1
|
Wan X, Zhang Y, Tang H, Li M, Jiang T, He J, Bao C, Wang J, Song Y, Xiao P, Liu Y, Lai L, Wang Q. IL‐27 signaling negatively regulates FcɛRI‐mediated mast cell activation and allergic response. J Leukoc Biol 2022; 112:411-424. [PMID: 35075687 DOI: 10.1002/jlb.2ma1221-637r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaopeng Wan
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veternary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Huanna Tang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Mengyao Li
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Tianqi Jiang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Jia He
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Chunjing Bao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Junkai Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yinjing Song
- Department of Dermatology and Venereology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Peng Xiao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yang Liu
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Lihua Lai
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Qingqing Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
2
|
MacDonald SM. History of Histamine-Releasing Factor (HRF)/Translationally Controlled Tumor Protein (TCTP) Including a Potential Therapeutic Target in Asthma and Allergy. Results Probl Cell Differ 2019; 64:291-308. [PMID: 29149416 DOI: 10.1007/978-3-319-67591-6_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Histamine-releasing factor (HRF) also known as translationally controlled tumor protein (TCTP) is a highly conserved, ubiquitous protein that has both intracellular and extracellular functions. Here we will highlight the subcloning of the molecule, its clinical implications, as well as an inducible-transgenic mouse. Particular attention will be paid to its extracellular functioning and its potential role as a therapeutic target in asthma and allergy. The cells and the cytokines that are produced when stimulated or primed by HRF/TCTP will be detailed as well as the downstream signaling pathway that HRF/TCTP elicits. While it was originally thought that HRF/TCTP interacted with IgE, the finding that cells not binding IgE also respond to HRF/TCTP called this interaction into question. HRF/TCTP or at least its mouse counterpart appears to interact with some, but not all IgE and IgG molecules. HRF/TCTP has been shown to activate multiple human cells including basophils, eosinophils, T cells, and B cells. Since many of the cells that are activated by HRF/TCTP participate in the allergic response, the extracellular functions of HRF/TCTP could exacerbate the allergic, inflammatory cascade. Particularly exciting is that small molecule agonists of the phosphatase SHIP-1 have been shown to modulate the P13 kinase/AKT pathway and may control inflammatory disorders. This review discusses this possibility in light of HRF/TCTP.
Collapse
Affiliation(s)
- Susan M MacDonald
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.69, Baltimore, MD, 21224, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Regulation of Microtubule Nucleation in Mouse Bone Marrow-Derived Mast Cells by Protein Tyrosine Phosphatase SHP-1. Cells 2019; 8:cells8040345. [PMID: 30979083 PMCID: PMC6523986 DOI: 10.3390/cells8040345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The antigen-mediated activation of mast cells initiates signaling events leading to their degranulation, to the release of inflammatory mediators, and to the synthesis of cytokines and chemokines. Although rapid and transient microtubule reorganization during activation has been described, the molecular mechanisms that control their rearrangement are largely unknown. Microtubule nucleation is mediated by γ-tubulin complexes. In this study, we report on the regulation of microtubule nucleation in bone marrow-derived mast cells (BMMCs) by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1; Ptpn6). Reciprocal immunoprecipitation experiments and pull-down assays revealed that SHP-1 is present in complexes containing γ-tubulin complex proteins and protein tyrosine kinase Syk. Microtubule regrowth experiments in cells with deleted SHP-1 showed a stimulation of microtubule nucleation, and phenotypic rescue experiments confirmed that SHP-1 represents a negative regulator of microtubule nucleation in BMMCs. Moreover, the inhibition of the SHP-1 activity by inhibitors TPI-1 and NSC87877 also augmented microtubule nucleation. The regulation was due to changes in γ-tubulin accumulation. Further experiments with antigen-activated cells showed that the deletion of SHP-1 stimulated the generation of microtubule protrusions, the activity of Syk kinase, and degranulation. Our data suggest a novel mechanism for the suppression of microtubule formation in the later stages of mast cell activation.
Collapse
|
4
|
Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC. Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol 2019; 144:S31-S45. [PMID: 30772496 DOI: 10.1016/j.jaci.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - George K Ainooson
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Riedlinger
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
5
|
Hibbs ML, Raftery AL, Tsantikos E. Regulation of hematopoietic cell signaling by SHIP-1 inositol phosphatase: growth factors and beyond. Growth Factors 2018; 36:213-231. [PMID: 30764683 DOI: 10.1080/08977194.2019.1569649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SHIP-1 is a hematopoietic-specific inositol phosphatase activated downstream of a multitude of receptors including those for growth factors, cytokines, antigen, immunoglobulin and toll-like receptor agonists where it exerts inhibitory control. While it is constitutively expressed in all immune cells, SHIP-1 expression is negatively regulated by the inflammatory and oncogenic micro-RNA miR-155. Knockout mouse studies have shown the importance of SHIP-1 in various immune cell subsets and have revealed a range of immune-mediated pathologies that are engendered due to loss of SHIP-1's regulatory activity, impelling investigations into the role of SHIP-1 in human disease. In this review, we provide an overview of the literature relating to the role of SHIP-1 in hematopoietic cell signaling and function, we summarize recent reports that highlight the dysregulation of the SHIP-1 pathway in cancers, autoimmune disorders and inflammatory diseases, and lastly we discuss the importance of SHIP-1 in restraining myeloid growth factor signaling.
Collapse
Affiliation(s)
- Margaret L Hibbs
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - April L Raftery
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| | - Evelyn Tsantikos
- a Department of Immunology and Pathology , Alfred Medical Research and Education Precinct Monash University , Melbourne , Victoria , Australia
| |
Collapse
|
6
|
Rubíková Z, Sulimenko V, Paulenda T, Dráber P. Mast Cell Activation and Microtubule Organization Are Modulated by Miltefosine Through Protein Kinase C Inhibition. Front Immunol 2018; 9:1563. [PMID: 30038620 PMCID: PMC6046399 DOI: 10.3389/fimmu.2018.01563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 12/01/2022] Open
Abstract
Mast cells play an effector role in innate immunity, allergy, and inflammation. Antigen-mediated activation of mast cells initiates signaling events leading to Ca2+ response and the release of inflammatory and allergic mediators from granules. Diseases associated with deregulated mast cell functions are hard to treat and there is an increasing demand for new therapeutic strategies. Miltefosine (hexadecylphosphocholine) is a new candidate for treatment of mast cell-driven diseases as it inhibits activation of mast cells. It has been proposed that miltefosine acts as a lipid raft modulator through its interference with the structural organization of surface receptors in the cell membrane. However, molecular mechanisms of its action are not fully understood. Here, we report that in antigen-activated bone marrow-derived mast cells (BMMCs), miltefosine inhibits degranulation, reorganization of microtubules, as well as antigen-induced chemotaxis. While aggregation and tyrosine phosphorylation of IgE receptors were suppressed in activated cells pre-treated with miltefosine, overall tyrosine phosphorylation levels of Lyn and Syk kinases, and Ca2+ influx were not inhibited. In contrast, lipid raft disruptor methyl-β-cyclodextrin attenuated the Ca2+ influx. Tagged-miltefosine rapidly localized into the cell interior, and live-cell imaging of BMMCs with labeled intracellular granules disclosed that miltefosine inhibited movement of some granules. Immunoprecipitation and in vitro kinase assays revealed that miltefosine inhibited Ca2+- and diacylglycerol-regulated conventional protein kinase C (cPKC) isoforms that are important for mast cell degranulation. Inhibition of cPKCs by specific inhibitor Ly333531 affected activation of BMMCs in the same way as miltefosine. Collectively, our data suggest that miltefosine modulates mast cells both at the plasma membrane and in the cytosol by inhibition of cPKCs. This alters intracellular signaling pathway(s) directed to microtubules, degranulation, and migration.
Collapse
Affiliation(s)
- Zuzana Rubíková
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Tomáš Paulenda
- Department of Signal Transduction, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Tsai M, Starkl P, Marichal T, Galli SJ, Nilsson G, Daëron M, Levi-Schaffer F, Landolina N, Blank U, Marone G, Varricchi G, Prevete N, Melillo RM, Roediger B, Weninger W, Maurer M. FRT - FONDATION RENE TOURAINE. Exp Dermatol 2015. [DOI: 10.1111/exd.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mindy Tsai
- Department of Pathology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Philipp Starkl
- Department of Pathology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine; University of Liege; 4000 Liege Belgium
| | - Stephen J. Galli
- Department of Pathology; Stanford University School of Medicine; Stanford CA 94305 USA
- Department of Microbiology & Immunology; Stanford University School of Medicine; Stanford CA 94305 USA
| | - Gunnar Nilsson
- Clinical Immunology and Allergy; Department of Medicine; Karolinska Institutet and University Hospital; 17176 Stockholm Sweden
| | - Marc Daëron
- Institut Pasteur; Paris France
- Centre d'Immunologie de Marseille-Luminy; Marseille France
| | - Francesca Levi-Schaffer
- The Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Nadine Landolina
- The Institute for Drug Research; School of Pharmacy; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Ulrich Blank
- Inserm UMRS-1149; 75018 Paris France
- CNRS ERL 8252; Université Paris Diderot, Sorbonne Paris Cite; 75018 Paris France
- Laboratoire d'excellence INFLAMEX; Université Paris Diderot, Sorbonne Paris Cite; 75018 Paris France
| | - Gianni Marone
- Department of Translational Medical Sciences; University of Naples; Naples Italy
- Center for Basic and Clinical Immunology Research (CISI); University of Naples; Naples Italy
- CNR Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’; Naples Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences; University of Naples; Naples Italy
| | - Nella Prevete
- Department of Translational Medical Sciences; University of Naples; Naples Italy
| | - Rosa Marina Melillo
- CNR Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’; Naples Italy
- Department of Molecular Medicine and Medical Biotechnology; University of Naples Federico II; Naples Italy
| | - Ben Roediger
- Centenary Institute; Newton NSW Australia
- Discipline of Dermatology; University of Sydney; Camperdown NSW Australia
| | - Wolfgang Weninger
- Centenary Institute; Newton NSW Australia
- Discipline of Dermatology; University of Sydney; Camperdown NSW Australia
- Department of Dermatology; Royal Prince Alfred Hospital; Camperdown NSW Australia
| | - Marcus Maurer
- Department of Dermatology and Allergy; Allergie-Centrum-Charité/ECARF, Charité - Universitätsmedizin; 10117 Berlin Germany
| |
Collapse
|
9
|
Nakano N, Nishiyama C, Yagita H, Hara M, Motomura Y, Kubo M, Okumura K, Ogawa H. Notch signaling enhances FcεRI-mediated cytokine production by mast cells through direct and indirect mechanisms. THE JOURNAL OF IMMUNOLOGY 2015; 194:4535-44. [PMID: 25821223 DOI: 10.4049/jimmunol.1301850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/23/2015] [Indexed: 01/12/2023]
Abstract
Th2-type cytokines and TNF-α secreted by activated mast cells upon cross-linking of FcεRI contribute to the development and maintenance of Th2 immunity to parasites and allergens. We have previously shown that cytokine secretion by mouse mast cells is enhanced by signaling through Notch receptors. In this study, we investigated the molecular mechanisms by which Notch signaling enhances mast cell cytokine production induced by FcεRI cross-linking. FcεRI-mediated production of cytokines, particularly IL-4, was significantly enhanced in mouse bone marrow-derived mast cells by priming with Notch ligands. Western blot analysis showed that Notch signaling augmented and prolonged FcεRI-mediated phosphorylation of MAPKs, mainly JNK and p38 MAPK, through suppression of the expression of SHIP-1, a master negative regulator of FcεRI signaling, resulting in the enhanced production of multiple cytokines. The enhancing effect of Notch ligand priming on multiple cytokine production was abolished by knockdown of Notch2, but not Notch1, and FcεRI-mediated production of multiple cytokines was enhanced by retroviral transduction with the intracellular domain of Notch2. However, only IL-4 production was enhanced by both Notch1 and Notch2. The enhancing effect of Notch signaling on IL-4 production was lost in bone marrow-derived mast cells from mice lacking conserved noncoding sequence 2, which is located at the distal 3' element of the Il4 gene locus and contains Notch effector RBP-J binding sites. These results indicate that Notch2 signaling indirectly enhances the FcεRI-mediated production of multiple cytokines, and both Notch1 and Notch2 signaling directly enhances IL-4 production through the noncoding sequence 2 enhancer of the Il4 gene.
Collapse
Affiliation(s)
- Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan;
| | - Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan; Department of Biological Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasutaka Motomura
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; and Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; and Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science, RIKEN Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan; Department of Immunology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
10
|
PI3K signalling in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:882-97. [PMID: 25514767 DOI: 10.1016/j.bbalip.2014.12.006] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
PI3Ks regulate several key events in the inflammatory response to damage and infection. There are four Class I PI3K isoforms (PI3Kα,β,γ,δ), three Class II PI3K isoforms (PI3KC2α, C2β, C2γ) and a single Class III PI3K. The four Class I isoforms synthesise the phospholipid 'PIP3'. PIP3 is a 'second messenger' used by many different cell surface receptors to control cell movement, growth, survival and differentiation. These four isoforms have overlapping functions but each is adapted to receive efficient stimulation by particular receptor sub-types. PI3Kγ is highly expressed in leukocytes and plays a particularly important role in chemokine-mediated recruitment and activation of innate immune cells at sites of inflammation. PI3Kδ is also highly expressed in leukocytes and plays a key role in antigen receptor and cytokine-mediated B and T cell development, differentiation and function. Class III PI3K synthesises the phospholipid PI3P, which regulates endosome-lysosome trafficking and the induction of autophagy, pathways involved in pathogen killing, antigen processing and immune cell survival. Much less is known about the function of Class II PI3Ks, but emerging evidence indicates they can synthesise PI3P and PI34P2 and are involved in the regulation of endocytosis. The creation of genetically-modified mice with altered PI3K signalling, together with the development of isoform-selective, small-molecule PI3K inhibitors, has allowed the evaluation of the individual roles of Class I PI3K isoforms in several mouse models of chronic inflammation. Selective inhibition of PI3Kδ, γ or β has each been shown to reduce the severity of inflammation in one or more models of autoimmune disease, respiratory disease or allergic inflammation, with dual γ/δ or β/δ inhibition generally proving more effective. The inhibition of Class I PI3Ks may therefore offer a therapeutic opportunity to treat non-resolving inflammatory pathologies in humans. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
11
|
Bounab Y, Getahun A, Cambier JC, Daëron M. Phosphatase regulation of immunoreceptor signaling in T cells, B cells and mast cells. Curr Opin Immunol 2013; 25:313-20. [PMID: 23684445 DOI: 10.1016/j.coi.2013.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/30/2022]
Abstract
Recent progress has begun to reveal the often complex and changing roles of phosphotyrosine and phosphoinositide phosphatases in regulation of immunoreceptor signaling. The resultant confusion has been further increased by discoveries of new players. Here we provide a review of recent progress in defining the roles of these enzymes in immunoreceptor-dependent mast cell, T cell and B cell activation.
Collapse
Affiliation(s)
- Yacine Bounab
- Institut Pasteur, Département d'Immunologie, Centre d'Immunologie Humaine, Paris, France
| | | | | | | |
Collapse
|
12
|
Pan YF, Dong LW, Wang M, Yang GZ, Zhang J, Li SX, Zhang B, Yang C, Li Z, Tan YX, Wang HY. Signal regulatory protein α negatively regulates mast-cell activation following FcεRI aggregation. Eur J Immunol 2013; 43:1598-607. [DOI: 10.1002/eji.201243031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 01/31/2013] [Accepted: 03/08/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Yu-fei Pan
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Li-wei Dong
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Min Wang
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Guang-zhen Yang
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Jian Zhang
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Shuang-xi Li
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Bo Zhang
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Chun Yang
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Zhong Li
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | - Ye-xiong Tan
- International Cooperation Laboratory on Signal Transduction; Eastern Hepatobiliary Surgery Institute, the Second Military Medical University; Shanghai; P. R. China
| | | |
Collapse
|
13
|
Foster JG, Blunt MD, Carter E, Ward SG. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Pharmacol Rev 2013; 64:1027-54. [PMID: 23023033 DOI: 10.1124/pr.110.004051] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The phosphoinositide 3-kinase/mammalian target of rapamycin/protein kinase B (PI3K/mTOR/Akt) signaling pathway is central to a plethora of cellular mechanisms in a wide variety of cells including leukocytes. Perturbation of this signaling cascade is implicated in inflammatory and autoimmune disorders as well as hematological malignancies. Proteins within the PI3K/mTOR/Akt pathway therefore represent attractive targets for therapeutic intervention. There has been a remarkable evolution of PI3K inhibitors in the past 20 years from the early chemical tool compounds to drugs that are showing promise as anticancer agents in clinical trials. The use of animal models and pharmacological tools has expanded our knowledge about the contribution of individual class I PI3K isoforms to immune cell function. In addition, class II and III PI3K isoforms are emerging as nonredundant regulators of immune cell signaling revealing potentially novel targets for disease treatment. Further complexity is added to the PI3K/mTOR/Akt pathway by a number of novel signaling inputs and feedback mechanisms. These can present either caveats or opportunities for novel drug targets. Here, we consider recent advances in 1) our understanding of the contribution of individual PI3K isoforms to immune cell function and their relevance to inflammatory/autoimmune diseases as well as lymphoma and 2) development of small molecules with which to inhibit the PI3K pathway. We also consider whether manipulating other proximal elements of the PI3K signaling cascade (such as class II and III PI3Ks or lipid phosphatases) are likely to be successful in fighting off different immune diseases.
Collapse
Affiliation(s)
- John G Foster
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
| | | | | | | |
Collapse
|
14
|
Yamaki K, Yoshino S. Preventive and therapeutic effects of rapamycin, a mammalian target of rapamycin inhibitor, on food allergy in mice. Allergy 2012; 67:1259-70. [PMID: 22913509 DOI: 10.1111/all.12000] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND Because few curative treatments are available for food allergy, we investigated the therapeutic potential of rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, on mouse food allergy. METHODS The preventive and therapeutic effects of oral rapamycin on anaphylactic symptoms induced by oral ovalbumin (OVA) challenge in food allergy mice were investigated. Mast cell functions in response to rapamycin were also measured in the passive systemic anaphylaxis model and bone marrow-derived mast cells (BMMCs). RESULTS Daily rapamycin from the first challenge (preventive protocol) attenuated food allergy symptoms including diarrhea, anaphylactic reactions, and hypothermia in mice. The treatment decreased the challenge-induced increases in mouse mast cell protease-1 in serum and mast cell numbers in the intestine. Notably, the mice that already showed food allergy symptoms by previous challenges recovered from the disease with daily administration of rapamycin (therapeutic protocol). Anti-OVA IgG1 and IgE levels in serum, as well as IFN-γ, IL-4, IL-13, IL-9, IL-10, and IL-17 secretion from splenocytes, were decreased by the treatments. In contrast, a single dose of rapamycin failed to affect passive systemic anaphylaxis. Spontaneous and IL-9-dependent survival and IgE-induced IL-13 secretion, but not degranulation, of BMMCs were reduced by rapamycin. CONCLUSION Our data show that mouse food allergy was attenuated by rapamycin through an immunosuppressive effect and inhibition of intestinal mast cell hyperplasia. Inhibition of the IL-9 production-mast cell survival axis is one of the mechanisms of the therapeutic effect of rapamycin. Rapamycin and other mTOR inhibitors might be good candidates for therapeutic drugs for food allergy.
Collapse
Affiliation(s)
- K. Yamaki
- Department of Pharmacology; Kobe Pharmaceutical University; Kobe; Hyogo; Japan
| | - S. Yoshino
- Department of Pharmacology; Kobe Pharmaceutical University; Kobe; Hyogo; Japan
| |
Collapse
|
15
|
Macdonald SM. Potential role of histamine releasing factor (HRF) as a therapeutic target for treating asthma and allergy. J Asthma Allergy 2012; 5:51-9. [PMID: 23055753 PMCID: PMC3461606 DOI: 10.2147/jaa.s28868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Histamine releasing factor (HRF), also known as translationally controlled tumor protein (TCTP), is a highly conserved, ubiquitous protein that has both intracellular and extracellular functions. Here, we will highlight the history of the molecule, its clinical implications with a focus on its extracellular functioning, and its potential role as a therapeutic target in asthma and allergy. The cells and cytokines produced when stimulated or primed by HRF/TCTP are detailed as well as the downstream signaling pathway that HRF/TCTP elicits. While it was originally thought that HRF/TCTP interacted with IgE, the finding that cells not binding IgE also respond to HRF/TCTP called this interaction into question. HRF/TCTP, or at least its mouse counterpart, appears to interact with some, but not all IgE and IgG molecules. HRF/TCTP has been shown to activate multiple human cells including basophils, eosinophils, T cells, and B cells. Since many of the cells activated by HRF/TCTP participate in the allergic response, extracellular functions of HRF/TCTP may exacerbate the allergic, inflammatory cascade. Particularly exciting is that small molecule agonists of Src homology 2-containing inositol phosphatase-1 have been shown to modulate the phosphoinositide 3-kinase/AKT pathway and may control inflammatory disorders. This review discusses this possibility in light of HRF/TCTP.
Collapse
|
16
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|