1
|
Yue SY, Niu D, Ma WM, Guan Y, Liu QS, Wang XB, Xiao YZ, Meng J, Ding K, Zhang L, Du HX, Liang CZ. The CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in experimental autoimmune prostatitis through the PI3K/AKT pathway. Andrology 2024; 12:1408-1418. [PMID: 38095276 DOI: 10.1111/andr.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To investigate the mechanism of the CXCL10/CXCR3 axis regulating Th1 cell differentiation and migration through the PI3K/AKT pathway in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS Experimental autoimmune prostatitis (EAP) model, a well-described and validated animal model of CP/CPPS, was used in our study. After treatment with CXCL10, the severity of EAP and Th1 cell proportion were respectively measured by HE stains, immunohistochemistry, and flow cytometry. Then, the protein expression of the PI3K/AKT pathway in CXCL10/CXCR3-regulated Th1 cell differentiation and migration was evaluated by western blotting. Additionally, by the CXCR3 antagonist AMG487 and the PI3K inhibitor LY294002 applications, the effects of CXCL10/CXCR3 through PI3K/AKT pathway on the Th1 cell differentiation and migration were further assessed. RESULTS The EAP model was successfully built. CXCL10 increased the proportion of Th1 cells in EAP mice, accompanied by upregulation of the PI3K/AKT pathway. Additionally, the PI3K/AKT pathway was found to be involved in CXCL10/CXCR3 axis-mediated Th1 cell differentiation and migration. CONCLUSIONS Our investigations indicate that the CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in EAP through the PI3K/AKT pathway, which provides a new perspective on the immunological mechanisms of CP/CPPS.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Ming Ma
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Qiu-Shi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Bin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yun-Zheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Ke Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Pinho SS, Alves I, Gaifem J, Rabinovich GA. Immune regulatory networks coordinated by glycans and glycan-binding proteins in autoimmunity and infection. Cell Mol Immunol 2023; 20:1101-1113. [PMID: 37582971 PMCID: PMC10541879 DOI: 10.1038/s41423-023-01074-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
The immune system is coordinated by an intricate network of stimulatory and inhibitory circuits that regulate host responses against endogenous and exogenous insults. Disruption of these safeguard and homeostatic mechanisms can lead to unpredictable inflammatory and autoimmune responses, whereas deficiency of immune stimulatory pathways may orchestrate immunosuppressive programs that contribute to perpetuate chronic infections, but also influence cancer development and progression. Glycans have emerged as essential components of homeostatic circuits, acting as fine-tuners of immunological responses and potential molecular targets for manipulation of immune tolerance and activation in a wide range of pathologic settings. Cell surface glycans, present in cells, tissues and the extracellular matrix, have been proposed to serve as "self-associated molecular patterns" that store structurally relevant biological data. The responsibility of deciphering this information relies on different families of glycan-binding proteins (including galectins, siglecs and C-type lectins) which, upon recognition of specific carbohydrate structures, can recalibrate the magnitude, nature and fate of immune responses. This process is tightly regulated by the diversity of glycan structures and the establishment of multivalent interactions on cell surface receptors and the extracellular matrix. Here we review the spatiotemporal regulation of selected glycan-modifying processes including mannosylation, complex N-glycan branching, core 2 O-glycan elongation, LacNAc extension, as well as terminal sialylation and fucosylation. Moreover, we illustrate examples that highlight the contribution of these processes to the control of immune responses and their integration with canonical tolerogenic pathways. Finally, we discuss the power of glycans and glycan-binding proteins as a source of immunomodulatory signals that could be leveraged for the treatment of autoimmune inflammation and chronic infection.
Collapse
Affiliation(s)
- Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal.
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313, Porto, Portugal.
- Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Inês Alves
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, 4200-135, Porto, Portugal
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428, Ciudad de Buenos Aires, Argentina.
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
3
|
Gerasimova EN, Ismatullin DD, Lyamin AV, Zhestkov AV. General characteristics, features of cultivation and antibiotic resistance representatives of mycobacterium fortuitum group representatives (review of literature). Klin Lab Diagn 2021; 66:223-228. [PMID: 33878244 DOI: 10.51620/0869-2084-2021-66-4-223-228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, more and more scientific works have been devoted to non-tuberculous mycobacteria, both by domestic and foreign researchers. One of the main reasons for this is the increase in patients with immunosuppression of various origins, improvement of the quality of laboratory and instrumental diagnostics of mycobacteriosis. This article focuses on the representatives of the M. fortuitum group, as the main pathogens among the group of fast-growing mycobacteria. The data on the modern classification based on the use of molecular genetic studies are indicated. The M. fortuitum group includes: Mycobacterium fortuitum, M. peregrinum, M. senegalense, M. porcinum, M. houstonense, M. neworleansense, M. boenickei, M. conceptionense, M. septicum, M. alvei. According to the new data, mycobacteria were divided into 5 clades (Abscessus-Chelonae, Fortuitum-Vaccae, Terrae, Triviale, Tuberculosis-Simiae), and based on molecular genetic studies, new genera in the Mycobacteriaceae family were isolated: Mycolicibacter spp., Mycolicibacillus spp., Mycolicibacillus spp., Mycobacteroides spp., Mycolicibacterium spp. In accordance with the new classification, representatives of the Mycobacterium fortuitum group belong to the genus Mycolicibacterium. The main epidemiological features of the main sources of the spread of mycobacteria, factors and ways of their transmission are indicated. Due to their wide distribution in the environment, representatives of the M. fortuitum group are capable of causing diseases of the pulmonary and extrapulmonary localization. The distinctive features of pathogenicity factors, due to which the course of the disease is determined, are noted. The article also indicates the main difficulties and features of determining the sensitivity to antimicrobial chemotherapy drugs, provides data on the main features of antibiotic resistance of M.fortuitum group. In preparing the review, literature sources obtained from international and domestic databases were used: Scopus, Web of Science, Springer, RSCI.
Collapse
|
4
|
Zhou KL, Li X, Zhang XL, Pan Q. Mycobacterial mannose-capped lipoarabinomannan: a modulator bridging innate and adaptive immunity. Emerg Microbes Infect 2019; 8:1168-1177. [PMID: 31379262 PMCID: PMC6713153 DOI: 10.1080/22221751.2019.1649097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is a high molecular mass amphipathic lipoglycan identified in pathogenic Mycobacterium tuberculosis (M. tb) and M. bovis Bacillus Calmette-Guérin (BCG). ManLAM, serves as both an immunogen and a modulator of the host immune system, and its critical role in mycobacterial survival during infection has been well-characterized. ManLAM can be recognized by various types of receptors on both innate and adaptive immune cells, including macrophages, dendritic cells (DCs), neutrophils, natural killer T (NKT) cells, T cells and B cells. MamLAM has been shown to affect phagocytosis, cytokine production, antigen presentation, T cell activation and polarization, as well as antibody production. Exploring the mechanisms underlying the roles of ManLAM during mycobacterial infection will aid in improving tuberculosis (TB) prevention, diagnosis and treatment interventions. In this review, we highlight the interaction between ManLAM and receptors, intracellular signalling pathways triggered by ManLAM and its roles in both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Kai-Liang Zhou
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China.,b The eighth hospital of Wuhan , Wuhan , People's Republic of China
| | - Xin Li
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Xiao-Lian Zhang
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| | - Qin Pan
- a State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan , People's Republic of China
| |
Collapse
|
5
|
Yuan C, Qu ZL, Tang XL, Liu Q, Luo W, Huang C, Pan Q, Zhang XL. Mycobacterium tuberculosis Mannose-Capped Lipoarabinomannan Induces IL-10-Producing B Cells and Hinders CD4 +Th1 Immunity. iScience 2018; 11:13-30. [PMID: 30572206 PMCID: PMC6299163 DOI: 10.1016/j.isci.2018.11.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
The importance of Th1/interferon (IFN)-γ-mediated responses in mycobacterial infection has been well established. However, little is known about B cell-mediated immunity during Mycobacterium tuberculosis (Mtb) infection. Interleukin (IL)-10-producing B cells (B10 cells), a subset of B regulatory cells (Bregs), are implicated in modulating the immune response. Herein, we found that B10 cells were significantly increased in patients with tuberculosis. Furthermore, mannose-capped lipoarabinomannan (ManLAM), a major surface lipoglycan component from Mtb, induced a significant increase in B10 cells, which enriched in CD5+ B1a B cells. ManLAM induced IL-10 production mainly by activating MyD88/PI3K/AKT/Ap-1 and K63-linked ubiquitination of NF-κB essential modulator/nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathways in B cells via Toll-like receptor 2. IL-10 production by ManLAM-treated B cells further inhibited CD4+ Th1 polarization, leading to increased susceptibility to mycobacterial infection compared with ManLAM-treated IL-10−/− B group. Thus, we report a new immunoregulation mechanism in which Mtb ManLAM-induced B10 cells negatively regulate host anti-TB cellular immunity. Mtb mannose-capped lipoarabinomannan (ManLAM) induces IL-10 production in B cells ManLAM-induced B10 cells enrich in CD5+ B1a B cells ManLAM binding with TLR2 triggers MyD88 signaling pathways of B cells ManLAM-induced B10 cells hinder CD4+Th1 immunity during Mtb infection in mice
Collapse
Affiliation(s)
- Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China; Department of Laboratory Medicine, Wuhan Children's Hospital, Huazhong University of Science and Technology, Jiangan, Wuhan 430015, China
| | - Zi-Lu Qu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Xiao-Lei Tang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Wei Luo
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Chun Huang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuchang, Wuhan 430071, China.
| |
Collapse
|
6
|
Jeyanathan M, Yao Y, Afkhami S, Smaill F, Xing Z. New Tuberculosis Vaccine Strategies: Taking Aim at Un-Natural Immunity. Trends Immunol 2018; 39:419-433. [DOI: 10.1016/j.it.2018.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
|
7
|
Pan Q, Yan J, Liu Q, Yuan C, Zhang XL. A single-stranded DNA aptamer against mannose-capped lipoarabinomannan enhances anti-tuberculosis activity of macrophages through downregulation of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor γ expression. Microbiol Immunol 2017; 61:92-102. [PMID: 28206680 DOI: 10.1111/1348-0421.12470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/30/2017] [Accepted: 02/12/2017] [Indexed: 12/26/2022]
Abstract
Mannose-capped lipoarabinomannan (ManLAM) is an immunomodulatory epitope of Mycobacterium tuberculosis (Mtb). An aptamer (ZXL1) that specifically binds to ManLAM from the virulent Mtb H37Rv strain was previously generated and it was found that ZXL1 functions as an antagonist, inhibiting the ManLAM-induced immunosuppression of DCs. In the present study, it was found that ZXL1 inhibits Mtb entry into murine macrophages and that ZXL1 enhances IL-1β and IL-12 mRNA expression and cytokine production in ManLAM-treated macrophages but decreases IL-10 production. Inducible nitric oxide synthase expression in macrophages was upregulated in the presence of ZXL1 after stimulation with ManLAM. ZXL1 was also found to inhibit expression of lipid-sensing nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ). These results suggest that ZXL1 promotes anti-tuberculosis activity through downregulation of PPAR-γ expression, which may contribute to M1 macrophage polarization and Mtb killing by macrophages.
Collapse
Affiliation(s)
- Qin Pan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Jiamin Yan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Qi Liu
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institue, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
8
|
Baeyens A, Fang V, Chen C, Schwab SR. Exit Strategies: S1P Signaling and T Cell Migration. Trends Immunol 2016; 36:778-787. [PMID: 26596799 DOI: 10.1016/j.it.2015.10.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
Whereas the role of sphingosine 1-phosphate receptor 1 (S1PR1) in T cell egress and the regulation of S1P gradients between lymphoid organs and circulatory fluids in homeostasis are increasingly well understood, much remains to be learned about S1P signaling and distribution during an immune response. Recent data suggest that the role of S1PR1 in directing cells from tissues into circulatory fluids is reprised again and again, particularly in guiding activated T cells from non-lymphoid tissues into lymphatics. Conversely, S1P receptor 2 (S1PR2), which antagonizes migration towards chemokines, confines cells within tissues. Here we review the current understanding of the roles of S1P signaling in activated T cell migration. In this context, we outline open questions, particularly regarding the shape of S1P gradients in different tissues in homeostasis and inflammation, and discuss recent strategies to measure S1P.
Collapse
Affiliation(s)
- Audrey Baeyens
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Victoria Fang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Cynthia Chen
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Susan R Schwab
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
9
|
Sun X, Pan Q, Yuan C, Wang Q, Tang XL, Ding K, Zhou X, Zhang XL. A Single ssDNA Aptamer Binding to Mannose-Capped Lipoarabinomannan of Bacillus Calmette-Guérin Enhances Immunoprotective Effect against Tuberculosis. J Am Chem Soc 2016; 138:11680-9. [PMID: 27529508 DOI: 10.1021/jacs.6b05357] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Because Mycobacterium bovis, termed bacillus Calmette-Guérin (BCG), the only available used tuberculosis (TB) vaccine, retains immunomodulatory properties that limit its protective immunogenicity, there are continuous efforts to identify the immunosuppression mechanism as well as new strategies for improving the immunogenicity of BCG. Here, an ssDNA aptamer "antibody" BM2 specifically bound to the mannose-capped lipoarabinomannan (ManLAM) of BCG was selected. BM2 significantly blocked ManLAM-mannose receptor (MR) binding, triggered ManLAM-CD44 signaling, and enhanced M1 macrophage and Th1 activation via cellular surface CD44 in vitro and in vivo. BM2 enhanced immunoprotective effects of BCG against virulent Mycobacterium tuberculosis H37Rv infection in mice and monkeys models. Thus, we report a new mechanism of the interaction between ManLAM and CD44 on macrophages and CD4(+) T cells and reveal that ManLAM-binding membrane molecule CD44 is a novel target for the enhancement of BCG immunogenicity, and BM2 has strong potential as an immune enhancer for BCG.
Collapse
Affiliation(s)
- Xiaoming Sun
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan 430071, P. R. China
| | - Qin Pan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan 430071, P. R. China
| | - Chunhui Yuan
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan 430071, P. R. China
| | - Qilong Wang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan 430071, P. R. China.,Department of Clinical Oncology, Huai'an First People's Hospital, Nanjing Medical University , Huai'an 223300, China
| | - Xiao-Lei Tang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan 430071, P. R. China.,Department of Clinical Laboratory, The Second Hospital of Wuhu , Wuhu 241000, Anhui Province, China
| | - Kan Ding
- Shanghai Institute of Materia Medica , Shanghai 201203, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, Hubei Province, China
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Medical Research Institute, Hubei Province Key Laboratory of Allergy and Immunology and Department of Immunology, Wuhan University School of Medicine , Wuhan 430071, P. R. China
| |
Collapse
|
10
|
Arish M, Husein A, Kashif M, Saleem M, Akhter Y, Rub A. Sphingosine-1-phosphate signaling: unraveling its role as a drug target against infectious diseases. Drug Discov Today 2015; 21:133-142. [PMID: 26456576 DOI: 10.1016/j.drudis.2015.09.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/25/2022]
Abstract
Sphingosine-1-phosphate (S1P) signaling is reported in variety of cell types, including immune, endothelial and cancerous cells. It is emerging as a crucial regulator of cellular processes, such as apoptosis, cell proliferation, migration, differentiation and so on. This signaling pathway is initiated by the intracellular production and secretion of S1P through a cascade of enzymatic reactions. Binding of S1P to different S1P receptors (S1PRs) activates different downstream signaling pathways that regulate the cellular functions differentially depending upon the cell type. An accumulating body of evidence suggests that S1P metabolism and signaling is often impaired during infectious diseases; thus, its manipulation might be helpful in the treatment of such diseases. In this review, we summarize recent advances in our understanding of the S1P signaling pathway and its candidature as a novel drug target against infectious diseases.
Collapse
Affiliation(s)
- Mohd Arish
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Atahar Husein
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammad Kashif
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Mohammed Saleem
- Department of Life Sciences, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Shahpur, Kangra, HP 176216, India
| | - Abdur Rub
- Infection and Immunity Lab, Department of Biotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India.
| |
Collapse
|
11
|
Halder P, Kumar R, Jana K, Chakraborty S, Ghosh Z, Kundu M, Basu J. Gene expression profiling of Mycobacterium tuberculosis Lipoarabinomannan-treated macrophages: A role of the Bcl-2 family member A1 in inhibition of apoptosis in mycobacteria-infected macrophages. IUBMB Life 2015; 67:726-36. [PMID: 26337784 DOI: 10.1002/iub.1430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/17/2015] [Indexed: 01/02/2023]
Abstract
Macrophages play an important role in the establishment of infection by intracellular pathogens. Mycobacterium tuberculosis is known to inhibit apoptosis and to downregulate immune responses of host cells using various strategies, including activation of peroxisome proliferator-activated receptor (PPAR)γ. Mannose-capped lipoarabinomannan (ManLAM) is one of the known bacterial effectors that plays a role in subversion of host immunity and activation of PPARγ. Here, we have used an unbiased global gene expression profiling approach to understand (a) how ManLAM regulates host cell immune responses and (b) the role of PPARγ in modulating ManLAM-induced host cell signaling. We have demonstrated that ManLAM-dependent inhibition of macrophage apoptosis is mediated by the upregulation of the antiapoptotic B-cell CLL/lymphoma 2 (Bcl2) family member A1. Our in silico analyses suggested that ManLAM-mediated PPARγ signaling is linked to important functions such as phagocytosis, cytoskeleton remodeling, cell survival, and autophagy. We have validated that ManLAM upregulates signal transducer and activator of transcription (STAT5)α, an important transcriptional regulator of cell survival in a PPARγ-dependent manner.
Collapse
Affiliation(s)
- Priyanka Halder
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| | - Ranjeet Kumar
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, Kolkata, West Bengal, India
| | | | - Zhumur Ghosh
- Bioinformatics Centre, Bose Institute, Kolkata, West Bengal, India
| | - Manikuntala Kundu
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
13
|
Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M, Akashi K, Yamasaki S. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 2014; 41:402-413. [PMID: 25176311 DOI: 10.1016/j.immuni.2014.08.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 08/07/2014] [Indexed: 11/15/2022]
Abstract
Mycobacteria possess various immunomodulatory molecules on the cell wall. Mannose-capped lipoarabinomannan (Man-LAM), a major lipoglycan of Mycobacterium tuberculosis, has long been known to have both inhibitory and stimulatory effects on host immunity. However, the direct Man-LAM receptor that explains its pleiotropic activities has not been clearly identified. Here, we report that a C-type lectin receptor Dectin-2 (gene symbol Clec4n) is a direct receptor for Man-LAM. Man-LAM activated bone-marrow-derived dendritic cells (BMDCs) to produce pro- and anti-inflammatory cytokines, whereas it was completely abrogated in Clec4n(-/-) BMDCs. Man-LAM promoted antigen-specific T cell responses through Dectin-2 on DCs. Furthermore, Man-LAM induced experimental autoimmune encephalitis (EAE) as an adjuvant in mice, whereas Clec4n(-/-) mice were resistant. Upon mycobacterial infection, Clec4n(-/-) mice showed augmented lung pathology. These results demonstrate that Dectin-2 contributes to host immunity against mycobacterial infection through the recognition of Man-LAM.
Collapse
Affiliation(s)
- Akiko Yonekawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Yoshihiko Hoshino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Yasunobu Miyake
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Maho Suzukawa
- Center for Pulmonary Diseases, National Hospital Organization, Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masato Tanaka
- Laboratory for Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.
| |
Collapse
|
14
|
Sphingosine-1-phosphate/S1P receptors signaling modulates cell migration in human bone marrow-derived mesenchymal stem cells. Mediators Inflamm 2014; 2014:565369. [PMID: 25147438 PMCID: PMC4132341 DOI: 10.1155/2014/565369] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/12/2014] [Indexed: 12/30/2022] Open
Abstract
The recruitment of bone marrow-derived mesenchymal stem cells (BMSCs) to damaged tissues and sites of inflammation is an essential step for clinical therapy. However, the signals regulating the motility of these cells are still not fully understood. Sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite, is known to have a variety of biological effects on various cells. Here, we investigated the roles of S1P and S1P receptors (S1PRs) in migration of human BMSCs. We found that S1P exerted a powerful migratory action on human BMSCs. Moreover, by employing RNA interference technology and pharmacological tools, we demonstrated that S1PR1 and S1PR3 are responsible for S1P-induced migration of human BMSCs. In contrast, S1PR2 mediates the inhibition of migration. Additionally, we explored the downstream signaling pathway of the S1P/S1PRs axis and found that activation of S1PR1 or S1PR3 increased migration of human BMSCs through a G i /extracellular regulated protein kinases 1/2- (ERK1/2-) dependent pathway, whereas activation of S1PR2 decreased migration through the Rho/Rho-associated protein kinase (ROCK) pathway. In conclusion, we reveal that the S1P/S1PRs signaling axis regulates the migration of human BMSCs via a dual-directional mechanism. Thus, selective modulation of S1PR's activity on human BMSCs may provide an effective approach to immunotherapy or tissue regeneration.
Collapse
|
15
|
Tuzova M, Richmond J, Wolpowitz D, Curiel-Lewandrowski C, Chaney K, Kupper T, Cruikshank W. CCR4+T cell recruitment to the skin in mycosis fungoides: potential contributions by thymic stromal lymphopoietin and interleukin-16. Leuk Lymphoma 2014; 56:440-9. [PMID: 24794807 DOI: 10.3109/10428194.2014.919634] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mycosis fungoides (MF) is characterized by skin accumulation of CCR4+CCR7- effector memory T cells; however the mechanism for their recruitment is not clearly identified. Thymic Stromal Lymphopoietin (TSLP) is a keratinocyte-derived cytokine that triggers Th2 immunity and is associated with T cell recruitment to the skin in atopic dermatitis. Interleukin-16 (IL-16) is a chemoattractant and growth factor for CD4+T cells. We hypothesized that TSLP and IL-16 could contribute to recruitment of malignant T cells in MF. We found elevated TSLP and IL-16 in very early stage patients' plasma and skin biopsies, prior to elevation in CCL22. Both TSLP and IL-16 induced migratory responses of CCR4+TSLPR+CD4+CCR7-CD31+cells, characteristic of malignant T cells in the skin. Co-stimulation also resulted in significant proliferative responses. We conclude that TSLP and IL-16, expressed at early stages of disease, function to recruit malignant T cells to the skin and contribute to their enhanced proliferation.
Collapse
|
16
|
New insights into the crosstalk between Shigella and T lymphocytes. Trends Microbiol 2014; 22:192-8. [PMID: 24613405 DOI: 10.1016/j.tim.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/22/2023]
Abstract
Subversion of host immune responses is the key infection strategy employed by most, if not all, human pathogens. Modulation of the host innate response by pathogens has been vastly documented. Yet, especially for bacterial infections, it was only recently that cells of the adaptive immune response were recognized as targets of bacterial weapons such as the type III secretion system (T3SS) and its effector proteins. In this review, we focus on the recent advances made in the understanding of how the enteroinvasive bacterium Shigella flexneri interferes with the host adaptive response by targeting T lymphocytes, especially their migration capacities.
Collapse
|
17
|
Roberts LL, Robinson CM. Mycobacterium tuberculosis infection of human dendritic cells decreases integrin expression, adhesion and migration to chemokines. Immunology 2014; 141:39-51. [PMID: 23981064 DOI: 10.1111/imm.12164] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) remains a major global health problem accounting for millions of deaths annually. Approximately one-third of the world's population is infected with the causative agent Mycobacterium tuberculosis. The onset of an adaptive immune response to M. tuberculosis is delayed compared with other microbial infections. This delay permits bacterial growth and dissemination. The precise mechanism(s) responsible for this delay have remained obscure. T-cell activation is preceded by dendritic cell (DC) migration from infected lungs to local lymph nodes and synapsis with T cells. We hypothesized that M. tuberculosis may impede the ability of DCs to reach lymph nodes and initiate an adaptive immune response. We used primary human DCs to determine the effect of M. tuberculosis on expression of heterodimeric integrins involved in cellular adhesion and migration. We also evaluated the ability of infected DCs to adhere to and migrate through lung endothelial cells, which is necessary to reach lymph nodes. We show by flow cytometry and confocal microscopy that M. tuberculosis-infected DCs exhibit a significant reduction in surface expression of the β(2) (CD18) integrin. Distribution of integrin β(2) is also markedly altered in M. tuberculosis-infected DCs. A corresponding reduction in the αL (CD11a) and αM (CD11b) subunits that associate with integrin β(2) was also observed. Consistent with reduced integrin surface expression, we show a significant reduction in adherence to lung endothelial cell monolayers and migration towards lymphatic chemokines when DCs are infected with M. tuberculosis. These findings suggest that M. tuberculosis modulates DC adhesion and migration to increase the time required to initiate an adaptive immune response.
Collapse
Affiliation(s)
- Lawton L Roberts
- Department of Pathology, Microbiology, & Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | | |
Collapse
|