1
|
Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-Like Receptor Agonists as Adjuvants for Allergen Immunotherapy. Front Immunol 2020; 11:599083. [PMID: 33281825 PMCID: PMC7688745 DOI: 10.3389/fimmu.2020.599083] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
Toll-like receptors (TLRs) are essential components of innate immunity and provide defensive inflammatory responses to invading pathogens. Located within the plasma membranes of cells and also intracellular endosomes, TLRs can detect a range of pathogen associated molecular patterns from bacteria, viruses and fungi. TLR activation on dendritic cells can propagate to an adaptive immune response, making them attractive targets for the development of both prophylactic and therapeutic vaccines. In contrast to conventional adjuvants such as aluminium salts, TLR agonists have a clear immunomodulatory profile that favours anti-allergic T lymphocyte responses. Consequently, the potential use of TLRs as adjuvants in Allergen Immunotherapy (AIT) for allergic rhinitis and asthma remains of great interest. Allergic Rhinitis is a Th2-driven, IgE-mediated disease that occurs in atopic individuals in response to exposure to otherwise harmless aeroallergens such as pollens, house dust mite and animal dander. AIT is indicated in subjects with allergic rhinitis whose symptoms are inadequately controlled by antihistamines and nasal corticosteroids. Unlike anti-allergic drugs, AIT is disease-modifying and may induce long-term disease remission through mechanisms involving upregulation of IgG and IgG4 antibodies, induction of regulatory T and B cells, and immune deviation in favour of Th1 responses that are maintained after treatment discontinuation. This process takes up to three years however, highlighting an unmet need for a more efficacious therapy with faster onset. Agonists targeting different TLRs to treat allergy are at different stages of development. Synthetic TLR4, and TLR9 agonists have progressed to clinical trials, while TLR2, TLR5 and TLR7 agonists been shown to have potent anti-allergic effects in human in vitro experiments and in vivo in animal studies. The anti-allergic properties of TLRs are broadly characterised by a combination of enhanced Th1 deviation, regulatory responses, and induction of blocking antibodies. While promising, a durable effect in larger clinical trials is yet to be observed and further long-term studies and comparative trials with conventional AIT are required before TLR adjuvants can be considered for inclusion in AIT. Here we critically evaluate experimental and clinical studies investigating TLRs and discuss their potential role in the future of AIT.
Collapse
Affiliation(s)
- Max E Kirtland
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Daphne C Tsitoura
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Siddall H, Quint D, Pandya H, Powley W, Shabbir S, Hohlfeld JM, Singh D, Lee L. Intranasal GSK2245035, a Toll-like receptor 7 agonist, does not attenuate the allergen-induced asthmatic response in a randomized, double-blind, placebo-controlled experimental medicine study. PLoS One 2020; 15:e0240964. [PMID: 33166307 PMCID: PMC7652256 DOI: 10.1371/journal.pone.0240964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Allergic asthma is a heterogenous disorder predominantly driven by a type 2 inflammatory response to aeroallergens. Therapeutic modulation to rebalance these type 2 responses may offer clinical benefit for allergic respiratory inflammatory diseases, with the potential for disease modification. GSK2245035, a selective toll-like receptor-7 agonist, preferentially stimulates the induction of type 1 interferon alpha, reducing type 2 responses. OBJECTIVE This study investigated whether intranasal GSK2245035 reduced allergen-induced bronchial reactivity in mild allergic asthma. METHODS This double-blind, placebo-controlled, parallel-group Phase IIa trial randomized (1:1) participants with mild allergic asthma to intranasal GSK2245035 20 ng or placebo once weekly for 8 weeks; follow-up was conducted 1, 4, and 12 weeks after treatment. Allergen-induced late asthmatic response 1 week after treatment was measured as minimum and weighted mean forced expiratory volume in 1 second (FEV1) 4-10 hours following bronchial allergen challenge (primary endpoint). Pharmacodynamic and allergic biomarkers, and adverse events, were assessed. A Bayesian analysis framework was used; a posterior probability >0.7 denoted primary endpoint success. RESULTS Thirty-six participants were randomized (GSK2245035, n = 22; placebo, n = 14). The percentage attenuation in late asthmatic response was -4.6% (posterior probability: 0.385) and -10.5% (posterior probability: 0.303) for minimum and weighted mean FEV1, respectively. Type 2 responses were confirmed by changes in lung function, eosinophils (blood and sputum), interleukin-5 (sputum) and fractional exhaled nitric oxide biomarkers pre- and post-bronchial allergen challenge. However, no treatment effect was observed. Adverse events were reported by 10/14 (71%) and 21/22 (95%) participants in the placebo and GSK2245035 groups, respectively; headache was the most common. CONCLUSIONS AND CLINICAL RELEVANCE Although target engagement was observed, weekly intranasal GSK2245035 20 ng for 8 weeks did not substantially attenuate the late asthmatic response in participants with mild allergic asthma. Overall, treatment was well tolerated.
Collapse
Affiliation(s)
- Hilary Siddall
- Research and development, GSK, Stevenage, Hertfordshire, United Kingdom
- * E-mail:
| | - Diana Quint
- Respiratory Therapeutic Area, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Hitesh Pandya
- Respiratory Therapeutic Area, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Will Powley
- Biostatistics, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Shaila Shabbir
- Immuno-Inflammation Global Clinical Sciences & Delivery, GSK, Stevenage, Hertfordshire, United Kingdom
| | - Jens M. Hohlfeld
- Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
- Member of the German Center for Lung Research, Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Dave Singh
- Respiratory, Medicines Evaluation Unit, Manchester, United Kingdom
| | - Laurie Lee
- Clinical development, GSK, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Vierbuchen T, Stein K, Heine H. RNA is taking its Toll: Impact of RNA-specific Toll-like receptors on health and disease. Allergy 2019; 74:223-235. [PMID: 30475385 DOI: 10.1111/all.13680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/08/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
RNA-sensing Toll-like receptors (TLRs) are often described as antiviral receptors of the innate immune system. However, the past decade has shown that the function and relevance of these receptors are far more complex. They were found to be essential for the detection of various bacterial, archaeal, and eukaryotic microorganisms and facilitate the discrimination between dead and living microbes. The cytokine and interferon response profile that is triggered has the potential to improve the efficacy of next-generation vaccines and may prevent the development of asthma and allergy. Nevertheless, the ability to recognize foreign RNA comes with a cost as also damaged host cells can release nucleic acids that might induce an inappropriate immune response. Thus, it is not surprising that RNA-sensing TLRs play a key role in various autoimmune diseases. However, promising new inhibitors and antagonists are on the horizon to improve their treatment.
Collapse
Affiliation(s)
- Tim Vierbuchen
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
| | - Karina Stein
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| | - Holger Heine
- Division of Innate Immunity Research Center Borstel – Leibniz Lung Center Borstel Germany
- Airway Research Center North (ARCN) German Center for Lung Research (DZL) Borstel Germany
| |
Collapse
|
4
|
Ruh C, Banjade R, Mandadi S, Marr C, Sumon Z, Crane JK. Immunomodulatory Effects of Antimicrobial Drugs. Immunol Invest 2018; 46:847-863. [PMID: 29058544 DOI: 10.1080/08820139.2017.1373900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christine Ruh
- a Antibiotic Stewardship Pharmacist , Erie County Medical Center , Buffalo , NY , USA
| | - Rashmi Banjade
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - Subhadra Mandadi
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - Candace Marr
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - Zarchi Sumon
- b Infectious Diseases Fellow , University at Buffalo , Buffalo , New York , USA
| | - John K Crane
- c Division of Infectious Diseases , University at Buffalo , Buffalo , New York , USA
| |
Collapse
|
5
|
Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol 2018; 9:1027. [PMID: 29867994 PMCID: PMC5963123 DOI: 10.3389/fimmu.2018.01027] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/24/2018] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease that is influenced by the interplay between genetic factors and exposure to environmental allergens, microbes, or microbial products where toll-like receptors (TLRs) play a pivotal role. TLRs recognize a wide range of microbial or endogenous molecules as well as airborne environmental allergens and act as adjuvants that influence positively or negatively allergic sensitization. TLRs are qualitatively and differentially expressed on hematopoietic and non-hematopoietic stromal or structural airway cells that when activated by TLRs agonists exert an immune-modulatory role in asthma development. Therefore, understanding mechanisms and pathways by which TLRs orchestrate asthma outcomes may offer new strategies to control the disease. Here, we aim to review and critically discuss the role of TLRs in human asthma and murine models of allergic airway inflammation, highlighting the complexity of TLRs function in development, exacerbation, or control of airway allergic inflammation.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Alissafi T, Kourepini E, Simoes DCM, Paschalidis N, Aggelakopoulou M, Sparwasser T, Boon L, Hammad H, Lambrecht BN, Panoutsakopoulou V. Osteopontin Promotes Protective Antigenic Tolerance against Experimental Allergic Airway Disease. THE JOURNAL OF IMMUNOLOGY 2018; 200:1270-1282. [PMID: 29330321 DOI: 10.4049/jimmunol.1701345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/04/2017] [Indexed: 12/31/2022]
Abstract
In the context of inflammation, osteopontin (Opn) is known to promote effector responses, facilitating a proinflammatory environment; however, its role during antigenic tolerance induction is unknown. Using a mouse model of asthma, we investigated the role of Opn during antigenic tolerance induction and its effects on associated regulatory cellular populations prior to disease initiation. Our experiments demonstrate that Opn drives protective antigenic tolerance by inducing accumulation of IFN-β-producing plasmacytoid dendritic cells, as well as regulatory T cells, in mediastinal lymph nodes. We also show that, in the absence of TLR triggers, recombinant Opn, and particularly its SLAYGLR motif, directly induces IFN-β expression in Ag-primed plasmacytoid dendritic cells, which renders them extra protective against induction of allergic airway disease upon transfer into recipient mice. Lastly, we show that blockade of type I IFNR prevents antigenic tolerance induction against experimental allergic asthma. Overall, we unveil a new role for Opn in setting up a tolerogenic milieu boosting antigenic tolerance induction, thus leading to prevention of allergic airway inflammation. Our results provide insight for the future design of immunotherapies against allergic asthma.
Collapse
Affiliation(s)
- Themis Alissafi
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.,VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Evangelia Kourepini
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Davina C M Simoes
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Nikolaos Paschalidis
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Aggelakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany, a Joint Venture between the Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany and the Hannover Medical School, 30625 Hannover, Germany; and
| | - Louis Boon
- Bioceros BV, 3584 CM Utrecht, the Netherlands
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent University, 9052 Ghent, Belgium
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
7
|
Bell J, Dymond M, Biffen M, Delaney S, Keeling D, Zhang H, Robinson I. Temporal cytokine and lymphoid responses to an inhaled TLR7 antedrug agonist in the cynomolgus monkey demonstrates potential safety and tolerability of this approach. Toxicol Appl Pharmacol 2017; 338:9-19. [PMID: 29122671 DOI: 10.1016/j.taap.2017.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 01/04/2023]
Abstract
AZD8848 is a TLR7 agonist antedrug developed for administration by inhalation dosing for the treatment of allergic diseases, such as asthma. Allergic asthma is associated with increased levels of Th2 cytokines which are suppressed for extended periods by TLR7 agonists in a number of preclinical models of allergic airway inflammation. However, TLRs form a central part of innate immunity and their activation often results in proinflammatory responses. Whilst AZD8848's antedrug mechanism is designed to restrict its pharmacological action beyond the lung, the effect of chronic, supramaximal dosing to the target tissue has yet to be defined. To support clinical development of this potentially disease modifying approach the nonclinical safety and pharmacodynamics of AZD8848 were evaluated in cynomolgus monkeys in studies examining single or multiple weekly inhaled doses. Here we show that following a single dose nearly all responses returned to baseline within a week. During multiple dosing serum biomarkers were quantified over the dosing period and indicated a limited systemic response. The dose at which maximal interferon responses were seen was dependent on dose. Thorough histopathological examination revealed a dose related increase of size and cells of lymphoid tissues in the lung and nose. Local lymphoid responses were recovered after the treatment free period. These studies are the first to evaluate safety of an inhaled TLR7 agonist and demonstrate AZD8848 is safe with a no observed adverse effect level at 26μg/kg allowing progression to man with weekly inhalation dosing.
Collapse
Affiliation(s)
- John Bell
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mike Dymond
- Plus-Project Ltd, Alderley Park, Cheshire, United Kingdom
| | - Mark Biffen
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Stephen Delaney
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - David Keeling
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Hui Zhang
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ian Robinson
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Ellis AK, Tsitoura DC, Quint D, Powley W, Lee LA. Safety and pharmacodynamics of intranasal GSK2245035, a TLR7 agonist for allergic rhinitis: A randomized trial. Clin Exp Allergy 2017; 47:1193-1203. [PMID: 28681506 DOI: 10.1111/cea.12974] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Toll-like receptor 7 (TLR7) stimulation in the airways may reduce responses to aeroallergens by induction of type 1 interferons (IFNs). GSK2245035 is a novel selective TLR7 agonist in pharmaceutical development. OBJECTIVE Assessment of safety, pharmacodynamics and nasal allergic reactivity following repeated weekly intranasal (i.n.) GSK2245035. METHODS This randomized, double-blind, placebo-controlled study (TL7116958) was conducted over two pollen seasons (2013-2014) and follow-up study (204509) conducted 1 year later. Participants with allergic rhinitis (n=42) were randomized to receive eight weekly doses of i.n. GSK2245035 (20 ng [2014 Cohort; n=14] or 80 ng [2013 Cohort; n=14]) or placebo (n=14). Adverse events (AEs) including cytokine release syndrome AEs (CytoRS-AEs) and nasal symptoms were assessed. Nasal and serum IFN-inducible protein 10 (IP-10) were measured after doses 1 and 8, then 1 (follow-up visit [FUV] 1) and 3 (FUV2) weeks after final dose. Nasal allergen challenges (NACs) and allergic biomarker assessment (nasal, serum) were conducted at baseline, FUV1, FUV2 and at a FUV 1 year after final dose (FUV3; 2014 Cohort only). A Bayesian framework enabled probability statements for mean effect sizes. RESULTS GSK2245035 induced CytoRS-AEs (most commonly headache, median duration <1 day) in 93% of participants at 80 ng, while AE incidence at 20 ng was similar to placebo. There was no evidence of nasal inflammation. Dose-related increases in nasal and serum IP-10 were observed 24 hours after doses 1 and 8 (>95% certainty). Both doses showed a trend in reducing total nasal symptom score 15 minutes post-NAC at FUV1 and FUV2, but there was no reduction evident at FUV3. Nasal levels of selected allergic biomarkers demonstrated trends for reductions at FUV1, FUV2 and FUV3. CONCLUSIONS AND CLINICAL RELEVANCE Weekly i.n. GSK2245035 20 ng was well tolerated and reduced allergic reactivity to nasal challenge for 3 weeks post-treatment.
Collapse
Affiliation(s)
- A K Ellis
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - D Quint
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - W Powley
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| | - L A Lee
- GlaxoSmithKline, Stevenage, Hertfordshire, UK
| |
Collapse
|
9
|
Beesu M, Caruso G, Salyer ACD, Shukla NM, Khetani KK, Smith LJ, Fox LM, Tanji H, Ohto U, Shimizu T, David SA. Identification of a Human Toll-Like Receptor (TLR) 8-Specific Agonist and a Functional Pan-TLR Inhibitor in 2-Aminoimidazoles. J Med Chem 2016; 59:3311-30. [PMID: 26966993 DOI: 10.1021/acs.jmedchem.6b00023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activation of human toll-like receptor-8 (TLR8), expressed in myeloid dendritic cells, monocytes, and monocyte-derived dendritic cells, evokes a distinct cytokine profile which favors the development of Type 1 helper T cells. Part-structures of the 2-aminobenzimidazole scaffold were examined with a view to identifying structural requisites corresponding to the smallest possible fragment of the benzimidazole core that would allow for retention of TLR8-agonistic activity. TLR8-specific agonistic activity was retained in 1-pentyl-4-phenyl-1H-imidazol-2-amine. The crystal structure of this compound bound to the TLR8 ectodomain displayed binding interactions that are common to other TLR8 agonists. This compound showed markedly attenuated proinflammatory properties in ex vivo human blood models. SAR studies revealed that 4-(2-(benzyloxy)phenyl)-1-pentyl-1H-imidazol-2-amine inhibited TLR signaling in a variety of TLR reporter cell lines, as well as in pharmacologically relevant human blood model systems. A kinase screen of this compound showed relative specificity for calmodulin kinases.
Collapse
Affiliation(s)
- Mallesh Beesu
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Giuseppe Caruso
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Alex C D Salyer
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Nijunj M Shukla
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Karishma K Khetani
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Luke J Smith
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Lauren M Fox
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States
| | - Hiromi Tanji
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Umeharu Ohto
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, University of Tokyo , Tokyo, Japan
| | - Sunil A David
- Department of Medicinal Chemistry, University of Kansas , Lawrence, Kansas 66047, United States.,Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Ferreira TPT, Mariano LL, Ghilosso-Bortolini R, de Arantes ACS, Fernandes AJ, Berni M, Cecchinato V, Uguccioni M, Maj R, Barberis A, Silva PMRE, Martins MA. Potential of PEGylated Toll-Like Receptor 7 Ligands for Controlling Inflammation and Functional Changes in Mouse Models of Asthma and Silicosis. Front Immunol 2016; 7:95. [PMID: 27014274 PMCID: PMC4786742 DOI: 10.3389/fimmu.2016.00095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/26/2016] [Indexed: 01/06/2023] Open
Abstract
Prior investigations show that signaling activation through pattern recognition receptors can directly impact a number of inflammatory lung diseases. While toll-like receptor (TLR) 7 agonists have raised interest for their ability to inhibit allergen-induced pathological changes in experimental asthma conditions, the putative benefit of this treatment is limited by adverse effects. Our aim was to evaluate the therapeutic potential of two PEGylated purine-like compounds, TMX-302 and TMX-306, characterized by TLR7 partial agonistic activity; therefore, the compounds are expected to induce lower local and systemic adverse reactions. In vitro approaches and translation to murine models of obstructive and restrictive lung diseases were explored. In vitro studies with human PBMCs showed that both TMX-302 and TMX-306 marginally affects cytokine production as compared with equivalent concentrations of the TLR7 full agonist, TMX-202. The PEGylated compounds did not induce monocyte-derived DC maturation or B cell proliferation, differently from what observed after stimulation with TMX-202. Impact of PEGylated ligands on lung function and inflammatory changes was studied in animal models of acute lung injury, asthma, and silicosis following Lipopolysaccharide (LPS), allergen (ovalbumin), and silica inhalation, respectively. Subcutaneous injection of TMX-302 prevented LPS- and allergen-induced airway hyper-reactivity (AHR), leukocyte infiltration, and production of pro-inflammatory cytokines in the lung. However, intranasal instillation of TMX-302 led to neutrophil infiltration and failed to prevent allergen-induced AHR, despite inhibiting leukocyte counts in the BAL. Aerosolized TMX-306 given prophylactically, but not therapeutically, inhibited pivotal asthma features. Interventional treatment with intranasal instillation of TMX-306 significantly reduced the pulmonary fibrogranulomatous response and the number of silica particles in lung interstitial space in silicotic mice. These findings highlight the potential of TMX-306, emphasizing its value in drug development for lung diseases, and particularly silicosis.
Collapse
Affiliation(s)
| | - Lívia Lacerda Mariano
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil
| | | | | | | | - Michelle Berni
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana , Bellinzona , Switzerland
| | - Valentina Cecchinato
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana , Bellinzona , Switzerland
| | - Mariagrazia Uguccioni
- Institute for Research in Biomedicine, Universitá della Svizzera Italiana , Bellinzona , Switzerland
| | | | | | | | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ , Rio de Janeiro , Brazil
| |
Collapse
|
11
|
Delaney S, Biffen M, Maltby J, Bell J, Asimus S, Aggarwal A, Kraan M, Keeling D. Tolerability in man following inhalation dosing of the selective TLR7 agonist, AZD8848. BMJ Open Respir Res 2016; 3:e000113. [PMID: 26933507 PMCID: PMC4769423 DOI: 10.1136/bmjresp-2015-000113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Many patients with asthma have a T-helper type 2 (Th2) driven inflammation of the lung, whereas toll-like receptor 7 (TLR7) agonists, by inducing type I interferons, inhibit Th2 responses. In man, oral or parenteral TLR7 agonists can induce influenza-like symptoms through systemic induction of type I interferons. Design of a TLR7 agonist that is only active in the lung could reduce the risk of side effects and offer a new means for treating asthma. We developed a TLR7 agonist antedrug, AZD8848, to determine its local and systemic effects in preclinical models and man. Methods In vitro cellular potencies for the TLR7 antedrug agonist, AZD8848, were determined along with pharmacokinetics and efficacy in a rat allergy model. Sputum and blood biomarkers were measured in single ascending and multiple ascending dose clinical studies following inhalation delivery of AZD8848 and tolerability assessed. Results AZD8848 was potent in cellular assays and pharmacokinetics confirmed lack of systemic exposure to AZD8848. Weekly lung dosing in an animal model showed efficacy 26 days beyond the final dose. In healthy volunteers, AZD8848 was initially well tolerated with target engagement being demonstrated by induction of CXCL10 in sputum. A second inhaled dose, given 1 week later, amplified the systemic interferon signal in more than half the participants and resulted in significant influenza-like symptoms. Conclusions The antedrug design restricted the direct actions of AZD8848 to the lung. However, the type I interferon induced locally by TLR7 spilled over systemically, limiting the utility of this inhaled antedrug approach. Trial registration number NCT01560234, NCT01818869.
Collapse
Affiliation(s)
- Stephen Delaney
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca , Mölndal , Sweden
| | - Mark Biffen
- Bisocience, AstraZeneca R&D Charnwood , Loughborough , UK
| | - Justine Maltby
- Personalised Healthcare and Biomarkers, Innovative Medicines and Early Development, Alderley Park , Macclesfield , UK
| | - John Bell
- Bisocience, AstraZeneca R&D Charnwood , Loughborough , UK
| | - Sara Asimus
- Quantitative Clinical Pharmacology, Early Clinical Development, AstraZeneca , Mölndal , Sweden
| | - Ajay Aggarwal
- Early Clinical Development, Innovative Medicines and Early Development, AstraZeneca , Waltham, Massachusetts , USA
| | - Maarten Kraan
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca , Mölndal , Sweden
| | - David Keeling
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development, AstraZeneca , Mölndal , Sweden
| |
Collapse
|
12
|
Greiff L, Ahlström-Emanuelsson C, Alenäs M, Almqvist G, Andersson M, Cervin A, Dolata J, Lindgren S, Mårtensson A, Young B, Widegren H. Biological effects and clinical efficacy of a topical Toll-like receptor 7 agonist in seasonal allergic rhinitis: a parallel group controlled phase IIa study. Inflamm Res 2015; 64:903-15. [DOI: 10.1007/s00011-015-0873-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/06/2015] [Accepted: 08/25/2015] [Indexed: 12/01/2022] Open
|
13
|
Khan AR, Amu S, Saunders SP, Hams E, Blackshields G, Leonard MO, Weaver CT, Sparwasser T, Sheils O, Fallon PG. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells. Eur J Immunol 2015; 45:1842-54. [PMID: 25763771 DOI: 10.1002/eji.201445211] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
Abstract
B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells.
Collapse
Affiliation(s)
- Adnan R Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sylvie Amu
- Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sean P Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Martin O Leonard
- School of Medicine and Medical Sciences, The Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Casey T Weaver
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | - Orla Sheils
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
14
|
Shikhagaie MM, Andersson CK, Mori M, Kortekaas Krohn I, Bergqvist A, Dahl R, Ekblad E, Hoffmann HJ, Bjermer L, Erjefält JS. Mapping of TLR5 and TLR7 in central and distal human airways and identification of reduced TLR expression in severe asthma. Clin Exp Allergy 2014; 44:184-96. [PMID: 24447081 DOI: 10.1111/cea.12176] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND The toll-like receptors, TLR5 and TLR7, have recently been proposed in asthma immunopathogenesis. While supporting data come from animal or in vitro studies, little is known about TLR5 and TLR7 expression in human asthmatic airways. METHODS Advanced immunohistochemical mapping of TLR5 and TLR7 was performed on bronchial and transbronchial biopsies from healthy individuals and patients with moderate and severe asthma. RESULTS TLR5 was identified in multiple structural cells; bronchial epithelium, alveolar type II pneumocytes, plasma cells, macrophages and neutrophils. Contrary to bronchial TLR5, which had a basolateral expression, alveolar TLR5 had polarized apical localization. Patients with severe asthma had decreased total and epithelial TLR5 expression compared to controls and moderate asthmatics (P < 0.001). TLR7 expression was found in several structural cells and asthma-related immune cells. Whereas TLR7 expression was decreased in severe asthmatics (P < 0.001), nerve-associated TLR7 increased (P = 0.035). Within the asthma groups, both TLR5 and TLR7 expression correlated with multiple lung function parameters. CONCLUSIONS Our results reveal broad expression patterns of TLR5 and TLR7 in the lung and that the expression is decreased in severe asthma. Hence, severe asthmatics may suffer from insufficient TLR signalling during viral or bacterial infections leading to poor and impaired defence mechanisms.
Collapse
Affiliation(s)
- M M Shikhagaie
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Campbell JD, Kell SA, Kozy HM, Lum JA, Sweetwood R, Chu M, Cunningham CR, Salamon H, Lloyd CM, Coffman RL, Hessel EM. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax 2014; 69:565-573. [PMID: 24464743 DOI: 10.1136/thoraxjnl-2013-204605] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND CpG-containing oligodeoxynucleotides (CpG-ODNs) are potent inhibitors of T helper 2 mediated allergic airway disease in sensitised mice challenged with allergen. A single treatment has transient effects but a limited series of treatments has potential to achieve clinically meaningful sustained inhibition of allergic airway disease. OBJECTIVE To optimise the treatment regimen for sustained efficacy and to determine the mechanisms of action in mice of an inhaled form of CpG-ODN being developed for human asthma treatment. METHODS We set up a chronic allergic-asthma model using ragweed-sensitised mice exposed weekly to intranasal ragweed. Using this model, the effects of a limited series of weekly intranasal 1018 ISS (CpG-ODN; B-class) treatments were evaluated during treatment and for several weeks after treatments had stopped but weekly allergen exposures continued. Treatment efficacy was evaluated by measuring effects on lung T helper 2 cytokines and eosinophilia, and lung dendritic cell function and T-cell responses. RESULTS Twelve intranasal 1018 ISS treatments induced significant suppression of bronchoalveolar lavage eosinophilia and interleukin 4, 5 and 13 levels. This suppression of allergic T helper 2 parameters was maintained through 13 weekly ragweed exposures administered after treatment cessation. Subsequent experiments demonstrated that at least five treatments were required for lasting suppression. Although CpG-ODN induced moderate T helper 1 responses, suppression of allergic airway disease did not require interferon γ but was associated with induction of a regulatory T-cell response. CONCLUSIONS A short series of CpG-ODN treatments results in sustained suppression of allergic lung inflammation induced by a clinically relevant allergen.
Collapse
Affiliation(s)
| | | | | | | | | | - Mabel Chu
- Dynavax Technologies, Berkeley, CA 94710
| | | | | | - Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College London, London SW7 2AZ UK
| | | | | |
Collapse
|