1
|
Bando K, Tanaka Y, Winias S, Sugawara S, Mizoguchi I, Endo Y. IL-33 induces histidine decarboxylase, especially in c-kit + cells and mast cells, and roles of histamine include negative regulation of IL-33-induced eosinophilia. Inflamm Res 2023; 72:651-667. [PMID: 36723628 DOI: 10.1007/s00011-023-01699-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE AND METHODS IL-33 is present in endothelial, epithelial, and fibroblast-like cells and released upon cell injury. IL-33 reportedly induces mast-cell degranulation and is involved in various diseases, including allergic diseases. So, IL-33-related diseases seem to overlap with histamine-related diseases. In addition to the release from mast cells, histamine is newly formed by the induction of histidine decarboxylase (HDC). Some inflammatory and/or hematopoietic cytokines (IL-1, IL-3, etc.) are known to induce HDC, and the histamine produced by HDC induction is released without storage. We examined the involvement of HDC and histamine in the effects of IL-33. RESULTS A single intraperitoneal injection of IL-33 into mice induced HDC directly and/or via other cytokines (including IL-5) within a few hours in various tissues, particularly strongly in hematopoietic organs. The major cells exhibiting HDC-induction were mast cells and c-kit+ cells in the bone marrow. HDC was also induced in non-mast cells in non-hematopoietic organs. HDC, histamine, and histamine H4 receptors (H4Rs) contributed to the suppression of IL-33-induced eosinophilia. CONCLUSION IL-33 directly and indirectly (via IL-5) induces HDC in various cells, particularly potently in c-kit+ cells and mature mast cells, and the newly formed histamine contributes to the negative regulation of IL-33-induced eosinophilia via H4Rs.
Collapse
Affiliation(s)
- Kanan Bando
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| | - Yukinori Tanaka
- Division of Dento-Oral Anesthesiology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Saka Winias
- Division of Dento-Oral Anesthesiology, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Sendai, 980-8575, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-Machi, Sendai, 980-8575, Japan
| |
Collapse
|
2
|
Tavares LP, Peh HY, Tan WSD, Pahima H, Maffia P, Tiligada E, Levi-Schaffer F. Granulocyte-targeted therapies for airway diseases. Pharmacol Res 2020; 157:104881. [PMID: 32380052 PMCID: PMC7198161 DOI: 10.1016/j.phrs.2020.104881] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/24/2022]
Abstract
The average respiration rate for an adult is 12-20 breaths per minute, which constantly exposes the lungs to allergens and harmful particles. As a result, respiratory diseases, which includes asthma, chronic obstructive pulmonary disease (COPD) and acute lower respiratory tract infections (LTRI), are a major cause of death worldwide. Although asthma, COPD and LTRI are distinctly different diseases with separate mechanisms of disease progression, they do share a common feature - airway inflammation with intense recruitment and activation of granulocytes and mast cells. Neutrophils, eosinophils, basophils, and mast cells are crucial players in host defense against pathogens and maintenance of lung homeostasis. Upon contact with harmful particles, part of the pulmonary defense mechanism is to recruit these cells into the airways. Despite their protective nature, overactivation or accumulation of granulocytes and mast cells in the lungs results in unwanted chronic airway inflammation and damage. As such, understanding the bright and the dark side of these leukocytes in lung physiology paves the way for the development of therapies targeting this important mechanism of disease. Here we discuss the role of granulocytes in respiratory diseases and summarize therapeutic strategies focused on granulocyte recruitment and activation in the lungs.
Collapse
Affiliation(s)
- Luciana P Tavares
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hong Yong Peh
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Wan Shun Daniel Tan
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, 16 Medical Drive, 117600, Singapore
| | - Hadas Pahima
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Pasquale Maffia
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Ekaterini Tiligada
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Francesca Levi-Schaffer
- ImmuPhar - Immunopharmacology Section Committee of International Union of Basic and Clinical Pharmacology (IUPHAR); Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Velez TE, Bryce PJ, Hulse KE. Mast Cell Interactions and Crosstalk in Regulating Allergic Inflammation. Curr Allergy Asthma Rep 2018; 18:30. [PMID: 29667026 DOI: 10.1007/s11882-018-0786-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on mast cell biology with a focus on IgE-independent roles of mast cells in regulating allergic responses. RECENT FINDINGS Recent studies have described novel mast cell-derived molecules, both secreted and membrane-bound, that facilitate cross-talk with a variety of immune effector cells to mediate type 2 inflammatory responses. Mast cells are complex and dynamic cells that are persistent in allergy and are capable of providing signals that lead to the initiation and persistence of allergic mechanisms.
Collapse
Affiliation(s)
- Tania E Velez
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL, 60611, USA
| | - Paul J Bryce
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL, 60611, USA
| | - Kathryn E Hulse
- Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, 240 E. Huron St, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Sehra S, Serezani APM, Ocaña JA, Travers JB, Kaplan MH. Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation. J Invest Dermatol 2016; 136:1429-1437. [PMID: 27021404 DOI: 10.1016/j.jid.2016.03.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/15/2016] [Accepted: 03/06/2016] [Indexed: 11/30/2022]
Abstract
Atopic dermatitis is a chronic inflammatory skin disease characterized by infiltration of eosinophils, T helper cells, and mast cells. The role of mast cells in atopic dermatitis is not completely understood. To define the effects of mast cells on skin biology, we observed that mast cells regulate the homeostatic expression of epidermal differentiation complex and other skin genes. Decreased epidermal differentiation complex gene expression in mice that genetically lack mast cells (Kit(W-sh/W-sh) mice) is associated with increased uptake of protein antigens painted on the skin by dendritic cells (DCs) compared with similarly treated wild-type mice, suggesting a protective role for mast cells in exposure to nominal environmental allergens. To test this further, we crossed Kit(W-sh/W-sh) mice with signal transducer and activator of transcription 6 (i.e., Stat6) VT transgenic mice that develop spontaneous atopic dermatitis-like disease that is dependent on T helper cell 2 cytokines and is associated with high serum concentrations of IgE. We observed that Stat6VT × Kit(W-sh/W-sh) mice developed more frequent and more severe allergic skin inflammation than Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells regulate epidermal barrier function and have a potential protective role in the development of atopic dermatitis-like disease.
Collapse
Affiliation(s)
- Sarita Sehra
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ana P M Serezani
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jesus A Ocaña
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Dermatology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio, USA
| | - Mark H Kaplan
- Department of Pediatrics and Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
5
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 653] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Neumann D, Schneider EH, Seifert R. Analysis of Histamine Receptor Knockout Mice in Models of Inflammation. J Pharmacol Exp Ther 2013; 348:2-11. [DOI: 10.1124/jpet.113.204214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by beta-amyloid plaques accumulation and cognitive impairment. Both environmental factors and heritable predisposition have a role in AD. Histamine is a biogenic monoamine that plays a role in several physiological functions, including induction of inflammatory reactions, wound healing, and regeneration. The Histamine mediates its functions via its 4 G-protein-coupled Histamine H1 receptor (H1R) to histamine H1 receptor (H4R). The histaminergic system has a role in the treatment of brain disorders by the development of histamine receptor agonists, antagonists. The H1R and H4R are responsible for allergic inflammation. But recent studies show that histamine antagonists against H3R and regulation of H2R can be more efficient in AD therapy. In this review, we focus on the role of histamine and its receptors in the treatment of AD, and we hope that histamine could be an effective therapeutic factor in the treatment of AD.
Collapse
Affiliation(s)
- Fatemeh Naddafi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|