1
|
Cheng Y, Shen R, Liu F, Li Y, Wang J, Hou Y, Liu Y, Zhou H, Hou F, Wang Y, Li X, Qiao R, Luo S. Humoral and cellular immune responses induced by serogroup W135 meningococcal conjugate and polysaccharide vaccines. Vaccine 2024; 42:2781-2792. [PMID: 38508928 DOI: 10.1016/j.vaccine.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Investigating the mechanisms by which W135 meningococcal conjugate (PSW135-TT) activates adaptive immune responses in mice can provide a comprehensive understanding of the immune mechanisms of bacterial polysaccharide conjugate vaccines. We compared B-cell and T-cell immune responses immunized with W135 meningococcal capsular polysaccharides (PSW135), tetanus toxoid (TT) and PSW135-TT in mice. The results showed that PSW135-TT could induce higher PSW135-specific and TT-specific IgG antibodies with a significant enhancement after two doses. All serum antibodies immunized with PSW135- TT had strong bactericidal activity, whereas none of the serum antibodies immunized with PSW135 had bactericidal activity. Besides, IgM and IgG antibodies immunized with PSW135-TT after two doses were positively correlated with the titer of bactericidal antibodies. We also found Th cells favored Th2 humoral immune responses in PSW135-TT, PSW135, and TT-immunized mice, especially peripheral blood lymphocytes. Furthermore, PSW135-TT and TT could effectively activate bone marrow derived dendritic cells (BMDCs) and promote BMDCs to highly express major histocompatibility complex Ⅱ (MHCⅡ), CD86 and CD40 molecules in mice, whereas PSW135 couldn't. These data verified the typical characteristics of PSW135-TT and TT as T cell dependent antigen (TD-Ag) and PSW135 as T cell independent antigen (TI-Ag), which will be very helpful for further exploration of the immune mechanism of polysaccharide-protein conjugate vaccines and improvement of the quality of bacterial polysaccharide conjugate vaccines in future.
Collapse
Affiliation(s)
- Yahui Cheng
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Rong Shen
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fanglei Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yanting Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Jing Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yali Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yueping Liu
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Haifei Zhou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Fengping Hou
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Yunjin Wang
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Xiongxiong Li
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China
| | - Ruijie Qiao
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| | - Shuquan Luo
- Lanzhou Institute of Biological Products Co., Ltd., Lanzhou 730046, China.
| |
Collapse
|
2
|
Dash P, Hakim A, Akter A, Banna HA, Kaisar MH, Aktar A, Jahan SR, Ferdous J, Basher SR, Kamruzzaman M, Chowdhury F, Akter A, Tauheed I, Weil AA, Charles RC, Calderwood SB, Ryan ET, LaRocque RC, Harris JB, Bhuiyan TR, Qadri F. Cholera toxin and O-specific polysaccharide immune responses after oral cholera vaccination with Dukoral in different age groups of Bangladeshi participants. mSphere 2024; 9:e0056523. [PMID: 38391226 PMCID: PMC10964428 DOI: 10.1128/msphere.00565-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
Vaccination is important to prevent cholera. There are limited data comparing anti-O-specific polysaccharide (OSP) and anti-cholera toxin-specific immune responses following oral whole-cell with cholera toxin B-subunit (WC-rBS) vaccine (Dukoral, Valneva) administration in different age groups. An understanding of the differences is relevant because young children are less well protected by oral cholera vaccines than older children and adults. We compared responses in 50 adults and 49 children (ages 2 to <18) who were administered two doses of WC-rBS at a standard 14-day interval. All age groups had significant IgA and IgG plasma-blast responses to the OSP and cholera toxin B-subunit (CtxB) antigens that peaked 7 days after vaccination. However, in adults and older children (ages 5 to <18), antibody responses directed at the OSP antigen were largely IgA and IgG, with a minimal IgM response, while younger children (ages 2 to <5) mounted significant increases in IgM with minimal increases in IgA and IgG antibody responses 30 days after vaccination. In adults, anti-OSP and CtxB memory B-cell responses were detected after completion of the vaccination series, while children only mounted CtxB-specific IgG memory B-cell responses and no OSP-memory B-cell responses. In summary, children and adults living in a cholera endemic area mounted different responses to the WC-rBS vaccine, which may be a result of more prior exposure to Vibrio cholerae in older participants. The absence of class-switched antibody responses and memory B-cell responses to OSP may explain why protection wanes more rapidly after vaccination in young children compared to older vaccinees.IMPORTANCEVaccination is an important strategy to prevent cholera. Though immune responses targeting the OSP of V. cholerae are believed to mediate protection against cholera, there are limited data on anti-OSP responses after vaccination in different age groups, which is important as young children are not well protected by current oral cholera vaccines. In this study, we found that adults mounted memory B-cell responses to OSP, which were not seen in children. Adults and older children mounted class-switched (IgG and IgA) serum antibody responses to OSP, which were not seen in young children who had only IgM responses to OSP. The lack of class-switched antibody responses and memory B-cell responses to OSP in younger participants may be due to lack of prior exposure to V. cholerae and could explain why protection wanes more rapidly after vaccination in young children.
Collapse
Affiliation(s)
- Pinki Dash
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Al Hakim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Aklima Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Hasan Al Banna
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amena Aktar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sultana Rownok Jahan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jannatul Ferdous
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Salima Raiyan Basher
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
3
|
Rollier CS, Dold C, Blackwell L, Linder A, Silva-Reyes L, Clutterbuck E, Davis K, Ford K, Liu X, Holland A, Chan H, Harbinson H, O'Connor D, Borrow R, Snape MD, Pollard AJ. Immunogenicity of a single 4CMenB vaccine booster in adolescents 11 years after childhood immunisation. Vaccine 2022; 40:4453-4463. [PMID: 35697571 DOI: 10.1016/j.vaccine.2022.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/17/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022]
Abstract
The clinical development of the meningococcal vaccine, 4CMenB, included 2 doses in vaccine-naïve adolescents, which was considered unlikely to be cost-effective for implementation. Theoretically, priming with 4CMenB in early childhood might drive strong immune responses after only a single booster dose in adolescents and reduce programmatic costs. To address this question, children over 11 years old who took part in previous trials involving the administration of 3-5 doses of 4CMenB at infant/preschool age from 2006 were recruited into a post licensure single-centre trial, and were divided into two groups: those who received their last dose at 12 months old (infant group) and those who received their last dose at 3 years old (infant + preschool group). Naïve age-matched controls were randomised to receive one (adolescent 1 group) or two doses at days 0 and 28 (adolescent 2 group) of 4CMenB. Serum bactericidal antibody (SBA) assays using human complement were performed against three reference strains prior to vaccination, and at 1, 6 and 12 months. Previous vaccination was associated with a higher response to a single booster dose at 11 years of age, one-month post-vaccination, when compared with a single dose in naïve age-matched controls. At day 180, the highest responses were observed in participants in the infant + preschool group against strain 5/99 (GMT 316.1 [CI 158.4 to 630.8]), as compared with naïve adolescents who received two doses (GMTs 84.5 [CI 57.7 to 123.6]). When the last dose was received at 12-months of age, responses to a single adolescent dose were not as robust (GMT 61.1 [CI 14.8 to 252.4] to strain 5/99). This descriptive study indicates that the highest SBA responses after a single dose in adolescence were observed in participants who received a preschool dose, suggesting that B cell memory responses are not sufficiently primed at less than 12 months of age. Trial registration EudraCT 2017-004732-11, ISRCTN16774163.
Collapse
Affiliation(s)
- Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Aline Linder
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Elizabeth Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Kimberly Davis
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Karen Ford
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Ann Holland
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Hannah Chan
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Holly Harbinson
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Ray Borrow
- UK Health Security Agency, Vaccine Evaluation Unit, Manchester Royal Infirmary, M13 9WL Manchester, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford OX37LE, UK
| |
Collapse
|
4
|
Tin Tin Htar M, Jackson S, Balmer P, Serra LC, Vyse A, Slack M, Riera-Montes M, Swerdlow DL, Findlow J. Systematic literature review of the impact and effectiveness of monovalent meningococcal C conjugated vaccines when used in routine immunization programs. BMC Public Health 2020; 20:1890. [PMID: 33298015 PMCID: PMC7724720 DOI: 10.1186/s12889-020-09946-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/19/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Monovalent meningococcal C conjugate vaccine (MCCV) was introduced into the routine immunization program in many countries in Europe and worldwide following the emergence of meningococcal serogroup C (MenC) in the late 1990s. This systematic literature review summarizes the immediate and long-term impact and effectiveness of the different MCCV vaccination schedules and strategies employed. METHODS We conducted a systematic literature search for peer-reviewed, scientific publications in the databases of MEDLINE (via PubMed), LILACS, and SCIELO. We included studies from countries where MCCV have been introduced in routine vaccination programs and studies providing the impact and effectiveness of MCCV published between 1st January 2001 and 31st October 2017. RESULTS Forty studies were included in the review; 30 studies reporting impact and 17 reporting effectiveness covering 9 countries (UK, Spain, Italy, Canada, Brazil, Australia, Belgium, Germany and the Netherlands). Following MCCV introduction, significant and immediate reduction of MenC incidence was consistently observed in vaccine eligible ages in all countries with high vaccine uptake. The reduction in non-vaccine eligible ages (especially population > 65 years) through herd protection was generally observed 3-4 years following introduction. Vaccine effectiveness (VE) was mostly assessed through screening methods and ranged from 38 to 100%. The VE was generally highest during the first year after vaccination and waned over time. The VE was better maintained in countries employing catch-up campaigns in older children and adolescents, compared to routine infant only schedules. CONCLUSIONS MCCV were highly effective, showing a substantial and sustained decrease in MenC invasive meningococcal disease. The epidemiology of meningococcal disease is in constant transition, and some vaccination programs now include adolescents and higher valent vaccines due to the recent increase in cases caused by serogroups not covered by MCCV. Continuous monitoring of meningococcal disease is essential to understand disease evolution in the setting of different vaccination programs.
Collapse
Affiliation(s)
- Myint Tin Tin Htar
- Medical Development, Scientific & Clinical Affairs, Pfizer, 23-25 Avenue Docteur Lannelongue, Paris, 75014 France
| | - Sally Jackson
- P95 Epidemiology and Pharmacovigilance, Leuven, Belgium
| | - Paul Balmer
- Medical Development, Scientific & Clinical Affairs, Pfizer, 500 Arcola Road, Collegeville, PA 19426 USA
| | - Lidia Cristina Serra
- Medical Development, Scientific & Clinical Affairs, Pfizer, 500 Arcola Road, Collegeville, PA 19426 USA
| | - Andrew Vyse
- Medical Development, Scientific & Clinical Affairs, Pfizer, Surrey, UK
| | - Mary Slack
- School of Medicine, Griffith University Gold Coast campus, Southport, Queensland 4222 Australia
| | | | - David L. Swerdlow
- Medical Development, Scientific & Clinical Affairs, Pfizer, 500 Arcola Road, Collegeville, PA 19426 USA
| | - Jamie Findlow
- Medical Development, Scientific & Clinical Affairs, Pfizer, 23-25 Avenue Docteur Lannelongue, Paris, 75014 France
| |
Collapse
|
5
|
Different Long-Term Duration of Seroprotection against Neisseria meningitidis in Adolescents and Middle-Aged Adults after a Single Meningococcal ACWY Conjugate Vaccination in The Netherlands. Vaccines (Basel) 2020; 8:vaccines8040624. [PMID: 33113834 PMCID: PMC7712102 DOI: 10.3390/vaccines8040624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/29/2023] Open
Abstract
Neisseria meningitidis is often asymptomatically carried in the nasopharynx but may cause invasive meningococcal disease, leading to morbidity and mortality. Meningococcal conjugate vaccinations induce functional protective antibodies against capsular antigens, but seroprotection wanes over time. We measured functional antibody titers five years after administration of a single dose of the meningococcal ACWY-polysaccharide-specific tetanus toxoid-conjugated (MenACWY-TT) vaccine in adolescents and middle-aged adults in the Netherlands, using the serum bactericidal antibody with baby rabbit complement (rSBA) assay. Protection was defined as rSBA titer ≥8. The meningococcal ACWY-specific serum IgG concentrations were measured with a multiplex immunoassay. Duration of protection was estimated by a bi-exponential decay model. Sufficient protection for MenC, MenW, and MenY was achieved in 94–96% of the adolescents five years postvaccination, but, in middle-aged adults, only in 32% for MenC, 65% for MenW and 71% for MenY. Median duration of protection for MenCWY was 4, 14, and 21 years, respectively, in middle-aged adults, while, in adolescents, it was 32, 98, and 33 years. Our findings suggest that adolescents, primed in early childhood with MenC conjugate vaccination, remain sufficiently protected after a single dose of MenACWY-TT vaccine. Middle-aged adults without priming vaccination show fast waning of antibodies, particularly MenC, for which protection is lost after four years.
Collapse
|
6
|
Valente Pinto M, O'Connor D, Galal U, Clutterbuck EA, Robinson H, Plested E, Bibi S, Camara Pellisso S, Hughes H, Kerridge S, Mujadidi YF, Findlow H, Borrow R, Snape MD, Pollard AJ. Immunogenicity and Reactogenicity of a Reduced Schedule of a 4-component Capsular Group B Meningococcal Vaccine: A Randomized Controlled Trial in Infants. Open Forum Infect Dis 2020; 7:ofaa143. [PMID: 32494580 DOI: 10.1093/ofid/ofaa143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Background The 4-component capsular group B meningococcal vaccine (4CMenB) was licensed as a 4-dose infant schedule but introduced into the United Kingdom as 3 doses at 2, 4, and 12 months of age. We describe the immunogenicity and reactogenicity of the 2 + 1 schedule in infants. Methods Infants were randomized to receive 4CMenB with routine immunizations (test group) at 2, 4, and 12 months or 4CMenB alone at 6, 8, and 13 months of age (control group). Serum bactericidal antibody (SBA) assay against a serogroup B meningococcal reference strain (44/76-SL), memory B-cell responses to factor H binding protein, Neisseria adhesion protein A, Neisseria heparin binding antigen, Porin A (PorA), and reactogenicity was measured. Results One hundred eighty-seven infants were randomized (test group: 94; control group: 93). In the test group, 4CMenB induced SBA titers above the putative protective threshold (1:4) after primary and booster doses in 97% of participants. Postbooster, the SBA GMT (72.1; 95% confidence interval [CI], 51.7-100.4) was numerically higher than the serum bactericidal antibody geometric mean titre (SBA GMT) determined post-primary vaccination (48.6; 95% CI, 37.2-63.4). After primary immunizations, memory B-cell responses did not change when compared with baseline controls, but frequencies significantly increased after booster. Higher frequency of local and systemic adverse reactions was associated with 4CMenB. Conclusions A reduced schedule of 4CMenB was immunogenic and established immunological memory after booster.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Emma Plested
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Susana Camara Pellisso
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Harri Hughes
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Simon Kerridge
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Helen Findlow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
7
|
Papadatou I, Tzovara I, Licciardi PV. The Role of Serotype-Specific Immunological Memory in Pneumococcal Vaccination: Current Knowledge and Future Prospects. Vaccines (Basel) 2019; 7:E13. [PMID: 30700048 PMCID: PMC6466264 DOI: 10.3390/vaccines7010013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/30/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae, pneumococcus) is a major cause of morbidity and mortality worldwide. Achieving long-term immunity against S. pneumoniae through immunization is an important public health priority. Long-term protection after immunization is thought to rely both on protective serum antibody levels and immunological memory in the form of antigen-specific memory B cells (MBCs). Although the ability to achieve protective antibody levels shortly after pneumococcal vaccination has been well documented for the various infant immunization schedules currently in use worldwide, the examination of immunological memory in the form of antigen-specific MBCs has been much more limited. Such responses are critical for long-term protection against pneumococcal colonization and disease. This review summarizes the published literature on the MBC response to primary or booster immunization with either pneumococcal polysaccharide vaccine (PPV23) or pneumococcal conjugate vaccines (PCVs), aiming to elucidate the immunological mechanisms that determine the magnitude and longevity of vaccine protection against pneumococcus. There is evidence that PCVs induce the production of antigen-specific MBCs, whereas immunization with PPV23 does not result in the formation of MBCs. Increased understanding of the immunological factors that facilitate the induction, maintenance and recall of MBCs in response to pneumococcal vaccination could enable the use of MBC enumeration as novel correlates of protection against S. pneumoniae. Ongoing studies that examine MBC response to pneumococcal vaccination in high burden settings will be extremely important in our understanding of long-term protection induced by pneumococcal conjugate vaccines.
Collapse
Affiliation(s)
- Ioanna Papadatou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, Aghia Sofia Children's Hospital, National and Kapodistrian University of Athens, 111527 Athens, Greece.
| | - Irene Tzovara
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, Aghia Sofia Children's Hospital, National and Kapodistrian University of Athens, 111527 Athens, Greece.
| | - Paul V Licciardi
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.
| |
Collapse
|
8
|
van der Heiden M, Berbers GAM, Fuentes S, van Zelm MC, Boots AMH, Buisman AM. An Explorative Biomarker Study for Vaccine Responsiveness after a Primary Meningococcal Vaccination in Middle-Aged Adults. Front Immunol 2018; 8:1962. [PMID: 29375578 PMCID: PMC5768620 DOI: 10.3389/fimmu.2017.01962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Introduction Prevention of infectious diseases in the elderly is essential to establish healthy aging. Yet, immunological aging impairs successful vaccination of the elderly. Predictive biomarkers for vaccine responsiveness in middle-aged adults may help to identify responders and non-responders before reaching old age. Therefore, we aimed to determine biomarkers associated with low and high responsiveness toward a primary vaccination in middle-aged adults, for which a tetravalent meningococcal vaccine was used as a model. Methods Middle-aged adults (50–65 years of age, N = 100), receiving a tetravalent meningococcal vaccination, were divided into low and high responders using the functional antibody titers at 28 days postvaccination. A total of 48 parameters, including absolute numbers of immune cells and serum levels of cytokines and biochemical markers, were determined prevaccination in all participants. Heat maps and multivariate redundancy analysis (RDA) were used to reveal immune phenotype characteristics and associations of the low and high responders. Results Several significant differences in prevaccination immune markers were observed between the low and high vaccine responders. Moreover, RDA analysis revealed a significant association between the prevaccination immune phenotype and vaccine responsiveness. In particular, our analysis pointed at high numbers of CD4 T cells, especially naïve CD4 and regulatory T subsets, to be associated with low vaccine responsiveness. In addition, low responders showed lower prevaccination IL-1Ra levels than high responders. Conclusion This explorative biomarker study shows associations between the prevaccination immune phenotype and vaccine responsiveness after a primary meningococcal vaccination in middle-aged adults. Consequently, these results provide a basis for predictive biomarker discovery for vaccine responsiveness that will require validation in larger cohort studies.
Collapse
Affiliation(s)
- Marieke van der Heiden
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Susana Fuentes
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Menno C van Zelm
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, VIC, Australia
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
9
|
van der Heiden M, Boots AMH, Bonacic Marinovic AA, de Rond LGH, van Maurik M, Tcherniaeva I, Berbers GAM, Buisman AM. Novel Intervention in the Aging Population: A Primary Meningococcal Vaccine Inducing Protective IgM Responses in Middle-Aged Adults. Front Immunol 2017; 8:817. [PMID: 28769927 PMCID: PMC5515833 DOI: 10.3389/fimmu.2017.00817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Introduction Vaccine responses are often reduced in the elderly, leaving part of the elderly population vulnerable to infectious diseases. Timely vaccination may offer a solution for strengthening memory immunity before reaching old age, which classifies middle-aged persons as a target age group for vaccine interventions. However, knowledge regarding the immunogenicity of primary immunizations in middle-aged adults is lacking. We determined the immunogenicity of a primary meningococcal vaccine towards which no or (very) low pre-vaccination immunity exists in middle-aged adults (NTR4636). Methods A vaccine containing multiple meningococcal groups (tetravalent) conjugated to tetanus toxoid (MenACWY-TT) was administered to middle-aged adults (50–65 years of age, N = 204) in a phase IV single-center and open-label study. Blood samples were taken pre-, 7 days, 28 days, and 1 year post-vaccination. Functional antibody titers were measured with the serum bactericidal assay (SBA). Meningococcal- and tetanus-specific antibody responses were determined with a fluorescent bead-based multiplex immunoassay. A bi-exponential decay model was used to estimate long-term protection. Results In the majority of the participants, the meningococcal vaccine clearly induced naïve responses to meningococci W (MenW) and meningococci Y (MenY) as compared to a booster response to meningococci C (MenC). After 28 days, 94, 99, and 97% of the participants possessed a protective SBA titer for MenC, MenW, and MenY, respectively, which was maintained in 76, 94, and 86% 1 year post-vaccination. At this 1-year time point, significantly lower SBA titers were found in participants without a pre-vaccination SBA titer. Overall, protective antibody titers were predicted to persist after 10 years in 40–60% of the participants. The SBA titers correlated well with the meningococcal-specific IgM responses, especially for MenW and MenY. Interestingly, these IgM responses were negatively correlated with age. Conclusion Primary immunization with a tetravalent meningococcal vaccine was highly immunogenic in middle-aged adults, inducing protective antibody titers in the vast majority of the participants lasting for at least 1 year. The age-related decrease in highly functional IgM responses argues in favor of vaccination against de novo antigens before reaching old age and, hence, middle-aged persons are an age group of interest for future vaccine interventions to protect the aging population.
Collapse
Affiliation(s)
- Marieke van der Heiden
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, Netherlands
| | - Axel A Bonacic Marinovic
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Lia G H de Rond
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marjan van Maurik
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Irina Tcherniaeva
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Guy A M Berbers
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
10
|
Gea-Banacloche J, Komanduri KV, Carpenter P, Paczesny S, Sarantopoulos S, Young JA, El Kassar N, Le RQ, Schultz KR, Griffith LM, Savani BN, Wingard JR. National Institutes of Health Hematopoietic Cell Transplantation Late Effects Initiative: The Immune Dysregulation and Pathobiology Working Group Report. Biol Blood Marrow Transplant 2017; 23:870-881. [PMID: 27751936 PMCID: PMC5392182 DOI: 10.1016/j.bbmt.2016.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 12/11/2022]
Abstract
Immune reconstitution after hematopoietic stem cell transplantation (HCT) beyond 1 year is not completely understood. Many transplant recipients who are free of graft-versus-host disease (GVHD) and not receiving any immunosuppression more than 1 year after transplantation seem to be able to mount appropriate immune responses to common pathogens and respond adequately to immunizations. However, 2 large registry studies over the last 2 decades seem to indicate that infection is a significant cause of late mortality in some patients, even in the absence of concomitant GVHD. Research on this topic is particularly challenging for several reasons. First, there are not enough long-term follow-up clinics able to measure even basic immune parameters late after HCT. Second, the correlation between laboratory measurements of immune function and infections is not well known. Third, accurate documentation of infectious episodes is notoriously difficult. Finally, it is unclear what measures can be implemented to improve the immune response in a clinically relevant way. A combination of long-term multicenter prospective studies that collect detailed infectious data and store samples as well as a national or multinational registry of clinically significant infections (eg, vaccine-preventable severe infections, opportunistic infections) could begin to address our knowledge gaps. Obtaining samples for laboratory evaluation of the immune system should be both calendar and eventdriven. Attention to detail and standardization of practices regarding prophylaxis, diagnosis, and definitions of infections would be of paramount importance to obtain clean reliable data. Laboratory studies should specifically address the neogenesis, maturation, and exhaustion of the adaptive immune system and, in particular, how these are influenced by persistent alloreactivity, inflammation, and viral infection. Ideally, some of these long-term prospective studies would collect information on long-term changes in the gut microbiome and their influence on immunity. Regarding enhancement of immune function, prospective measurement of the response to vaccines late after HCT in a variety of clinical settings should be undertaken to better understand the benefits as well as the limitations of immunizations. The role of intravenous immunoglobulin is still not well defined, and studies to address it should be encouraged.
Collapse
Affiliation(s)
- Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, Maryland.
| | - Krishna V Komanduri
- Sylvester Adult Stem Cell Transplant Program, University of Miami, Coral Gables, Florida
| | - Paul Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; University of Washington School of Medicine Pediatrics, Seattle, Washington
| | - Sophie Paczesny
- Indiana University School of Medicine, Indianapolis, Indiana
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Duke University Department of Medicine and Duke Cancer Institute, Durham, North Carolina
| | - Jo-Anne Young
- Division of Infectious Diseases and International Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nahed El Kassar
- National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Robert Q Le
- Medical Officer, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kirk R Schultz
- Professor of Pediatrics, UBC, Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital and Research Institute, Vancouver, Canada
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bipin N Savani
- Long Term Transplant Clinic, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John R Wingard
- University of Florida Health Cancer Center, Gainesville, Florida; Bone Marrow Transplant Program, Division of Hematology/Oncology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
11
|
Abstract
BACKGROUND Vaccine-induced immunity against pneumococcal infection relies on the generation of high concentrations of antibody and B cell memory. Both the 10- and the 13-valent pneumococcal conjugate vaccines (PCV-10 and PCV-13) effectively reduce disease caused by vaccine serotypes. It is unknown whether the generation of B cell memory requires several doses of the same vaccine or whether different PCVs are interchangeable. METHODS Children in the United Kingdom (n=178) who had previously received PCV-13 at 2 and 4 months were randomized 1:1 to receive a PCV-13 or PCV-10 booster at age 12 months. Peripheral blood memory B cells (BMEM) were quantified before and at 1 and 12 months after vaccination using a cultured enzyme-linked immunospot assay for pneumococcal serotypes 1, 3, 4, 9V, 14, 19A, and diphtheria and tetanus toxoid. Correlations between BMEM frequencies and simultaneously measured antibody (IgG and opsonophagocytic assay) was also assessed. RESULTS A significant rise in postbooster BMEM frequency was seen for 5 out of 6 serotypes in the PCV-13 group and none in the PCV-10 group. In the PCV-13 group, there was a particularly large increase in serotype 3-specific BMEM associated with only a small increase in antibody. Postbooster BMEM responses correlated positively with antibody, but correlations between prebooster BMEM and subsequent BMEM and antibody responses were inconsistent. CONCLUSIONS After priming with PCV-13 in early infancy, a booster dose of PCV-10 does not induce detectable peripheral blood BMEM responses but a PCV-13 booster does induce robust responses. Booster responses to PCVs may be dependent on homologous carrier protein priming.
Collapse
|
12
|
Stoof SP, Buisman AM, van Rooijen DM, Boonacker R, van der Klis FRM, Sanders EAM, Berbers GAM. Different Dynamics for IgG and IgA Memory B Cells in Adolescents following a Meningococcal Serogroup C Tetanus Toxoid Conjugate Booster Vaccination Nine Years after Priming: A Role for Priming Age? PLoS One 2015; 10:e0138665. [PMID: 26458006 PMCID: PMC4601787 DOI: 10.1371/journal.pone.0138665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/01/2015] [Indexed: 11/19/2022] Open
Abstract
Background Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Methods Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. Results The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Conclusions Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.
Collapse
Affiliation(s)
- Susanne P. Stoof
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
- * E-mail: (SS); (GB)
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debbie M. van Rooijen
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Rianne Boonacker
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fiona R. M. van der Klis
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elisabeth A. M. Sanders
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, The Netherlands
| | - Guy A. M. Berbers
- Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- * E-mail: (SS); (GB)
| |
Collapse
|
13
|
Fuery A, Richmond PC, Currie AJ. Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine. PLoS One 2015; 10:e0133126. [PMID: 26191794 PMCID: PMC4507978 DOI: 10.1371/journal.pone.0133126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/21/2015] [Indexed: 11/22/2022] Open
Abstract
Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men) C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT) carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA) assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months) were significantly associated with post-boost (13 months) SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months) and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12. Conclusion: Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming.
Collapse
Affiliation(s)
- Angela Fuery
- School of Paediatrics and Child Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, 100 Roberts Road, Perth, WA 6008, Australia
| | - Peter C. Richmond
- School of Paediatrics and Child Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, 100 Roberts Road, Perth, WA 6008, Australia
- Princess Margaret Hospital for Children, Roberts Road, Perth, WA 6008, Australia
| | - Andrew J. Currie
- School of Paediatrics and Child Health, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- School of Veterinary & Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
- * E-mail:
| |
Collapse
|
14
|
van Westen E, Wijmenga-Monsuur AJ, van Dijken HH, van Gaans-van den Brink JAM, Kuipers B, Knol MJ, Berbers GAM, Sanders EAM, Rots NY, van Els CACM. Differential B-cell memory around the 11-month booster in children vaccinated with a 10- or 13-valent pneumococcal conjugate vaccine. Clin Infect Dis 2015; 61:342-9. [PMID: 25838290 PMCID: PMC4503810 DOI: 10.1093/cid/civ274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
Infants vaccinated with the 10- or 13-valent pneumococcal conjugate vaccine at 2, 3, 4, and 11 months had similar serotype-specific immunoglobulin G levels and plasma cell frequencies against 4 shared serotypes around these boosters, but higher memory B-cell frequencies in the PCV13 group. Background. Both the 10- and 13-valent pneumococcal conjugate vaccines (PCV10 and PCV13) induce immunological memory against Streptococcus pneumoniae infections caused by vaccine serotypes. In addition to comparing serum antibody levels, we investigated frequencies of serotype-specific plasma cells (PCs) and memory B-cells (Bmems) as potential predictors of long-term immunity around the booster vaccination at 11 months of age. Methods. Infants were immunized with PCV10 or PCV13 at 2, 3, 4, and 11 months of age. Blood was collected before the 11-month booster or 7–9 days afterward. Serotype-specific immunoglobulin G (IgG) levels were determined in serum samples by multiplex immunoassay. Circulating specific PCs and Bmems against shared serotypes 1, 6B, 7F, and 19F and against PCV13 serotypes 6A and 19A were measured in peripheral blood mononuclear cells by enzyme-linked immunospot assay. Results. No major differences in IgG levels and PC frequencies between groups were found for the 4 shared serotypes. Notably, PCV13 vaccination resulted in higher frequencies of Bmems than PCV10 vaccination, both before and after the booster dose, for all 4 shared serotypes except for serotype 1 postbooster. For PCV13-specific serotypes 6A and 19A, the IgG levels and frequencies of PCs and Bmems were higher in the PCV13 group, pre- and postbooster, except for PC frequencies prebooster. Conclusions. Both PCVs are immunogenic and induce measurable IgG, PC, and Bmem booster responses at 11 months. Compared to PCV10, vaccination with PCV13 was associated with overall similar IgG levels and PC frequencies but with higher Bmem frequencies before and after the 11-month booster. The clinical implications of these results need further follow-up. Clinical Trials Registration. NTR3069.
Collapse
Affiliation(s)
- Els van Westen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Alienke J Wijmenga-Monsuur
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Harry H van Dijken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | | | - Betsy Kuipers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Mirjam J Knol
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Guy A M Berbers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Elisabeth A M Sanders
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | - Nynke Y Rots
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven
| |
Collapse
|
15
|
Perrett KP, Richmond PC, Borrow R, Nolan T, McVernon J. Antibody persistence in Australian adolescents following meningococcal C conjugate vaccination. Pediatr Infect Dis J 2015; 34:279-85. [PMID: 25742078 DOI: 10.1097/inf.0000000000000541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND In Australia, following the introduction of serogroup C meningococcal (MenC) conjugate vaccine for toddlers and catch-up immunization through adolescence, MenC disease incidence plummeted and remains low. However, individual protection following MenC conjugate vaccination, particularly in young children, may be short-lived. We investigated the persistence of MenC serum bactericidal antibody (SBA) titers in adolescents, more than 7 years after a single "catch-up" dose of MenC conjugate vaccine. We also investigated their exposure and susceptibility to meningococcal serogroups A, W and Y. METHODS MenC SBA titers and Men A, C, W and Y IgG geometric mean concentration were measured in 240 healthy 11- to 16-year-old adolescents. The correlate of protection was an rSBA titer of ≥8. RESULTS An rSBA≥8 was observed in 105 [44% (95% confidence interval {CI}, 37-50%)] of 240 adolescents (mean age, 13.2 years, mean interval since MenC immunization, 8.2 years). The proportion with an rSBA≥8, geometric mean rSBA titer and geometric mean IgG concentration increased with age, from 22% to 75%, 3.7 to 33.4 and 0.13 to 0.52 μg/mL, in participants who received MenC vaccine at mean age 2.8 to 7.5 years, respectively. Natural acquired antibody to Men A, W and Y was low with IgG geometric mean concentrations of 1.26, 0.38 and 0.47 μg/mL, respectively. CONCLUSIONS More than half of Australian adolescents have inadequate serological protection against MenC disease and low natural immunity to MenA, W and Y.
Collapse
Affiliation(s)
- Kirsten P Perrett
- From the *Vaccine and Immunisation Research Group (VIRGo), Murdoch Childrens Research Institute and Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia, †School of Paediatrics and Child Health, University of Western Australia, Telethon Institute for Child Health Research, Princess Margaret Hospital for Children, Perth, Western Australia, Australia; and ‡Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, Manchester, Greater Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Mitchell R, Kelly DF, Pollard AJ, Trück J. Polysaccharide-specific B cell responses to vaccination in humans. Hum Vaccin Immunother 2014; 10:1661-8. [PMID: 24632599 PMCID: PMC5396230 DOI: 10.4161/hv.28350] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 02/25/2014] [Indexed: 12/25/2022] Open
Abstract
The introduction of vaccines containing the capsular polysaccharides of N. meningitidis, S. pneumonia, and H. influenzae type b has driven a significant reduction in cases of disease caused by these bacteria. The polysaccharide-specific antibody responses following vaccination are well characterized, however less is known about the B cells underlying this response. Here, we summarize the plasma cell (PC) and memory B cell (BMEM) responses following plain polysaccharide and protein-polysaccharide conjugate vaccination, drawing together studies covering a range of vaccines and age groups. These studies show that infant primary PC and BMEM responses to polysaccharide-conjugate vaccines are low in relation to older age groups but are significantly higher following booster doses. PC kinetics have generally been found to follow a similar pattern irrespective of vaccine type or age group, whereas divergent BMEM responses have been reported following plain polysaccharide and conjugate vaccination. A degree of correlation between early BMEM responses and maintenance of protective antibody levels has been identified in some studies, but the relationship between the 2 remains unclear. Identification of the B cell subsets involved and the mechanisms by which they are induced may provide a better understanding of the role of B cells in maintaining protective immunity through vaccination.
Collapse
Affiliation(s)
- Ruth Mitchell
- Oxford Vaccine Group; Department of Paediatrics; University of Oxford and the NIHR Oxford Biomedical Research Centre; Oxford, UK
| | - Dominic F Kelly
- Oxford Vaccine Group; Department of Paediatrics; University of Oxford and the NIHR Oxford Biomedical Research Centre; Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group; Department of Paediatrics; University of Oxford and the NIHR Oxford Biomedical Research Centre; Oxford, UK
| | - Johannes Trück
- Oxford Vaccine Group; Department of Paediatrics; University of Oxford and the NIHR Oxford Biomedical Research Centre; Oxford, UK
| |
Collapse
|
17
|
Perrett KP, John TM, Jin C, Kibwana E, Yu LM, Curtis N, Pollard AJ. Long-term persistence of immunity and B-cell memory following Haemophilus influenzae type B conjugate vaccination in early childhood and response to booster. Clin Infect Dis 2014; 58:949-59. [PMID: 24403544 DOI: 10.1093/cid/ciu001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Protection against Haemophilus influenzae type b (Hib), a rapidly invading encapsulated bacteria, is dependent on maintenance of an adequate level of serum antibody through early childhood. In many countries, Hib vaccine booster doses have been implemented after infant immunization to sustain immunity. We investigated the long-term persistence of antibody and immunological memory in primary-school children following infant (with or without booster) Hib vaccination. METHODS Anti-polyribosylribitol phosphate (PRP) immunoglobulin G (IgG) concentration and the frequency of circulating Hib-specific memory B cells were measured before a booster of a Hib-serogroup C meningococcal (MenC) conjugate vaccine and again 1 week, 1 month, and 1 year after the booster in 250 healthy children aged 6-12 years in an open-label phase 4 clinical study. RESULTS Six to 12 years following infant priming with 3 doses of Hib conjugate vaccine, anti-PRP IgG geometric mean concentrations were 3.11 µg/mL and 0.71 µg/mL and proportions with anti-PRP IgG ≥1.0 µg/mL were 79% and 43% in children who had or had not, respectively, received a fourth Hib conjugate vaccine dose (mean age, 3.9 years). Higher baseline and post-Hib-MenC booster responses (anti-PRP IgG and memory B cells) were found in younger children and in those who had received a fourth Hib dose. CONCLUSIONS Sustained Hib conjugate vaccine-induced immunity in children is dependent on time since infant priming and receipt of a booster. Understanding the relationship between humoral and cellular immunity following immunization with conjugate vaccines may direct vaccine design and boosting strategies to sustain individual and population immunity against encapsulated bacteria in early childhood. Clinical Trials Registration ISRCTN728588998.
Collapse
Affiliation(s)
- K P Perrett
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Antibody avidity in humoral immune responses in Bangladeshi children and adults following administration of an oral killed cholera vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1541-8. [PMID: 23925888 DOI: 10.1128/cvi.00341-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody avidity for antigens following disease or vaccination increases with affinity maturation and somatic hypermutation. In this study, we followed children and adults in Bangladesh for 1 year following oral cholera vaccination and measured the avidity of antibodies to the T cell-dependent antigen cholera toxin B subunit (CTB) and the T cell-independent antigen lipopolysaccharide (LPS) in comparison with responses in other immunological measurements. Children produced CTB-specific IgG and IgA antibodies of high avidity following vaccination, which persisted for several months; the magnitudes of responses were comparable to those seen in adult vaccinees. The avidity of LPS-specific IgG and IgA antibodies in vaccinees increased significantly shortly after the second dose of vaccine but waned rapidly to baseline levels thereafter. CTB-specific memory B cells were present for only a short time following vaccination, and we did not find significant memory B cell responses to LPS in any age group. For older children, there was a significant correlation between CTB-specific memory T cell responses after the second dose of vaccine and CTB-specific IgG antibody avidity indices over the subsequent year. These findings suggest that vaccination induces a longer-lasting increase in the avidity of antibodies to a T cell-dependent antigen than is measured by a memory B cell response to that antigen and that early memory T cell responses correlate well with the subsequent development of higher-avidity antibodies.
Collapse
|