly applied as novel clinical trial strategies.
Collapse
Affiliation(s)
- Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Díaz-Montero CM, Naga O, Zidan AAA, Salem ML, Pallin M, Parmigiani A, Walker G, Wieder E, Komanduri K, Cole DJ, Montero AJ, Lichtenheld MG. Synergy of brief activation of CD8 T-cells in the presence of IL-12 and adoptive transfer into lymphopenic hosts promotes tumor clearance and anti-tumor memory. Am J Cancer Res 2011; 1:882-96. [PMID: 21915391 PMCID: PMC3170749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/16/2011] [Indexed: 05/31/2023] Open
Abstract
Adoptive T-cell therapy holds great promise for the treatment of metastatic melanoma. However, prohibitive costs associated with current technology required for culture and expansion of tumor-reactive T-cells, the need for intense preconditioning regimens to induce lymphopenia, and the unpredictable anti-tumor effect of adoptively transferred T-cells remain significant impediments for its clinical implementation. Here we report a simplified combinatorial approach that involves short activation of CD8(+) T cells in the presence of IL-12 followed by adoptive transfer into tumor bearing animals after a single injection of cyclophosphamide. This approach resulted in complete eradication of B16 melanoma, and the establishment of long term immunological memory capable of fully protecting mice after a second B16 melanoma challenge. The activated donor cells were unique because they simultaneously exhibited traits for cytotoxic effector function, central memory-like, homing, and senescence. After tumor eradication and within three months after transfer, CD8+ cells exhibited a conventional memory CTL phenotype. Moreover, these memory CTLs acquired functional attributes characteristic of memory stem cells, including the ability to resist chemotherapy-induced toxicity. Our results suggest that short-term T-cell receptor signaling in the presence of IL-12 promotes promiscuous qualities in naïve CTL which - upon transfer into lymphopenic hosts- are sufficient to eradicate tumors and generate life-long tumor-specific memory.
Collapse
Affiliation(s)
- C Marcela Díaz-Montero
- Department of Medicine, Division of Hematology/Oncology, Sylvester Cancer Center, University of Miami, Miami, FL33136, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|