1
|
Tetteh DN, Isono K, Hikosaka-Kuniishi M, Yamazaki H. Neural Crest-Derived Mesenchymal Cells Support Thymic Reconstitution After Lethal Irradiation. Eur J Immunol 2024:e202451305. [PMID: 39548921 DOI: 10.1002/eji.202451305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
Reconstitution of the thymus is essential for assessing thymic function following injury. However, the currently employed cytoreductive regimes unvaryingly affect the thymic microenvironment, thereby impeding the recovery of T lymphopoiesis. The thymic stroma is composed of epithelial and mesenchymal cells. Thymic mesenchymal cells originate from the Neural crest (NC) and mesoderm and contribute to thymus organogenesis, yet their role in thymic regeneration is unclear. In this study, using transgenic mice expressing NC-specific Cre and Cre-driven DT receptors, we investigated the role of NC-derived mesenchymal cells in thymic regeneration following total body irradiation. We revealed that NC-derived mesenchymal cells have reduced susceptibility to irradiation and induce the upregulation of hematopoietic factors that promote thymus regeneration after irradiation. Additionally, using adult thymic organ culture and renal capsule transplantation, depletion of NC-derived mesenchymal cells resulted in a reduction of DN1-like early T-cell progenitors (ETP) and impaired thymic regeneration. Furthermore, among the numerous factors upregulated by NC-derived mesenchymal cells, Periostin and Flt3L were markedly increased after irradiation and promoted abundance of DN1-like ETPs during thymic reconstitution. Collectively, these findings highlight the importance of NC-derived mesenchymal cells in thymic regeneration.
Collapse
Affiliation(s)
- Doris Narki Tetteh
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kana Isono
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mari Hikosaka-Kuniishi
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmacological Science, University of Toyama, Toyama, Japan
| | - Hidetoshi Yamazaki
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
2
|
Stern L, McGuire HM, Avdic S, Blyth E, Gottlieb D, Patrick E, Abendroth A, Slobedman B. Circulating cytokine and chemokine patterns associated with cytomegalovirus reactivation after stem cell transplantation. Clin Transl Immunology 2023; 12:e16815. [PMID: 38034080 PMCID: PMC10684332 DOI: 10.1002/cti2.1473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Objectives Human cytomegalovirus (HCMV) reactivation is the leading viral complication after allogeneic haematopoietic stem cell transplantation (allo-HSCT). Understanding of circulating cytokine/chemokine patterns which accompany HCMV reactivation and correlate with HCMV DNAemia magnitude is limited. We aimed to characterise plasma cytokine/chemokine profiles in 36 allo-HSCT patients (21 with HCMV reactivation and 15 without HCMV reactivation) at four time-points in the first 100-day post-transplant. Methods The concentrations of 31 cytokines/chemokines in plasma samples were analysed using a multiplex bead-based immunoassay. Cytokine/chemokine concentrations were compared in patients with high-level HCMV DNAemia, low-level HCMV DNAemia or no HCMV reactivation, and correlated with immune cell frequencies measured using mass cytometry. Results Increased plasma levels of T helper 1-type cytokines/chemokines (TNF, IL-18, IP-10, MIG) were detected in patients with HCMV reactivation at the peak of HCMV DNAemia, relative to non-reactivators. Stem cell factor (SCF) levels were significantly higher before the detection of HCMV reactivation in patients who went on to develop high-level HCMV DNAemia (810-52 740 copies/mL) vs. low-level HCMV DNAemia (< 250 copies/mL). High-level HCMV reactivators, but not low-level reactivators, developed an elevated inflammatory cytokine/chemokine profile (MIP-1α, MIP-1β, TNF, LT-α, IL-13, IL-9, SCF, HGF) at the peak of reactivation. Plasma cytokine concentrations displayed unique correlations with circulating immune cell frequencies in patients with HCMV reactivation. Conclusion This study identifies distinct circulating cytokine/chemokine signatures associated with the magnitude of HCMV DNAemia and the progression of HCMV reactivation after allo-HSCT, providing important insight into immune recovery patterns associated with HCMV reactivation and viral control.
Collapse
Affiliation(s)
- Lauren Stern
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Selmir Avdic
- Westmead Institute for Medical ResearchThe University of SydneySydneyNSWAustralia
| | - Emily Blyth
- Westmead Institute for Medical ResearchThe University of SydneySydneyNSWAustralia
- Blood Transplant and Cell Therapies Program, Department of HaematologyWestmead HospitalSydneyNSWAustralia
- Faculty of Medicine and Health, Sydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - David Gottlieb
- Westmead Institute for Medical ResearchThe University of SydneySydneyNSWAustralia
- Blood Transplant and Cell Therapies Program, Department of HaematologyWestmead HospitalSydneyNSWAustralia
- Faculty of Medicine and Health, Sydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Ellis Patrick
- Westmead Institute for Medical ResearchThe University of SydneySydneyNSWAustralia
- School of Mathematics and StatisticsThe University of SydneySydneyNSWAustralia
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| |
Collapse
|
3
|
Hino C, Xu Y, Xiao J, Baylink DJ, Reeves ME, Cao H. The potential role of the thymus in immunotherapies for acute myeloid leukemia. Front Immunol 2023; 14:1102517. [PMID: 36814919 PMCID: PMC9940763 DOI: 10.3389/fimmu.2023.1102517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Understanding the factors which shape T-lymphocyte immunity is critical for the development and application of future immunotherapeutic strategies in treating hematological malignancies. The thymus, a specialized central lymphoid organ, plays important roles in generating a diverse T lymphocyte repertoire during the infantile and juvenile stages of humans. However, age-associated thymic involution and diseases or treatment associated injury result in a decline in its continuous role in the maintenance of T cell-mediated anti-tumor/virus immunity. Acute myeloid leukemia (AML) is an aggressive hematologic malignancy that mainly affects older adults, and the disease's progression is known to consist of an impaired immune surveillance including a reduction in naïve T cell output, a restriction in T cell receptor repertoire, and an increase in frequencies of regulatory T cells. As one of the most successful immunotherapies thus far developed for malignancy, T-cell-based adoptive cell therapies could be essential for the development of a durable effective treatment to eliminate residue leukemic cells (blasts) and prevent AML relapse. Thus, a detailed cellular and molecular landscape of how the adult thymus functions within the context of the AML microenvironment will provide new insights into both the immune-related pathogenesis and the regeneration of a functional immune system against leukemia in AML patients. Herein, we review the available evidence supporting the potential correlation between thymic dysfunction and T-lymphocyte impairment with the ontogeny of AML (II-VI). We then discuss how the thymus could impact current and future therapeutic approaches in AML (VII). Finally, we review various strategies to rejuvenate thymic function to improve the precision and efficacy of cancer immunotherapy (VIII).
Collapse
Affiliation(s)
- Christopher Hino
- Department of Internal Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - David J Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Mark E Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Loma Linda University Cancer Center, Loma Linda, CA, United States
| |
Collapse
|
4
|
Yanir A, Schulz A, Lawitschka A, Nierkens S, Eyrich M. Immune Reconstitution After Allogeneic Haematopoietic Cell Transplantation: From Observational Studies to Targeted Interventions. Front Pediatr 2021; 9:786017. [PMID: 35087775 PMCID: PMC8789272 DOI: 10.3389/fped.2021.786017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Immune reconstitution (IR) after allogeneic haematopoietic cell transplantation (HCT) represents a central determinant of the clinical post-transplant course, since the majority of transplant-related outcome parameters such as graft-vs.-host disease (GvHD), infectious complications, and relapse are related to the velocity, quantity and quality of immune cell recovery. Younger age at transplant has been identified as the most important positive prognostic factor for favourable IR post-transplant and, indeed, accelerated immune cell recovery in children is most likely the pivotal contributing factor to lower incidences of GvHD and infectious complications in paediatric allogeneic HCT. Although our knowledge about the mechanisms of IR has significantly increased over the recent years, strategies to influence IR are just evolving. In this review, we will discuss different patterns of IR during various time points post-transplant and their impact on outcome. Besides IR patterns and cellular phenotypes, recovery of antigen-specific immune cells, for example virus-specific T cells, has recently gained increasing interest, as certain threshold levels of antigen-specific T cells seem to confer protection against severe viral disease courses. In contrast, the association between IR and a possible graft-vs. leukaemia effect is less well-understood. Finally, we will present current concepts of how to improve IR and how this could change transplant procedures in the near future.
Collapse
Affiliation(s)
- Asaf Yanir
- Bone Marrow Transplant Unit, Division of Haematology and Oncology, Schneider Children's Medical Center of Israel, Petach-Tikva, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anita Lawitschka
- St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Matthias Eyrich
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, University Medical Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Abstract
Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Collapse
|
6
|
El-Kadiry AEH, Rafei M. Restoring thymic function: Then and now. Cytokine 2019; 120:202-209. [PMID: 31108430 DOI: 10.1016/j.cyto.2019.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/21/2023]
Abstract
Thymic vulnerability, a leading cause of defective immunity, was discovered decades ago. To date, several strategies have been investigated to unveil any immunorestorative capacities they might confer. Studies exploiting castration, transplantation, adoptive cell therapies, hormones/growth factors, and cytokines have demonstrated enhanced in vitro and in vivo thymopoiesis, albeit with clinical restrictions. In this review, we will dissect the thymus on a physiological and pathological level and discuss the pros and cons of several strategies esteemed thymotrophic from a pre-clinical perspective. Finally, we will shed light on interleukin (IL)-21, a pharmacologically-promising cytokine with a significant thymotrophic nature, and elaborate on its potential clinical efficacy and safety in immune-deficient subjects.
Collapse
Affiliation(s)
- Abed El-Hakim El-Kadiry
- Department of Biomedical Sciences, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada; Montreal Heart Institute, Montréal, Qc, Canada
| | - Moutih Rafei
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montréal, Qc, Canada; Department of Microbiology and Immunology, McGill University, Montréal, Qc, Canada.
| |
Collapse
|
7
|
Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 2018; 24:739-748. [PMID: 29808007 DOI: 10.1038/s41591-018-0036-4] [Citation(s) in RCA: 993] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/23/2018] [Indexed: 01/10/2023]
Abstract
In the clinic, chimeric antigen receptor-modified T (CAR T) cell therapy is frequently associated with life-threatening cytokine-release syndrome (CRS) and neurotoxicity. Understanding the nature of these pathologies and developing treatments for them are hampered by the lack of appropriate animal models. Herein, we describe a mouse model recapitulating key features of CRS and neurotoxicity. In humanized mice with high leukemia burden, CAR T cell-mediated clearance of cancer triggered high fever and elevated IL-6 levels, which are hallmarks of CRS. Human monocytes were the major source of IL-1 and IL-6 during CRS. Accordingly, the syndrome was prevented by monocyte depletion or by blocking IL-6 receptor with tocilizumab. Nonetheless, tocilizumab failed to protect mice from delayed lethal neurotoxicity, characterized by meningeal inflammation. Instead, the IL-1 receptor antagonist anakinra abolished both CRS and neurotoxicity, resulting in substantially extended leukemia-free survival. These findings offer a therapeutic strategy to tackle neurotoxicity and open new avenues to safer CAR T cell therapies.
Collapse
|
8
|
Politikos I, Kim HT, Nikiforow S, Li L, Brown J, Antin JH, Cutler C, Ballen K, Ritz J, Boussiotis VA. IL-7 and SCF Levels Inversely Correlate with T Cell Reconstitution and Clinical Outcomes after Cord Blood Transplantation in Adults. PLoS One 2015; 10:e0132564. [PMID: 26177551 PMCID: PMC4503696 DOI: 10.1371/journal.pone.0132564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022] Open
Abstract
Recovery of thymopoiesis is critical for immune reconstitution after HSCT. IL-7 and SCF are two major thymotropic cytokines. We investigated whether the kinetics of circulating levels of these cytokines might provide insight into the prolonged immunodeficiency after double umbilical cord blood transplantation (dUCBT) in adults. We examined plasma levels of IL-7 and SCF, T-cell receptor rearrangement excision circle (TREC) levels and T cell subsets in 60 adult patients undergoing dUCBT. Median levels of IL-7 increased by more than 3-fold at 4 weeks and remained elevated through 100 days after dUCBT. SCF showed a less than 2-fold increase and more protracted elevation than IL-7. IL-7 levels inversely correlated with the reconstitution of various T cell subsets but not with TRECs. SCF levels inversely correlated with reconstitution of CD4+T cells, especially the naïve CD4+CD45RA+ subset, and with TRECs suggesting that SCF but not IL-7 had an effect on thymic regeneration. In Cox models, elevated levels of IL-7 and SCF were associated with higher non-relapse mortality (p = 0.03 and p = 0.01) and worse overall survival (p = 0.002 and p = 0.001). Elevated IL-7 but not SCF was also associated with development of GvHD (p = 0.03). Thus, IL-7 and SCF are elevated for a prolonged period after dUCBT and persistently high levels of these cytokines may correlate with worse clinical outcomes.
Collapse
Affiliation(s)
- Ioannis Politikos
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Haesook T. Kim
- Department of Computational Biology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Sarah Nikiforow
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Lequn Li
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Julia Brown
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Joseph H. Antin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Karen Ballen
- Bone Marrow Transplantation Unit, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Vassiliki A. Boussiotis
- Department of Medicine and Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol 2015; 6:14. [PMID: 25674088 PMCID: PMC4309199 DOI: 10.3389/fimmu.2015.00014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem-cell transplantation (HSCT) is the most potent curative therapy for many malignant and non-malignant disorders. Unfortunately, a major complication of HSCT is graft-versus-host disease (GVHD), which is mediated by tissue damage resulting from the conditioning regimens before the transplantation and the alloreaction of dual immune components (activated donor T-cells and recipient’s antigen-presenting cells). This tissue damage leads to the release of alarmins and the triggering of pathogen-recognition receptors that activate the innate immune system and subsequently the adaptive immune system. Alarmins, which are of endogenous origin, together with the exogenous pathogen-associated molecular patterns (PAMPs) elicit similar responses of danger signals and represent the group of damage-associated molecular patterns (DAMPs). Effector cells of innate and adaptive immunity that are activated by PAMPs or alarmins can secrete other alarmins and amplify the immune responses. These complex interactions and loops between alarmins and PAMPs are particularly potent at inducing and then aggravating the GVHD reaction. In this review, we highlight the role of these tissue damaging molecules and their signaling pathways. Interestingly, some DAMPs and PAMPs are organ specific and GVHD-induced and have been shown to be interesting biomarkers. Some of these molecules may represent potential targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Abdulraouf Ramadan
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| | - Sophie Paczesny
- Department of Pediatrics, Melvin and Bren Simon Cancer Center, Indiana University , Indianapolis, IN , USA ; Department of Microbiology and Immunology, Indiana University , Indianapolis, IN , USA
| |
Collapse
|
10
|
Sato Y, Nagata S, Takiguchi M. Effective elicitation of human effector CD8+ T Cells in HLA-B*51:01 transgenic humanized mice after infection with HIV-1. PLoS One 2012; 7:e42776. [PMID: 22880104 PMCID: PMC3412802 DOI: 10.1371/journal.pone.0042776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/11/2012] [Indexed: 11/19/2022] Open
Abstract
Humanized mice are expected to be useful as small animal models for in vivo studies on the pathogenesis of infectious diseases. However, it is well known that human CD8+ T cells cannot differentiate into effector cells in immunodeficient mice transplanted with only human CD34+ hematopoietic stem cells (HSCs), because human T cells are not educated by HLA in the mouse thymus. We here established HLA-B*51:01 transgenic humanized mice by transplanting human CD34+ HSCs into HLA-B*51:01 transgenic NOD/SCID/Jak3−/− mice (hNOK/B51Tg mice) and investigated whether human effector CD8+ T cells would be elicited in the mice or in those infected with HIV-1 NL4-3. There were no differences in the frequency of late effector memory and effector subsets (CD27lowCD28−CD45RA+/−CCR7− and CD27−CD28−CD45RA+/−CCR7−, respectively) among human CD8+ T cells and in that of human CD8+ T cells expressing CX3CR1 and/or CXCR1 between hNOK/B51Tg and hNOK mice. In contrast, the frequency of late effector memory and effector CD8+ T cell subsets and of those expressing CX3CR1 and/or CXCR1 was significantly higher in HIV-1-infected hNOK/B51Tg mice than in uninfected ones, whereas there was no difference in that of these subsets between HIV-1-infected and uninfected hNOK mice. These results suggest that hNOK/B51Tg mice had CD8+ T cells that were capable of differentiating into effector T cells after viral antigen stimulation and had a greater ability to elicit effector CD8+ T cells than hNOK ones.
Collapse
Affiliation(s)
- Yoshinori Sato
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, Japan
| | - Sayaka Nagata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
11
|
Keratinocyte Growth Factor and Stem Cell Factor to Improve Thymopoiesis after Autologous CD34+ Cell Transplantation in Rhesus Macaques. Biol Blood Marrow Transplant 2012; 18:55-65. [DOI: 10.1016/j.bbmt.2011.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/23/2011] [Indexed: 01/07/2023]
|