1
|
Berger M, Baliker M, Van Gelder T, Böhmig GA, Mannon RB, Kumar D, Chadban S, Nickerson P, Lee LA, Djamali A. Chronic Active Antibody-mediated Rejection: Opportunity to Determine the Role of Interleukin-6 Blockade. Transplantation 2024; 108:1109-1114. [PMID: 37941113 PMCID: PMC11042519 DOI: 10.1097/tp.0000000000004822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 11/10/2023]
Abstract
Chronic active antibody-mediated rejection (caAMR) is arguably the most important cause of late kidney allograft failure. However, there are no US Food and Drug Administration (FDA)-approved treatments for acute or chronic AMR and there is no consensus on effective treatment. Many trials in transplantation have failed because of slow and/or inadequate enrollment, and no new agent has been approved by the FDA for transplantation in over a decade. Several lines of evidence suggest that interleukin-6 is an important driver of AMR, and clazakizumab, a humanized monoclonal antibody that neutralizes interleukin-6, has shown promising results in phase 2 studies. The IMAGINE trial (Interleukin-6 Blockade Modifying Antibody-mediated Graft Injury and Estimated Glomerular Filtration Rate Decline) (NCT03744910) is the first to be considered by the FDA using a reasonably likely surrogate endpoint (slope of estimated glomerular filtration rate decline >1 y) for accelerated approval and is the only ongoing clinical trial for the treatment of chronic rejection. This trial offers us the opportunity to advance the care for our patients in need, and this article is a call to action for all transplant providers caring for patients with caAMR.
Collapse
Affiliation(s)
- Mel Berger
- Departments of Pediatrics and Pathology, Case Western Reserve University, Cleveland, OH
| | | | - Teun Van Gelder
- Department Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Roslyn B. Mannon
- Division of Nephrology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Deepali Kumar
- Department of Medicine, Division of Transplant Infectious Disease, Ajmera Transplant Centre, Toronto, ON, Canada
| | - Steve Chadban
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Peter Nickerson
- Department of Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Laurie A. Lee
- Research and Development, Transplant Therapeutic Area, CSL Behring, King of Prussia, Pennsylvania, PA
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center, Portland, ME
| |
Collapse
|
2
|
Heeger PS, Haro MC, Jordan S. Translating B cell immunology to the treatment of antibody-mediated allograft rejection. Nat Rev Nephrol 2024; 20:218-232. [PMID: 38168662 DOI: 10.1038/s41581-023-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 01/05/2024]
Abstract
Antibody-mediated rejection (AMR), including chronic AMR (cAMR), causes ~50% of kidney allograft losses each year. Despite attempts to develop well-tolerated and effective therapeutics for the management of AMR, to date, none has obtained FDA approval, thereby highlighting an urgent unmet medical need. Discoveries over the past decade from basic, translational and clinical studies of transplant recipients have provided a foundation for developing novel therapeutic approaches to preventing and treating AMR and cAMR. These interventions are aimed at reducing donor-specific antibody levels, decreasing graft injury and fibrosis, and preserving kidney function. Innovative approaches emerging from basic science findings include targeting interactions between alloreactive T cells and B cells, and depleting alloreactive memory B cells, as well as donor-specific antibody-producing plasmablasts and plasma cells. Therapies aimed at reducing the cytotoxic antibody effector functions mediated by natural killer cells and the complement system, and their associated pro-inflammatory cytokines, are also undergoing evaluation. The complexity of the pathogenesis of AMR and cAMR suggest that multiple approaches will probably be required to treat these disease processes effectively. Definitive answers await results from large, double-blind, multicentre, randomized controlled clinical trials.
Collapse
Affiliation(s)
- Peter S Heeger
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA
| | - Maria Carrera Haro
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Mount Sinai, NY, USA
| | - Stanley Jordan
- Comprehensive Transplant Center, Department of Medicine, Division of Nephrology Cedars-Sinai Medical Center Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
4
|
Jordan SC, Ammerman N, Huang E, Vo A. Importance of IL-6 inhibition in prevention and treatment of antibody-mediated rejection in kidney allografts. Am J Transplant 2022; 22 Suppl 4:28-37. [PMID: 36453709 DOI: 10.1111/ajt.17207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 12/03/2022]
Abstract
Interleukin-6 (IL-6) is a cytokine critical for innate and adaptive immune responses. However, persistent expression of high levels of IL-6 are associated with a number of pathologic conditions including autoimmune diseases and capillary leak syndrome. Importantly, in kidney transplant patients, IL-6 may play a role in mediation of cell-mediated rejection (CMR) and antibody-mediated rejection (AMR). This is likely due to the importance of IL-6 in stimulating B cell responses with pathogenic donor-specific antibody (DSA) generation and stimulation of T effector cell responses while inhibiting T regulatory cells. Data from preliminary clinical trials and clinical observations show that tocilizumab (anti-IL-6R) and clazakizumab (anti-IL-6) may have promise in treatment of CMR, AMR and chronic (cAMR). This has led to a phase 3 placebo, randomized clinical trial of clazakizumab for treatment of cAMR, a condition for which there is currently no treatment. The identification of IL-6 production in vascular endothelia cells after alloimmune activation reveals another potential pathway for vasculitis as endothelia cell IL-6 may stimulate immune cell responses that are potentially inhibitable with anti-IL-6/IL-6R treatment. Importantly, anti-IL-6/IL-6R treatments have shown the ability to induce Treg and Breg cells in vivo which may have potential importance for prevention and treatment of DSA development and allograft rejection.
Collapse
Affiliation(s)
- Stanley C Jordan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, West Hollywood, California, USA
| | - Noriko Ammerman
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, West Hollywood, California, USA
| | - Edmund Huang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, West Hollywood, California, USA
| | - Ashley Vo
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, West Hollywood, California, USA
| |
Collapse
|
5
|
Leal R, Pardinhas C, Martinho A, Sá HO, Figueiredo A, Alves R. Strategies to Overcome HLA Sensitization and Improve Access to Retransplantation after Kidney Graft Loss. J Clin Med 2022; 11:5753. [PMID: 36233621 PMCID: PMC9572793 DOI: 10.3390/jcm11195753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 12/12/2022] Open
Abstract
An increasing number of patients waitlisted for kidney transplantation have a previously failed graft. Retransplantation provides a significant improvement in morbidity, mortality, and quality of life when compared to dialysis. However, HLA sensitization is a major barrier to kidney retransplantation and the majority of the highly sensitized patients are waiting for a subsequent kidney transplant. A multidisciplinary team that includes immunogeneticists, transplant nephrologists and surgeons, and adequate allocation policies is fundamental to increase access to a kidney retransplant. A review of Pubmed, ScienceDirect, and the Cochrane Library was performed on the challenges of kidney retransplantation after graft loss, focusing on the HLA barrier and new strategies to overcome sensitization. Conclusion: Technical advances in immunogenetics, new desensitization protocols, and complex allocation programs have emerged in recent years to provide a new hope to kidney recipients with a previously failed graft.
Collapse
Affiliation(s)
- Rita Leal
- Nephrology Department, Centro Hospitalar e Universitário de Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Clara Pardinhas
- Nephrology Department, Centro Hospitalar e Universitário de Coimbra, 3000-548 Coimbra, Portugal
| | - António Martinho
- Coimbra Histocompatibility Center, Portuguese Institute of Blood and Transplantation, 3041-861 Coimbra, Portugal
| | - Helena Oliveira Sá
- Nephrology Department, Centro Hospitalar e Universitário de Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Arnaldo Figueiredo
- Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Urology and Kidney Transplantation Unit, Centro Hospitalar e Universitário de Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Alves
- Nephrology Department, Centro Hospitalar e Universitário de Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
6
|
Chandran S, Leung J, Hu C, Laszik ZG, Tang Q, Vincenti FG. Interleukin-6 blockade with tocilizumab increases Tregs and reduces T effector cytokines in renal graft inflammation: A randomized controlled trial. Am J Transplant 2021; 21:2543-2554. [PMID: 33331082 DOI: 10.1111/ajt.16459] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/11/2020] [Accepted: 12/11/2020] [Indexed: 01/25/2023]
Abstract
Interleukin-6 (IL-6) is a proinflammatory cytokine and key regulator of Treg: T effector cell (Teff) balance. We hypothesized that IL-6 blockade with tocilizumab, a monoclonal antibody to IL-6R, would increase Tregs, dampen Teff function, and control graft inflammation. We conducted a randomized controlled clinical trial (2014-2018) of clinically stable kidney transplant recipients on calcineurin inhibitor, mycophenolate mofetil, and prednisone, with subclinical graft inflammation noted on surveillance biopsies during the first year posttransplant. Subjects received tocilizumab (8 mg/kg IV every 4 weeks; 6 doses; n = 16) or no treatment (controls; n = 14) on top of usual maintenance immunosuppression. Kidney biopsies pre- and post-treatment were analyzed using Banff criteria. Blood was analyzed for serum cytokines, Treg frequencies, and T cell effector molecule expression (IFN-γ, IL-17, granzyme B) post-stimulation ex vivo. Tocilizumab-treated subjects were more likely to show improved Banff ti-score (62.5% vs. 21.4%, p = .03), increased Treg frequency (7.1% ± 5.55% vs. 3.6% ± 1.7%, p = .0168), and a blunted Teff cytokine response compared to controls. Changes in Banff i- and t-scores were not significantly different. The treatment was relatively well tolerated with no patient deaths or graft loss. Blockade of IL-6 is a novel and promising treatment option to regulate the T cell alloimmune response in kidney transplant recipients. NCT02108600.
Collapse
Affiliation(s)
- Sindhu Chandran
- Department of Medicine, University of California, San Francisco, California, USA
| | - Joey Leung
- Department of Surgery, University of California, San Francisco, California, USA
| | - Crystal Hu
- Department of Surgery, University of California, San Francisco, California, USA
| | - Zoltan G Laszik
- Department of Pathology, University of California, San Francisco, California, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, California, USA
| | - Flavio G Vincenti
- Department of Medicine, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
7
|
Abstract
Purpose of Review IL-6 is a pleiotropic, pro-inflammatory cytokine that plays an integral role in the development of acute and chronic rejection after solid organ transplantation. This article reviews the experimental evidence and current clinical application of IL-6/IL-6 receptor (IL-6R) signaling inhibition for the prevention and treatment of allograft injury. Recent Findings There exists a robust body of evidence linking IL-6 to allograft injury mediated by acute inflammation, adaptive cellular/humoral responses, innate immunity, and fibrosis. IL-6 promotes the acute phase reaction, induces B cell maturation/antibody formation, directs cytotoxic T-cell differentiation, and inhibits regulatory T-cell development. Importantly, blockade of the IL-6/IL-6R signaling pathway has been shown to mitigate its harmful effects in experimental studies, particularly in models of kidney and heart transplant rejection. Currently, available agents for IL-6 signaling inhibition include monoclonal antibodies against IL-6 or IL-6R and janus kinase inhibitors. Recent clinical trials have investigated the use of tocilizumab, an anti-IL-6R mAb, for desensitization and treatment of antibody-mediated rejection (AMR) in kidney transplant recipients, with promising initial results. Further studies are underway investigating the use of alternative agents including clazakizumab, an anti-IL-6 mAb, and application of IL-6 signaling blockade to clinical cardiac transplantation. Summary IL-6/IL-6R signaling inhibition provides a novel therapeutic option for the prevention and treatment of allograft injury. To date, evidence from clinical trials supports the use of IL-6 blockade for desensitization and treatment of AMR in kidney transplant recipients. Ongoing and future clinical trials will further elucidate the role of IL-6 signaling inhibition in other types of solid organ transplantation.
Collapse
|
8
|
Liu L, Zhao J, Li A, Yang X, Sprangers B, Li S. Prolongation of allograft survival by artemisinin treatment is associated with blockade of OX40-OX40L. Immunopharmacol Immunotoxicol 2021; 43:291-298. [PMID: 33757384 DOI: 10.1080/08923973.2021.1902347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES It has been demonstrated that artemisinin (ART) possesses multiple immune modulatory effects. However, its role as immunosuppressant in allogeneic transplantation is undetermined. Here, we investigated the effect of ART on co-stimulatory signaling in OX40+ T cells and evaluated ART as a potential immunosuppressant in transplantation. MATERIALS AND METHODS Allogeneic skin transplantation was performed in C57BL/6 to BALB/c mice. Recipient mice were administrated with vehicle, ART or cyclosporine A daily from day 0 to day 19 post transplantation. Proportions of splenic CD4+OX40+ and CD4+CD44hiCD62Lhi cells, and serum IgG was measured by using flow cytometry. An in vitro lymphocyte stimulation with Con A or LPS under various concentrations of ART was performed, expression of CD4+OX40+ and CD4+CD44hiCD62Lhi cells was evaluated, and interleukin(IL)-6 production was measured by ELISA. RESULTS In in vivo allogeneic skin transplant model, ART significantly prolongs allogeneic skin survival. Furthermore, our in vitro studies demonstrate that the immune suppression of ART on T cells is associated with a reduction in OX40+ T cells and inhibition of IL-6 secretion. CONCLUSION Our data indicate that the OX40-OX40L pathway and IL-6 are possibly involved in ART-induced immunosuppression, and ART is a potential novel immunosuppressant.
Collapse
Affiliation(s)
- Lihua Liu
- Department of Medical Ultrasonic, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Juanzhi Zhao
- Department of Pharmacy, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - An Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Xuan Yang
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China
| | - Ben Sprangers
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium
| | - Shengqiao Li
- Department of Traditional Chinese Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, University of Sun Yat-Sen, Zhuhai, P.R. China
| |
Collapse
|
9
|
Hasgur S, Fan R, Zwick DB, Fairchild RL, Valujskikh A. B cell-derived IL-1β and IL-6 drive T cell reconstitution following lymphoablation. Am J Transplant 2020; 20:2740-2754. [PMID: 32342598 PMCID: PMC7956246 DOI: 10.1111/ajt.15960] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 01/25/2023]
Abstract
Understanding the mechanisms of T cell homeostatic expansion is crucial for clinical applications of lymphoablative therapies. We previously established that T cell recovery in mouse heart allograft recipients treated with anti-thymocyte globulin (mATG) critically depends on B cells and is mediated by B cell-derived soluble factors. B cell production of interleukin (IL)-1β and IL-6 is markedly upregulated after heart allotransplantation and lymphoablation. Neutralizing IL-1β or IL-6 with mAb or the use of recipients lacking mature IL-1β, IL-6, IL-1R, MyD88, or IL-6R impair CD4+ and CD8+ T cell recovery and significantly enhance the graft-prolonging efficacy of lymphoablation. Adoptive co-transfer experiments demonstrate a direct effect of IL-6 but not IL-1β on T lymphocytes. Furthermore, B cells incapable of IL-1β or IL-6 production have diminished capacity to mediate T cell reconstitution and initiate heart allograft rejection upon adoptive transfer into mATG treated B cell deficient recipients. These findings reveal the essential role of B cell-derived IL-1β and IL-6 during homeostatic T cell expansion in a clinically relevant model of lymphoablation.
Collapse
Affiliation(s)
- Suheyla Hasgur
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Daniel B. Zwick
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
10
|
Uehara M, Bahmani B, Jiang L, Jung S, Banouni N, Kasinath V, Solhjou Z, Jing Z, Ordikhani F, Bae M, Clardy J, Annabi N, McGrath MM, Abdi R. Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. ACS NANO 2019; 13:12393-12407. [PMID: 31518498 PMCID: PMC7247279 DOI: 10.1021/acsnano.9b05115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammation occurring within the transplanted organ from the time of harvest is an important stimulus of early alloimmune reactivity and promotes chronic allograft rejection. Chronic immune-mediated injury remains the primary obstacle to the long-term success of organ transplantation. However, organ transplantation represents a rare clinical setting in which the organ is accessible ex vivo, providing an opportunity to use nanotechnology to deliver therapeutics directly to the graft. This approach facilitates the directed delivery of immunosuppressive agents (ISA) to target local pathogenic immune responses prior to the transplantation. Here, we have developed a system of direct delivery and sustained release of mycophenolate mofetil (MMF) to treat the donor organ prior to transplantation. Perfusion of a donor mouse heart with MMF-loaded PEG-PLGA nanoparticles (MMF-NPs) prior to transplantation abrogated cardiac transplant vasculopathy by suppressing intragraft pro-inflammatory cytokines and chemokines. Our findings demonstrate that ex vivo delivery of an ISA to donor organs using a nanocarrier can serve as a clinically feasible approach to reduce transplant immunity.
Collapse
Affiliation(s)
- Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhao Jing
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Martina M. McGrath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
11
|
|
12
|
Anti-IL-6 eluting immunomodulatory biomaterials prolong skin allograft survival. Sci Rep 2019; 9:6535. [PMID: 31024011 PMCID: PMC6484015 DOI: 10.1038/s41598-019-42349-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
A primary goal in the management of burn wounds is early wound closure. The use of skin allografts represents a lifesaving strategy for severe burn patients, but their ultimate rejection limits their potential efficacy and utility. IL-6 is a major pleiotropic cytokine which critically links innate and adaptive immune responses. Here, we devised anti-IL-6 receptor eluting gelatin methacryloyl (GelMA) biomaterials (GelMA/anti-IL-6), which were implanted at the interface between the wound beds and skin allografts. Our visible light crosslinked GelMA/anti-IL-6 immunomodulatory biomaterial (IMB) demonstrated a stable kinetic release profile of anti-IL-6. In addition, the incorporation of anti-IL-6 within the GelMA hydrogel had no effect on the mechanical properties of the hydrogels. Using a highly stringent skin transplant model, the GelMA/anti-IL-6 IMB almost doubled the survival of skin allografts. The use of GelMA/anti-IL-6 IMB was far superior to systemic anti-IL-6 receptor treatment in prolonging skin allograft survival. As compared to the untreated control group, skin from the GelMA/anti-IL-6 IMB group contained significantly fewer alloreactive T cells and macrophages. Interestingly, the environmental milieu of the draining lymph nodes (DLNs) of the mice implanted with the GelMA/anti-IL-6 IMB was also considerably less pro-inflammatory. The percentage of CD4+ IFNγ+ cells was much lower in the DLNs of the GelMA/anti-IL-6 IMB group in comparison to the GelMA group. These data highlight the importance of localized immune delivery in prolonging skin allograft survival and its potential utility in treating patients with severe burns.
Collapse
|
13
|
Colvin MM, Cook JL, Chang PP, Hsu DT, Kiernan MS, Kobashigawa JA, Lindenfeld J, Masri SC, Miller DV, Rodriguez ER, Tyan DB, Zeevi A. Sensitization in Heart Transplantation: Emerging Knowledge: A Scientific Statement From the American Heart Association. Circulation 2019; 139:e553-e578. [DOI: 10.1161/cir.0000000000000598] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sensitization, defined as the presence of circulating antibodies, presents challenges for heart transplant recipients and physicians. When present, sensitization can limit a transplantation candidate’s access to organs, prolong wait time, and, in some cases, exclude the candidate from heart transplantation altogether. The management of sensitization is not yet standardized, and current therapies have not yielded consistent results. Although current strategies involve antibody suppression and removal with intravenous immunoglobulin, plasmapheresis, and antibody therapy, newer strategies with more specific targets are being investigated.
Collapse
|
14
|
Rahmanzadeh-Shahi S, Golshiri-Isfahani A, Fathollahi MS, Rezayati M, Bahramabadi R, Afrooz M, Asadikaram G, Kennedy D, Arababadi MK. Interleukin-6 and Tumor Growth Factor-β are Risk Factors for Idiopathic Epistaxis. Lab Med 2018; 49:329-341. [PMID: 29893909 DOI: 10.1093/labmed/lmy017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective To evaluate the serum levels of interleukin (IL)-6, IL-8, tumor necrosis factor (TNF)-α, tumor growth factor (TGF)-β, endothelin, and immunoglobulin (Ig)E in patients with idiopathic epistaxis, compared with healthy control individuals. Methods Serum levels of IL-6, IL-8, TNF-α, TGF-β, endothelin, and IgE were evaluated in 110 patients with idiopathic epistaxis and 100 healthy controls using the enzyme-linked immunosorbent assay (ELISA) technique. Results Serum levels of IL-6 (P <.001) and TGF-β (P = .001) were significantly increased in patients with idiopathic epistaxis, compared with controls. TNF-α serum levels were significantly increased in male patients, compared with female patients (P = .053). We observed decreased antihistamine levels and increased expression of TGF-β (P = .02) and TNF-α (P = .02), respectively. Conclusions IL-6 and TGF-β appear to participate in the pathogenesis of idiopathic epistaxis. TNF-α may be considered a risk factor for male patients in developing epistaxis. Antihistamines may inhibit angiogenesis by decreasing expression of TGF-β and increasing expression of TNF-α.
Collapse
Affiliation(s)
- Soheila Rahmanzadeh-Shahi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Golshiri-Isfahani
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Otolaryngology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mahmood Sheikh Fathollahi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Epidemiology and Biostatistics, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammadtaghi Rezayati
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Bahramabadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Gholamreza Asadikaram
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Derek Kennedy
- School of Natural Sciences, Griffith Institute for Drug Discovery, Griffith University Nathan, Queensland, Australia
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
15
|
Yong KSM, Her Z, Chen Q. Humanized Mice as Unique Tools for Human-Specific Studies. Arch Immunol Ther Exp (Warsz) 2018; 66:245-266. [PMID: 29411049 PMCID: PMC6061174 DOI: 10.1007/s00005-018-0506-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/04/2018] [Indexed: 12/15/2022]
Abstract
With an increasing human population, medical research is pushed to progress into an era of precision therapy. Humanized mice are at the very heart of this new forefront where it is acutely required to decipher human-specific disease pathogenesis and test an array of novel therapeutics. In this review, “humanized” mice are defined as immunodeficient mouse engrafted with functional human biological systems. Over the past decade, researchers have been conscientiously making improvements on the development of humanized mice as a model to closely recapitulate disease pathogenesis and drug mechanisms in humans. Currently, literature is rife with descriptions of novel and innovative humanized mouse models that hold a significant promise to become a panacea for drug innovations to treat and control conditions such as infectious disease and cancer. This review will focus on the background of humanized mice, diseases, and human-specific therapeutics tested on this platform as well as solutions to improve humanized mice for future clinical use.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117596, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Proteos, 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
16
|
Zhu P, Atkinson C, Dixit S, Cheng Q, Tran D, Patel K, Jiang YL, Esckilsen S, Miller K, Bazzle G, Allen P, Moore A, Broome AM, Nadig SN. Organ preservation with targeted rapamycin nanoparticles: a pre-treatment strategy preventing chronic rejection in vivo. RSC Adv 2018; 8:25909-25919. [PMID: 30220998 PMCID: PMC6124302 DOI: 10.1039/c8ra01555d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Hypothermic preservation is the standard of care for storing organs prior to transplantation. Endothelial and epithelial injury associated with hypothermic storage causes downstream graft injury and, as such, the choice of an ideal donor organ preservation solution remains controversial. Cold storage solutions, by design, minimize cellular necrosis and optimize cellular osmotic potential, but do little to assuage immunological cell activation or immune cell priming post transplantation. Thus, here we explore the efficacy of our previously described novel Targeted Rapamycin Micelles (TRaM) as an additive to standard-of-care University of Wisconsin preservation solution as a means to alter the immunological microenvironment post transplantation using in vivo models of tracheal and aortic allograft transplantation. In all models of transplantation, grafts pre-treated with 100 ng mL-1 of TRaM augmented preservation solution ex vivo showed a significant inhibition of chronic rejection post-transplantation, as compared to UW augmented with free rapamycin at a ten-fold higher dose. Here, for the first time, we present a novel method of organ pretreatment using a nanotherapeutic-based cellular targeted delivery system that enables donor administration of rapamycin, at a ten-fold decreased dose during cold storage. Clinically, these pretreatment strategies may positively impact post-transplant outcomes and can be readily translated to clinical scenarios.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA.,Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Carl Atkinson
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Suraj Dixit
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Qi Cheng
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA.,Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danh Tran
- Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Kunal Patel
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Yu-Lin Jiang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Scott Esckilsen
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Kayla Miller
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Grace Bazzle
- Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Patterson Allen
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Alfred Moore
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA. .,Department of Bioengineering, Clemson University, USA
| | - Satish N Nadig
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| |
Collapse
|
17
|
Pober JS, Merola J, Liu R, Manes TD. Antigen Presentation by Vascular Cells. Front Immunol 2017; 8:1907. [PMID: 29312357 PMCID: PMC5744398 DOI: 10.3389/fimmu.2017.01907] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023] Open
Abstract
Antigen presentation by cells of the vessel wall may initiate rapid and localized memory immune responses in peripheral tissues. Peptide antigens displayed on major histocompatibility complex (MHC) molecules on the surface of endothelial cells (ECs) can be recognized by T cell receptors on circulating effector memory T cells (TEM), triggering both transendothelial migration and activation. The array of co-stimulatory receptors, adhesion molecules, and cytokines expressed by ECs serves to modulate T cell activation responses. While the effects of these interactions vary among species, vascular beds, and vascular segments within the same tissue, they are capable of triggering allograft rejection without direct involvement of professional antigen-presenting cells and may play a similar role in host defense against infections and in autoimmunity. Once across the endothelium, extravasating TEM then contact mural cells of the vessel wall, including pericytes or vascular smooth muscle cells, which may also present antigens and provide signals that further regulate T cell responses. Collectively, these interactions provide an unexplored opportunity in which targeting of vascular cells can be used to modulate immune responses. In organ transplantation, targeting ECs with siRNA to reduce expression of MHC molecules may additionally mitigate perioperative injuries by preformed alloantibodies, further reducing the risk of graft rejection. Similarly, genetic manipulation of vascular cells to minimize antigen-dependent responses can be used to increase perfusion of tissue engineered organs without triggering rejection.
Collapse
Affiliation(s)
- Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Jonathan Merola
- Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Rebecca Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Thomas D Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
18
|
Risk factors associated with the development of histocompatibility leukocyte antigen sensitization. Curr Opin Organ Transplant 2017; 21:447-52. [PMID: 27258577 DOI: 10.1097/mot.0000000000000336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW Despite excellent short-term kidney allograft survival rates, long-term outcomes have not improved. For years, the focus on improving these outcomes revolved around minimization or elimination of calcineurin toxicity. Despite our best efforts, approximately 5000 allografts are lost each year in the United States and results in a significant emotional burden for patients and financial burden for the healthcare system. RECENT FINDINGS Advancements in detection of donor-specific histocompatibility leukocyte antigen antibodies (DSAs) and improved assessment of allograft biopsy tissue have shown that the most common cause for graft failures is DSA-related antibody-mediated rejection. Sensitization is directly related to human tissue exposure prior to transplant. We now know that sensitization can occur in patients who are non compliant or poorly compliant with their calcineurin inhibitors. They develop de-novo DSAs, which are responsible for numerous allograft losses around the world. SUMMARY Given the current evidence, it is imperative that all transplant physicians recognize the importance of encouraging medication adherence to prevent the consequences of DSA-induced graft failure. However, little progress has been made in this area. Other potential therapeutic approaches based on B-cell depletion or modulation early posttransplant may help to reduce the risk for de-novo DSA development.
Collapse
|
19
|
Choi J, Aubert O, Vo A, Loupy A, Haas M, Puliyanda D, Kim I, Louie S, Kang A, Peng A, Kahwaji J, Reinsmoen N, Toyoda M, Jordan SC. Assessment of Tocilizumab (Anti-Interleukin-6 Receptor Monoclonal) as a Potential Treatment for Chronic Antibody-Mediated Rejection and Transplant Glomerulopathy in HLA-Sensitized Renal Allograft Recipients. Am J Transplant 2017; 17:2381-2389. [PMID: 28199785 DOI: 10.1111/ajt.14228] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 01/25/2023]
Abstract
Extending the functional integrity of renal allografts is the primary goal of transplant medicine. The development of donor-specific antibodies (DSAs) posttransplantation leads to chronic active antibody-mediated rejection (cAMR) and transplant glomerulopathy (TG), resulting in the majority of graft losses that occur in the United States. This reduces the quality and length of life for patients and increases cost. There are no approved treatments for cAMR. Evidence suggests the proinflammatory cytokine interleukin 6 (IL-6) may play an important role in DSA generation and cAMR. We identified 36 renal transplant patients with cAMR plus DSAs and TG who failed standard of care treatment with IVIg plus rituximab with or without plasma exchange. Patients were offered rescue therapy with the anti-IL-6 receptor monoclonal tocilizumab with monthly infusions and monitored for DSAs and long-term outcomes. Tocilizumab-treated patients demonstrated graft survival and patient survival rates of 80% and 91% at 6 years, respectively. Significant reductions in DSAs and stabilization of renal function were seen at 2 years. No significant adverse events or severe adverse events were seen. Tocilizumab provides good long-term outcomes for patients with cAMR and TG, especially compared with historical published treatments. Inhibition of the IL-6-IL-6 receptor pathway may represent a novel approach to stabilize allograft function and extend patient lives.
Collapse
Affiliation(s)
- J Choi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - O Aubert
- Paris Translational Research Center for Organ Transplantation, INSERM U970, Biostatistics Department, Paris, France
| | - A Vo
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - A Loupy
- Paris Translational Research Center for Organ Transplantation, INSERM U970, Biostatistics Department, Paris, France
| | - M Haas
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - D Puliyanda
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - I Kim
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - S Louie
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - A Kang
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - A Peng
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - J Kahwaji
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - N Reinsmoen
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA
| | - M Toyoda
- HLA Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA
| | - S C Jordan
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
20
|
Solhjou Z, Uehara M, Bahmani B, Maarouf OH, Ichimura T, Brooks CR, Xu W, Yilmaz M, Elkhal A, Tullius SG, Guleria I, McGrath M, Abdi R. Novel Application of Localized Nanodelivery of Anti-Interleukin-6 Protects Organ Transplant From Ischemia-Reperfusion Injuries. Am J Transplant 2017; 17:2326-2337. [PMID: 28296000 PMCID: PMC5573642 DOI: 10.1111/ajt.14266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 02/25/2017] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) evokes intragraft inflammatory responses, which markedly augment alloimmune responses against the graft. Understanding the mechanisms underlying these responses is fundamental to develop therapeutic regimens to prevent/ameliorate organ IRI. Here, we demonstrate that IRI results in a marked increase in mitochondrial damage and autophagy in dendritic cells (DCs). While autophagy is a survival mechanism for ischemic DCs, it also augments their production of interleukin (IL)-6. Allograft-derived dendritic cells (ADDCs) lacking autophagy-related gene 5 (Atg5) showed higher death rates posttransplantation. Transplanted ischemic hearts from CD11cCre/Atg5 conditional knockout mice showed marked reduction in intragraft expression of IL-6 compared with controls. To antagonize the effect of IL-6 locally in the heart, we synthesized novel anti-IL-6 nanoparticles with capacity for controlled release of anti-IL-6 over time. Compared with systemic delivery of anti-IL-6, localized delivery of anti-IL-6 significantly reduced chronic rejection with a markedly lower amount administered. Despite improved allograft histology, there were no changes to splenic T cell populations, illustrating the importance of local IL-6 in driving chronic rejection after IRI. These data carry potential clinical significance by identifying an innovative, targeted strategy to manipulate organs before transplantation to diminish inflammation, leading to improved long-term outcomes.
Collapse
Affiliation(s)
- Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar H. Maarouf
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig R. Brooks
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wanlong Xu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mine Yilmaz
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdala Elkhal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Indira Guleria
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martina McGrath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,Address correspondence to: Reza Abdi, MD, Transplant Research Center, Brigham and Women's Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
21
|
Interleukin-6, A Cytokine Critical to Mediation of Inflammation, Autoimmunity and Allograft Rejection: Therapeutic Implications of IL-6 Receptor Blockade. Transplantation 2017; 101:32-44. [PMID: 27547870 DOI: 10.1097/tp.0000000000001452] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The success of kidney transplants is limited by the lack of robust improvements in long-term survival. It is now recognized that alloimmune responses are responsible for the majority of allograft failures. Development of novel therapies to decrease allosensitization is critical. The lack of new drug development in kidney transplantation necessitated repurposing drugs initially developed in oncology and autoimmunity. Among these is tocilizumab (anti-IL-6 receptor [IL-6R]) which holds promise for modulating multiple immune pathways responsible for allograft injury and loss. Interleukin-6 is a cytokine critical to proinflammatory and immune regulatory cascades. Emerging data have identified important roles for IL-6 in innate immune responses and adaptive immunity. Excessive IL-6 production is associated with activation of T-helper 17 cell and inhibition of regulatory T cell with attendant inflammation. Plasmablast production of IL-6 is critical for initiation of T follicular helper cells and production of high-affinity IgG. Tocilizumab is the first-in-class drug developed to treat diseases mediated by IL-6. Data are emerging from animal and human studies indicating a critical role for IL-6 in mediation of cell-mediated rejection, antibody-mediated rejection, and chronic allograft vasculopathy. This suggests that anti-IL-6/IL-6R blockade could be effective in modifying T- and B-cell responses to allografts. Initial data from our group suggest anti-IL-6R therapy is of value in desensitization and prevention and treatment of antibody-mediated rejection. In addition, human trials have shown benefits in treatment of graft versus host disease in matched or mismatched stem cell transplants. Here, we explore the biology of IL-6/IL-6R interactions and the evidence for an important role of IL-6 in mediating allograft rejection.
Collapse
|
22
|
Tocilizumab (Anti-IL-6R) Suppressed TNFα Production by Human Monocytes in an In Vitro Model of Anti-HLA Antibody-Induced Antibody-Dependent Cellular Cytotoxicity. Transplant Direct 2017; 3:e139. [PMID: 28361123 PMCID: PMC5367756 DOI: 10.1097/txd.0000000000000653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/05/2017] [Indexed: 12/29/2022] Open
Abstract
Background We previously demonstrated that natural killer (NK) cells activated via FcγRIIIa (CD16) interactions with anti-HLA antibodies binding to peripheral blood mononuclear cells (PBMCs) in the in vitro antibody-dependent cellular cytotoxicity (ADCC) assay produced IFNγ. Here we investigate if other CD16 bearing cells are responsive to alloantigen via alloantibody in the in vitro ADCC and if the ADCC-induced cytokine reactions and cytotoxicity can be modified by the anti-interleukin 6 receptor (IL-6R) monoclonal antibody, Tocilizumab (TCZ). Methods Whole blood from a normal individual was incubated overnight with irradiated allo-PBMCs pretreated with anti-HLA antibody positive (in vitro ADCC) or negative sera (mixed lymphocyte reaction [MLR]), with or without TCZ or control IgG. IFNγ+, TNFα+ or IL-6+ cell% in NK cells, monocytes and CD8+ T cells were enumerated by cytokine flow cytometry. ADCC using PBMCs (effector) and Farage B cells (FB, target) with anti-HLA antibody positive sera, with or without TCZ, was measured by flow cytometry. Results IFNγ+ and/or TNFα+ cell% in NK cells, monocytes and CD8+ T cells were elevated in the ADCC compared to the MLR condition. IL-6+ cells were significantly increased in ADCC versus MLR (10.2 ± 4.8% vs 2.7 ± 1.5%, P = 0.0003), but only in monocytes. TCZ treatment significantly reduced TNFα+ cell% in monocytes in ADCC, but had no effect on other cytokine+ cells. TCZ showed no effect on cytotoxicity in ADCC. Conclusions IFNγ, TNFα, and IL-6 production induced by HLA antibody-mediated CD16 bearing cell activation in NK cells, monocytes, and CD8+ T cells suggests a potential role for ADCC and these inflammatory cytokines in mediation of antibody-mediated rejection. TCZ suppressed TNFα production in monocytes in the ADCC condition, suggesting a role of IL-6/IL-6R pathway in monocytes activation. Inhibition of this pathway could reduce the inflammatory cascade induced by alloantibody, although the inhibitory effect on cytotoxicity is minimal.
Collapse
|
23
|
Progress in Desensitization of the Highly HLA Sensitized Patient. Transplant Proc 2017; 48:802-5. [PMID: 27234740 DOI: 10.1016/j.transproceed.2015.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 01/15/2023]
Abstract
The presence of HLA antibodies remains a significant and often impenetrable barrier to kidney transplantation, leading to increased morbidity and mortality for patients remaining on long-term dialysis. In recent years, a number of new approaches have been developed to overcome these barriers. Intravenous immunoglobulin (IVIG) remains the lynchpin of HLA desensitization therapy and has been shown in a prospective, randomized, placebo-controlled trial to improve transplantation rates. In addition, IVIG used in low doses with plasma exchange is a reliable protocol for desensitization. Another significant advancement was the addition of rituximab (anti-B-cell therapy) to IVIG and plasma exchange-based desensitization. This approach has significantly improved rates of transplantation and outcomes. There is limited experience with bortezomib (anti-plasma cell therapy) and eculizumab (complement inhibition) for desensitization. However, recent data from a completed trial of eculizumab failed to show a significant benefit for prevention of antibody-mediated rejection compared with standard therapy plus placebo, and bortezomib produced inconsistent results. There is a growing interest in developing new therapeutic agents for desensitization. Newer approaches that address antibody reduction with B-cell depletion are discussed.
Collapse
|
24
|
Desensitization: Overcoming the Immunologic Barriers to Transplantation. J Immunol Res 2017; 2017:6804678. [PMID: 28127571 PMCID: PMC5239985 DOI: 10.1155/2017/6804678] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022] Open
Abstract
HLA (Human Leucocyte Antigen) sensitization is a significant barrier to successful kidney transplantation. It often translates into difficult crossmatch before transplant and increased risk of acute and chronic antibody mediated rejection after transplant. Over the last decade, several immunomodulatory therapies have emerged allowing for increased access to kidney transplantation for the immunologically disadvantaged group of HLA sensitized end stage kidney disease patients. These include IgG inactivating agents, anti-cytokine antibodies, costimulatory molecule blockers, complement inhibitors, and agents targeting plasma cells. In this review, we discuss currently available agents for desensitization and provide a brief analysis of data on novel biologics, which will likely improve desensitization outcomes, and have potential implications in treatment of antibody mediated rejection.
Collapse
|
25
|
The intragraft microenvironment as a central determinant of chronic rejection or local immunoregulation/tolerance. Curr Opin Organ Transplant 2016; 22:55-63. [PMID: 27898465 DOI: 10.1097/mot.0000000000000373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Chronic rejection is associated with persistent mononuclear cell recruitment, endothelial activation and proliferation, local tissue hypoxia and related biology that enhance effector immune responses. In contrast, the tumor microenvironment elicits signals/factors that inhibit effector T cell responses and rather promote immunoregulation locally within the tissue itself. The identification of immunoregulatory check points and/or secreted factors that are deficient within allografts is of great importance in the understanding and prevention of chronic rejection. RECENT FINDINGS The relative deficiency of immunomodulatory molecules (cell surface and secreted) on microvascular endothelial cells within the intragraft microenvironment, is of functional importance in shaping the phenotype of rejection. These regulatory molecules include coinhibitory and/or intracellular regulatory signals/factors that enhance local activation of T regulatory cells. For example, semaphorins may interact with endothelial cells and CD4 T cells to promote local tolerance. Additionally, metabolites and electrolytes within the allograft microenvironment may regulate local effector and regulatory cell responses. SUMMARY Multiple factors within allografts shape the microenvironment either towards local immunoregulation or proinflammation. Promoting the expression of intragraft cell surface or secreted molecules that support immunoregulation will be critical for long-term graft survival and/or alloimmune tolerance.
Collapse
|
26
|
Graft-Derived IL-6 Amplifies Proliferation and Survival of Effector T Cells That Drive Alloimmune-Mediated Vascular Rejection. Transplantation 2016; 100:2332-2341. [DOI: 10.1097/tp.0000000000001227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Abstract
Immunosuppression strategies that selectively inhibit effector T cells while preserving and even enhancing CD4FOXP3 regulatory T cells (Treg) permit immune self-regulation and may allow minimization of immunosuppression and associated toxicities. Many immunosuppressive drugs were developed before the identity and function of Treg were appreciated. A good understanding of the interactions between Treg and immunosuppressive agents will be valuable to the effective design of more tolerable immunosuppression regimens. This review will discuss preclinical and clinical evidence regarding the influence of current and emerging immunosuppressive drugs on Treg homeostasis, stability, and function as a guideline for the selection and development of Treg-friendly immunosuppressive regimens.
Collapse
Affiliation(s)
- Akiko Furukawa
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Steven A Wisel
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
28
|
Busse PJ, Birmingham JM, Calatroni A, Manzi J, Goryachokovsky A, Fontela G, Federman AD, Wisnivesky JP. Effect of aging on sputum inflammation and asthma control. J Allergy Clin Immunol 2016; 139:1808-1818.e6. [PMID: 27725186 DOI: 10.1016/j.jaci.2016.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/30/2016] [Accepted: 09/14/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Aged asthmatic patients experience increased morbidity and mortality. Knowledge of the aging effect on airway inflammation and asthma control is limited. OBJECTIVE We sought to compare airway inflammation and its relationship to asthma control in aged versus younger patients and determine whether differences are asthma specific or caused by "inflamm-aging." METHODS We performed a prospective study of aged (>60 years) and younger (21-40 years) inner-city patients with asthma. After a run-in period to control for inhaled corticosteroid use, induced sputum was collected. Age-matched nonasthmatic control subjects were included to measure age-related inflammatory changes. RESULTS Aged (mean age, 67.9 ± 5.1 years; n = 35) compared with younger (mean age, 30.8 ± 5.9 years; n = 37) asthmatic patients had significantly worse asthma control and lower FEV1. Aged asthmatic patients had higher sputum neutrophil (30.5 × 104/mL and 23.1%) and eosinophil (7.0 × 104/mL and 3.8%) numbers and percentages compared with younger patients (neutrophils, 13.0 × 104/mL [P < .01] and 6.9% [P < .01]; eosinophils, 2.0 × 104/mL [P < .01] and 1.2% [P < .01]). Aged asthmatic patients had higher sputum IL-6 (P < .01) and IL-8 (P = .01) levels. No significant inflammatory differences between aged and younger control subjects were observed. In aged asthmatic patients increased sputum IL-6 and macrophage inflammatory protein 3α/CCL20 levels were significantly associated with decreased asthma control and increased sputum neutrophil numbers and IL-1β, IL-6, and macrophage inflammatory protein 3α/CCL20 levels were associated with hospitalization. CONCLUSIONS The inflammatory patterns of aged versus younger asthmatic patients are associated with increased sputum neutrophil and eosinophil values and cytokine levels related to neutrophil recruitment. Differences in airway inflammation can contribute to diminished asthma control in the aged. Further understanding of asthma pathophysiology in aged patients is needed to improve management of this vulnerable population.
Collapse
Affiliation(s)
- Paula J Busse
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Janette M Birmingham
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Joseph Manzi
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anna Goryachokovsky
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Giselle Fontela
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alex D Federman
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Juan P Wisnivesky
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
29
|
Lion J, Taflin C, Cross AR, Robledo-Sarmiento M, Mariotto E, Savenay A, Carmagnat M, Suberbielle C, Charron D, Haziot A, Glotz D, Mooney N. HLA Class II Antibody Activation of Endothelial Cells Promotes Th17 and Disrupts Regulatory T Lymphocyte Expansion. Am J Transplant 2016; 16:1408-20. [PMID: 26614587 DOI: 10.1111/ajt.13644] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/25/2023]
Abstract
Kidney transplantation is the most successful treatment option for patients with end-stage renal disease, and chronic antibody-mediated rejection is the principal cause of allograft loss. Predictive factors for chronic rejection include high levels of HLA alloantibodies (particularly HLA class II) and activation of graft endothelial cells (ECs). The mechanistic basis for this association is unresolved. We used an experimental model of HLA-DR antibody stimulation of microvascular ECs to examine the mechanisms underlying the association between HLA class II antibodies, EC activation and allograft damage. Activation of ECs with the F(Ab')2 fragment of HLA-DR antibody led to phosphorylation of Akt, ERK and MEK and increased IL-6 production by ECs cocultured with allogeneic peripheral blood mononuclear cells (PBMCs) in an Akt-dependent manner. We previously showed that HLA-DR-expressing ECs induce polarization of Th17 and FoxP3(bright) regulatory T cell (Treg) subsets. Preactivation of ECs with anti-HLA-DR antibody redirected EC allogenicity toward a proinflammatory response by decreasing amplification of functional Treg and by further increasing IL-6-dependent Th17 expansion. Alloimmunized patient serum containing relevant HLA-DR alloantibodies selectively bound and increased EC secretion of IL-6 in cocultures with PBMCs. These data contribute to understanding of potential mechanisms of antibody-mediated endothelial damage independent of complement activation and FcR-expressing effector cells.
Collapse
Affiliation(s)
- J Lion
- Inserm, UMRs 1160, Paris, France
| | - C Taflin
- Inserm, UMRs 1160, Paris, France.,Service de Néphrologie et Transplantation, Hôpital Saint-Louis, Paris, France
| | | | | | | | - A Savenay
- Inserm, UMRs 1160, Paris, France.,Laboratoire de Histocompatibilité, Paris, France
| | - M Carmagnat
- Inserm, UMRs 1160, Paris, France.,Laboratoire de Histocompatibilité, Paris, France
| | - C Suberbielle
- Inserm, UMRs 1160, Paris, France.,Laboratoire de Histocompatibilité, Paris, France
| | - D Charron
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris, France
| | - A Haziot
- Inserm, UMRs 1160, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - D Glotz
- Inserm, UMRs 1160, Paris, France.,Service de Néphrologie et Transplantation, Hôpital Saint-Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris, France
| | - N Mooney
- Inserm, UMRs 1160, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,LabEx Transplantex, AP-HP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
30
|
Kenney LL, Shultz LD, Greiner DL, Brehm MA. Humanized Mouse Models for Transplant Immunology. Am J Transplant 2016; 16:389-97. [PMID: 26588186 PMCID: PMC5283075 DOI: 10.1111/ajt.13520] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 01/25/2023]
Abstract
Our understanding of the molecular pathways that control immune responses, particularly immunomodulatory molecules that control the extent and duration of an immune response, have led to new approaches in the field of transplantation immunology to induce allograft survival. These molecular pathways are being defined precisely in murine models and translated into clinical practice; however, many of the newly available drugs are human-specific reagents. Furthermore, many species-specific differences exist between mouse and human immune systems. Recent advances in the development of humanized mice, namely, immunodeficient mice engrafted with functional human immune systems, have led to the availability of a small animal model for the study of human immune responses. Humanized mice represent an important preclinical model system for evaluation of new drugs and identification of the mechanisms underlying human allograft rejection without putting patients at risk. This review highlights recent advances in the development of humanized mice and their use as preclinical models for the study of human allograft responses.
Collapse
Affiliation(s)
- Laurie L Kenney
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| | | | - Dale L Greiner
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605,Corresponding Author: Dale L. Greiner, PhD, University of Massachusetts Medical School, 368 Plantation Street, AS7-2051, Worcester, MA 01605, Office: 508-856-1911, Fax: 508-856-4093,
| | - Michael A. Brehm
- Department of Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605
| |
Collapse
|
31
|
Botelho G, Bernardini C, Zannoni A, Ventrella V, Bacci ML, Forni M. Effect of tributyltin on mammalian endothelial cell integrity. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:79-86. [PMID: 26256121 DOI: 10.1016/j.cbpc.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022]
Abstract
Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells.
Collapse
Affiliation(s)
- G Botelho
- Department of Veterinary Medical Sciences - DEVET, UNICENTRO - Universidade Estadual do Centro, Oeste do Paraná, Brazil.
| | - C Bernardini
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - A Zannoni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - V Ventrella
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - M L Bacci
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - M Forni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
32
|
Zeng YQ, Liu XS, Wu S, Zou C, Xie Q, Xu SM, Jin XW, Li W, Zhou A, Dai Z. Kaempferol Promotes Transplant Tolerance by Sustaining CD4+FoxP3+ Regulatory T Cells in the Presence of Calcineurin Inhibitor. Am J Transplant 2015; 15:1782-92. [PMID: 25808405 DOI: 10.1111/ajt.13261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 02/01/2015] [Accepted: 02/05/2015] [Indexed: 01/25/2023]
Abstract
Calcineurin inhibitor cyclosporine is widely used as an immunosuppressant in clinic. However, mounting evidence has shown that cyclosporine hinders tolerance induction by dampening Tregs. Therefore, it is of paramount importance to overcome this pitfall. Kaempferol was reported to inhibit DC function. Here, we found that kaempferol delayed islet allograft rejection. Combination of kaempferol and low-dose, but not high-dose, of cyclosporine induced allograft tolerance in majority of recipient mice. Although kaempferol plus either dose of cyclosporine largely abrogated proliferation of graft-infiltrating T cells and their CTL activity, both proliferation and CTL activity in mice treated with kaempferol plus low-dose, but not high-dose, cyclosporine reemerged rapidly upon treatment withdrawal. Kaempferol increased CD4+FoxP3+ Tregs both in transplanted mice and in vitro, likely by suppressing DC maturation and their IL-6 expression. Reduction in Tregs by low dose of cyclosporine was reversed by kaempferol. Kaempferol-induced Tregs exhibited both allospecific and non-allospecific suppression. Administering IL-6 abrogated allograft tolerance induced by kaempferol and cyclosporine via diminishing CD4+FoxP3+ Tregs. Thus, for the first time, we demonstrated that kaempferol promotes transplant tolerance in the presence of low dose of cyclosporine, which allows for sufficient Treg generation while minimizing side effects, resulting in much-needed synergy between kaempferol and cyclosporine.
Collapse
Affiliation(s)
- Y Q Zeng
- Department of Nephrology, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - X S Liu
- Department of Nephrology, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - S Wu
- Center for Regenerative and Translational Medicine, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - C Zou
- Department of Nephrology, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Q Xie
- Center for Regenerative and Translational Medicine, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - S M Xu
- Center for Regenerative and Translational Medicine, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - X W Jin
- Center for Regenerative and Translational Medicine, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - W Li
- Center for Regenerative and Translational Medicine, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - A Zhou
- The Cardiovascular Research Center, Warren Alpert Medical School of Brown University, Providence, RI
| | - Z Dai
- Center for Regenerative and Translational Medicine, the Second Clinical College, Guangzhou University of Chinese Medicine, and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
33
|
Abrahimi P, Liu R, Pober JS. Blood Vessels in Allotransplantation. Am J Transplant 2015; 15:1748-54. [PMID: 25807965 DOI: 10.1111/ajt.13242] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 12/23/2014] [Accepted: 01/23/2015] [Indexed: 01/25/2023]
Abstract
Human vascularized allografts are perfused through blood vessels composed of cells (endothelium, pericytes, and smooth muscle cells) that remain largely of graft origin and are thus subject to host alloimmune responses. Graft vessels must be healthy to maintain homeostatic functions including control of perfusion, maintenance of permselectivity, prevention of thrombosis, and participation in immune surveillance. Vascular cell injury can cause dysfunction that interferes with these processes. Graft vascular cells can be activated by mediators of innate and adaptive immunity to participate in graft inflammation contributing to both ischemia/reperfusion injury and allograft rejection. Different forms of rejection may affect graft vessels in different ways, ranging from thrombosis and neutrophilic inflammation in hyperacute rejection, to endothelialitis/intimal arteritis and fibrinoid necrosis in acute cell-mediated or antibody-mediated rejection, respectively, and to diffuse luminal stenosis in chronic rejection. While some current therapies targeting the host immune system do affect graft vascular cells, direct targeting of the graft vasculature may create new opportunities for preventing allograft injury and loss.
Collapse
Affiliation(s)
- P Abrahimi
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - R Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - J S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
34
|
Ni Q, Yuan B, Liu T, Lan F, Luo X, Lu X, Huang P, Dai L, Jin X, Yin H. Sphingosine-1-phosphate receptor 1 agonist SEW2871 prolongs heterotopic heart allograft survival in mice. Int Immunopharmacol 2015; 26:37-42. [PMID: 25776899 DOI: 10.1016/j.intimp.2015.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 11/26/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a biologically active metabolite of plasma-membrane sphingolipids that is essential for immune cell trafficking. Recent studies have revealed immunomodulatory functions of S1P and its receptors (S1PR1-S1PR5) in many inflammatory conditions, such as asthma and autoimmunity. Here, we explore the efficacy of SEW2871, a selective S1PR1 agonist, in the prevention of acute allograft rejection in a murine cardiac transplantation model. Treatment of recipient mice with SEW2871 significantly prolongs cardiac allograft survival as compared to those recipients treated with control vehicle. The enhanced graft survival is associated with reduced circulating lymphocytes and allograft inflammatory cell infiltration. The cytokine analysis showed decreased allograft expression of TNF-α, IFN-γ and IL-2 in the SEW2871-treated mice. Moreover, administration of SEW2871 increases the percentage of CD4(+) T regulatory cells and FoxP3 expression in spleen of allograft recipients. Therefore, SEW2871 plays a critical role in regulation of lymphocyte trafficking and development, which directly contributes to prolongation of the allograft survival.
Collapse
Affiliation(s)
- Qian Ni
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Baohong Yuan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fang Lan
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaochun Luo
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyan Lu
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Huang
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Liangcheng Dai
- Intensive Care Unit, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
35
|
Jordan SC, Choi J, Vo A. Achieving incompatible transplantation through desensitization: current perspectives and future directions. Immunotherapy 2015; 7:377-98. [DOI: 10.2217/imt.15.10] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The application of life-saving transplantation is severely limited by the shortage of organs, and histoincompatibility. To increase transplant rates in sensitized patients, new protocols for HLA and blood type incompatible (ABOi) desensitization have emerged. These approaches require significant desensitization using intravenous immunoglobulin, rituximab and plasma exchange. In addition, the development of donor-specific antibody responses post transplant is the major cause of allograft failure with return to dialysis. This increases patient morbidity/mortality and cost. Immunotherapeutic agents used for desensitization evolved from drug development in oncology and autoimmune diseases. Currently, there is a renaissance in development of novel drugs likely to improve antibody reduction in transplantation. These include agents that inactivate IgG molecules, anticytokine antibodies, costimulatory molecule blockade, anticomplement agents and therapies aimed at the plasma cell.
Collapse
Affiliation(s)
- Stanley C Jordan
- Comprehensive Transplant Center, Kidney Transplant Program & Transplant Immunotherapy Program, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Nephrology & Transplant Immunology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jua Choi
- Comprehensive Transplant Center, Kidney Transplant Program & Transplant Immunotherapy Program, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Ashley Vo
- Comprehensive Transplant Center, Kidney Transplant Program & Transplant Immunotherapy Program, Cedars-Sinai Medical Center, 8900 Beverly Blvd, Los Angeles, CA 90048, USA
| |
Collapse
|
36
|
Abstract
Inflammatory arterial diseases differentially affect the compartments of the vessel wall. The intima and adventitia are commonly involved by the disease process, with luminal and microvascular endothelial cells playing a critical role in the recruitment and activation of leukocytes. In contrast, the avascular media is often spared by immune-mediated disorders. Surprisingly, vascular smooth muscle cells (VSMCs), the predominant and often exclusive cell type of the media, are capable of robust proinflammatory responses to diverse stressors. The multiple cytokines and chemokines produced within the media can profoundly affect macrophage and T cell function, thus amplifying and shaping innate and adaptive immune responses. On the other hand, VSMCs and the extracellular matrix that they produce also display significant anti-inflammatory properties. The balance between the pro- and anti-inflammatory effects of VSMCs and their extracellular matrix versus the strength of the inciting immunologic events determines the pattern of medial pathology. Limitations on the extent of medial infiltration and injury, defined as medial immunoprivilege, are typically seen in arteriosclerotic diseases, such as atherosclerosis and transplant vasculopathy. Conversely, breakdown of medial immunoprivilege that manifests as more intense leukocytic infiltrates, loss of VSMCs, and destruction of the extracellular matrix architecture is a general feature of certain aneurysmal diseases and vasculitides. In this review, we consider the inflammatory and immune functions of VSMCs and how they may lead to medial immunoprivilege or medial inflammation in arterial diseases.
Collapse
Affiliation(s)
- George Tellides
- From the Departments of Surgery (G.T.) and Immunobiology (J.S.P.), Yale University School of Medicine, New Haven, CT; and Veterans Affairs Connecticut Healthcare System, West Haven, CT (G.T.).
| | - Jordan S Pober
- From the Departments of Surgery (G.T.) and Immunobiology (J.S.P.), Yale University School of Medicine, New Haven, CT; and Veterans Affairs Connecticut Healthcare System, West Haven, CT (G.T.)
| |
Collapse
|
37
|
Anti–Interleukin 6 Receptor Antibodies Attenuate Antibody Recall Responses in a Mouse Model of Allosensitization. Transplantation 2014; 98:1262-70. [DOI: 10.1097/tp.0000000000000437] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Pober JS, Jane-wit D, Qin L, Tellides G. Interacting mechanisms in the pathogenesis of cardiac allograft vasculopathy. Arterioscler Thromb Vasc Biol 2014; 34:1609-14. [PMID: 24903097 DOI: 10.1161/atvbaha.114.302818] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac allograft vasculopathy is the major cause of late graft loss in heart transplant recipients. Histological studies of characteristic end-stage lesions reveal arterial changes consisting of a diffuse, confluent, and concentric intimal expansion containing graft-derived cells expressing smooth muscle markers, extracellular matrix, penetrating microvessels, and a host mononuclear cell infiltrate concentrated subjacent to an intact graft-derived luminal endothelial cell lining with little evidence of acute injury. This intimal expansion combined with inadequate compensatory outward remodeling produces severe generalized stenosis extending throughout the epicardial and intramyocardial arterial tree that causes ischemic graft failure. Cardiac allograft vasculopathy lesions affect ≥50% of transplant recipients and are both progressive and refractory to treatment, resulting in ≈5% graft loss per year through the first 10 years after transplant. Lesions typically stop at the suture line, implicating alloimmunity as the primary driver, but pathogenesis may be multifactorial. Here, we will discuss 6 potential contributors to lesion formation (1) conventional risk factors of atherosclerosis; (2) pre- or peritransplant injuries; (3) infection; (4) innate immunity; (5) T-cell-mediated immunity; and (6) B-cell-mediated immunity through production of donor-specific antibody. Finally, we will consider how these various mechanisms may interact with each other.
Collapse
Affiliation(s)
- Jordan S Pober
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT.
| | - Dan Jane-wit
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| | - Lingfeng Qin
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| | - George Tellides
- From the Departments of Immunobiology (J.S.P.), Internal Medicine (D.J.-w.), and Surgery (L.Q. and G.T.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
39
|
Abstract
Vasculitis of the medium and large arteries, most often presenting as giant cell arteritis (GCA), is an infrequent, but potentially fatal, type of immune-mediated vascular disease. The site of the aberrant immune reaction, the mural layers of the artery, is strictly defined by vascular dendritic cells, endothelial cells, vascular smooth muscle cells and fibroblasts, which engage in an interaction with T cells and macrophages to, ultimately, cause luminal stenosis or aneurysmal wall damage of the vessel. A multitude of effector cytokines, all known as critical mediators in host-protective immunity, have been identified in vasculitic lesions. Two dominant cytokine clusters--the IL-6-IL-17 axis and the IL-12-IFN-γ axis--have been linked to disease activity. These two clusters seem to serve different roles in the vasculitic process. The IL-6-IL-17 cluster is highly responsive to standard corticosteroid therapy, whereas the IL-12-IFN-γ cluster is resistant to steroid-mediated immunosuppression. The information exchange between vascular and immune cells and stabilization of the vasculitic process involves members of the Notch receptor and ligand family. Focusing on elements in the tissue context of GCA, instead of broadly suppressing host immunity, might enable a more tailored therapeutic approach that avoids unwanted adverse effects of aggressive immunosuppression.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CCSR Building Room 2225, Mail Code 5166, 269 Campus Drive West, Stanford, CA 94305-5166, USA
| | | |
Collapse
|
40
|
Ge F, Yuan S, Su L, Shen Z, He A, Huang T, Gong W. Alteration of innate immunity by donor IL-6 deficiency in a presensitized heart transplant model. PLoS One 2013; 8:e77559. [PMID: 24147024 PMCID: PMC3797753 DOI: 10.1371/journal.pone.0077559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/03/2013] [Indexed: 11/21/2022] Open
Abstract
Engraftment of IL-6 deficient donor into wild-type recipient could significantly improve allograft survival through T cell lineage particularly regulatory T cells (Tregs) in non-sensitized transplant host. However, its effect on innate immune responses remains uncertain. Our data revealed that donor IL-6 deficiency significantly increased infiltration of two subsets of MDSCs (CD11b+Gr1+myeloid-derived suppressor cells), CD11b+Gr1(-low) and CD11b+Gr1(-int) with strong immunosuppression activity in the transplanted graft. It resulted in a dramatic increase of CD11b+Gr1(-low) frequency and a significant decrease of the frequency of CD11b+Gr1(-high) and CD4-CD8-NK1.1+ cells in the recipient's spleen. Unexpectedly, donor IL-6 deficiency could not significantly reduce macrophage frequency irrespective of in the host's spleen or graft. Taken together, suppression of innate immune effector cells and enhanced activity of regulatory MDSCs contributed to tolerance induction by blockade of IL-6 signaling pathway. The unveiled novel mechanism of targeting IL-6 might shed light on clinical therapeutic application in preventing accelerated allograft rejection for those pre-sensitized transplant recipients.
Collapse
Affiliation(s)
- Fangmin Ge
- Department of Surgery and Medicine, Transplant International Research Centre (TIRC), Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| | - Shunzong Yuan
- Department of Lymphoma, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lida Su
- Department of Surgery and Medicine, Transplant International Research Centre (TIRC), Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| | - Zhonghua Shen
- Department of Surgery and Medicine, Transplant International Research Centre (TIRC), Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| | - Aibin He
- Department of Cardiology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Tao Huang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Weihua Gong
- Department of Surgery and Medicine, Transplant International Research Centre (TIRC), Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou City, People's Republic of China
| |
Collapse
|
41
|
Shi G, Field DJ, Long X, Mickelsen D, Ko KA, Ture S, Korshunov VA, Miano JM, Morrell CN. Platelet factor 4 mediates vascular smooth muscle cell injury responses. Blood 2013; 121:4417-27. [PMID: 23568488 PMCID: PMC3663434 DOI: 10.1182/blood-2012-09-454710] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 03/26/2013] [Indexed: 12/22/2022] Open
Abstract
Activated platelets release many inflammatory molecules with important roles in accelerating vascular inflammation. Much is known about platelet and platelet-derived mediator interactions with endothelial cells and leukocytes, but few studies have examined the effects of platelets on components of the vascular wall. Vascular smooth muscle cells (VSMCs) undergo phenotypic changes in response to injury including the production of inflammatory molecules, cell proliferation, cell migration, and a decline in the expression of differentiation markers. In this study, we demonstrate that the platelet-derived chemokine platelet factor 4 (PF4/CXCL4) stimulates VSMC injury responses both in vitro and in vivo in a mouse carotid ligation model. PF4 drives a VSMC inflammatory phenotype including a decline in differentiation markers, increased cytokine production, and cell proliferation. We also demonstrate that PF4 effects are mediated, in part, through increased expression of the transcription factor Krüppel-like factor 4. Our data indicate an important mechanistic role for platelets and PF4 in VSMC injury responses both in vitro and in vivo.
Collapse
Affiliation(s)
- Guanfang Shi
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wu G, Chai N, Kim I, Klein AS, Jordan SC. Monoclonal anti-interleukin-6 receptor antibody attenuates donor-specific antibody responses in a mouse model of allosensitization. Transpl Immunol 2013; 28:138-43. [PMID: 23562586 DOI: 10.1016/j.trim.2013.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 12/26/2022]
Abstract
Interleukin 6 is an immune regulatory cytokine that impacts the development and maturation of T-cell, B-cell, and antibody producing plasma cells. A monoclonal antibody to the IL-6R (Tocilizumab®) was recently approved by the FDA for treatment of rheumatoid arthritis. Although anti-IL-6R anitbodies can reduce autoantibody levels in human disease, the use of anti-IL-6R for alloantibody suppression has not been examined. Here, we report on our experience with a mousenized rat-anti-mouse IL-6R (mMR16-1) for attenuating donor-specific antibody (DSA) responses. C57BL/6 mice were sensitized with skin allografts from a HLA.A2 transgenic mouse, and treated with intraperitoneal injections of mMR16-1 or control antibody. DSA responses were monitored weekly for 5weeks by measurement of serum anti-HLA.A2 antibodies in a flow cytometric antibody binding assay. Results show that mMR16-1 significantly reduced DSA IgM, IgG2a and IgG1 responses, respectively, while normalizing serum amyloid A (SAA), an acute phase reactant induced by IL-6 (p<0.01 vs. control). mMR16-1 injections increased mononuclear cell apoptosis in the spleens, as detected by annexin V staining and TUNEL. In conclusion, anti-IL6R attenuates de novo DSA responses and suppresses inflammatory markers (SAA). The data indicate that antibody therapy targeting the IL-6/IL-6R pathway may serve as a strategy to suppress DSA generation.
Collapse
Affiliation(s)
- G Wu
- Comprehensive Transplant Center at Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | | | | | | | | |
Collapse
|
43
|
Wang C, Yi T, Qin L, Maldonado RA, von Andrian UH, Kulkarni S, Tellides G, Pober JS. Rapamycin-treated human endothelial cells preferentially activate allogeneic regulatory T cells. J Clin Invest 2013; 123:1677-93. [PMID: 23478407 DOI: 10.1172/jci66204] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 01/17/2013] [Indexed: 12/17/2022] Open
Abstract
Human graft endothelial cells (ECs) can act as antigen-presenting cells to initiate allograft rejection by host memory T cells. Rapamycin, an mTOR inhibitor used clinically to suppress T cell responses, also acts on DCs, rendering them tolerogenic. Here, we report the effects of rapamycin on EC alloimmunogenicity. Compared with mock-treated cells, rapamycin-pretreated human ECs (rapa-ECs) stimulated less proliferation and cytokine secretion from allogeneic CD4+ memory cells, an effect mimicked by shRNA knockdown of mTOR or raptor in ECs. The effects of rapamycin persisted for several days and were linked to upregulation of the inhibitory molecules PD-L1 and PD-L2 on rapa-ECs. Additionally, rapa-ECs produced lower levels of the inflammatory cytokine IL-6. CD4+ memory cells activated by allogeneic rapa-ECs became hyporesponsive to restimulation in an alloantigen-specific manner and contained higher percentages of suppressive CD4+CD25(hi)CD127(lo)FoxP3+ cells that did not produce effector cytokines. In a human-mouse chimeric model of allograft rejection, rapamycin pretreatment of human arterial allografts increased graft EC expression of PD-L1 and PD-L2 and reduced subsequent infiltration of allogeneic effector T cells into the artery intima and intimal expansion. Preoperative conditioning of allograft ECs with rapamycin could potentially reduce immune-mediated rejection.
Collapse
Affiliation(s)
- Chen Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8089, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kücüksezer UC, Palomares O, Rückert B, Jartti T, Puhakka T, Nandy A, Gemicioğlu B, Fahrner HB, Jung A, Deniz G, Akdis CA, Akdis M. Triggering of specific Toll-like receptors and proinflammatory cytokines breaks allergen-specific T-cell tolerance in human tonsils and peripheral blood. J Allergy Clin Immunol 2013; 131:875-85. [DOI: 10.1016/j.jaci.2012.10.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 10/20/2012] [Accepted: 10/25/2012] [Indexed: 12/31/2022]
|
45
|
Affiliation(s)
- Zhongmin Liu
- Department of Cardiovascular and Thoracic Surgery; Shanghai East Hospital of Tongji University; Shanghai; China
| | - Huimin Fan
- Department of Cardiovascular and Thoracic Surgery; Shanghai East Hospital of Tongji University; Shanghai; China
| | | |
Collapse
|
46
|
Taflin C, Charron D, Glotz D, Mooney N. Regulation of the CD4+ T cell allo-immune response by endothelial cells. Hum Immunol 2012; 73:1269-74. [DOI: 10.1016/j.humimm.2012.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 06/12/2012] [Accepted: 07/09/2012] [Indexed: 01/13/2023]
|
47
|
Shultz LD, Brehm MA, Garcia-Martinez JV, Greiner DL. Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 2012; 12:786-98. [PMID: 23059428 DOI: 10.1038/nri3311] [Citation(s) in RCA: 687] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significant advances in our understanding of the in vivo functions of human cells and tissues and the human immune system have resulted from the development of 'humanized' mouse strains that are based on severely immunodeficient mice with mutations in the interleukin-2 receptor common γ-chain locus. These mouse strains support the engraftment of a functional human immune system and permit detailed analyses of human immune biology, development and functions. In this Review, we discuss recent advances in the development and utilization of humanized mice, the lessons learnt, the remaining challenges and the promise of using humanized mice for the in vivo study of human immunology.
Collapse
Affiliation(s)
- Leonard D Shultz
- Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | |
Collapse
|
48
|
Defining the human T helper 17 cell phenotype. Trends Immunol 2012; 33:505-12. [PMID: 22682163 DOI: 10.1016/j.it.2012.05.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/01/2023]
Abstract
T helper (Th) 17 cells represent a third effector arm of CD4 T cells and complement the function of the Th1 and Th2 cell lineages. Here, we provide an overview of the transcription factors, cytokines, chemokines, and cytokine and chemokine receptors that characterize the Th17 cell phenotype. Data relevant for human Th17 cells are emphasized, with a focus on the function of two markers that have recently been associated with human Th17 cells, CD161 and interleukin-4-induced gene 1 (IL4I1). Also considered is the basis of Th17 cell plasticity towards the Th1 lineage, and we suggest that this plasticity together with the limited expansion of Th17 cells in response to T cell receptor (TCR) triggering accounts for the rarity of human Th17 cells in inflamed tissues.
Collapse
|