1
|
Zhong J, Zong S, Wang J, Feng M, Wang J, Zhang H, Xiong L. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119493. [PMID: 37201766 DOI: 10.1016/j.bbamcr.2023.119493] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
The notion that neutrophils only perform a specific set of single functions in the body has changed with the advancement of research methods. As the most abundant myeloid cells in human blood, neutrophils are currently emerging as important regulators of cancer. Given the duality of neutrophils, neutrophil-based tumor therapy has been clinically carried out in recent years and has made some progress. But due to the complexity of the tumor microenvironment, the therapeutic effect is still not satisfactory. Therefore, in this review, we discuss the direct interaction of neutrophils with the five most common cancer cells and other immune cells in the tumor microenvironment. Also, this review covered current limitations, potential future possibilities, and therapeutic approaches targeting neutrophil function in cancer therapy.
Collapse
Affiliation(s)
- Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China
| | - Siwen Zong
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayang Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Mingrui Feng
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jie Wang
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China
| | - Hongyan Zhang
- Department of Burn, The First Affiliated Hospital, Nanchang University, Nanchang 330066, China.
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China; Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian province university, Xiamen 361023, China.
| |
Collapse
|
2
|
AXL cooperates with EGFR to mediate neutrophil elastase-induced migration of prostate cancer cells. iScience 2021; 24:103270. [PMID: 34761189 PMCID: PMC8567381 DOI: 10.1016/j.isci.2021.103270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/28/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
Neutrophil elastase (NE) promotes multiple stages of tumorigenesis. However, little is known regarding the molecular mechanisms underlying its stimulatory role. This study shows that NE triggers dose-dependent ERK signaling and cell migration in a panel of prostate cell lines representing the spectrum of prostate cell malignancy. All cell lines tested internalize NE; however, NE endocytosis is not required for ERK activation. Instead, NE acts extracellularly by stimulating the release of amphiregulin to initiate EGFR-dependent signaling. Inhibiting amphiregulin's biological activity with neutralizing antibodies, as well as gene silencing of amphiregulin or EGFR, attenuates NE-induced migration in normal and benign prostatic cells. Alternatively, in prostate cancer cells, knockdown of receptor tyrosine kinase AXL, but not EGFR, impairs both basal and NE-stimulated migration. When prostate cells progress to malignancy, the switch from EGFR-to AXL-dependence in NE-mediated migration implies the potential combined application of EGFR and AXL targeted therapy in prostate cancer treatment.
Collapse
|
3
|
Kummarapurugu AB, Zheng S, Ma J, Ghosh S, Hawkridge A, Voynow JA. Neutrophil Elastase Triggers the Release of Macrophage Extracellular Traps: Relevance to CF. Am J Respir Cell Mol Biol 2021; 66:76-85. [PMID: 34597246 DOI: 10.1165/rcmb.2020-0410oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophil extracellular traps increase cystic fibrosis (CF) airway inflammation. We hypothesized that macrophage exposure to neutrophil elastase (NE) would trigger the release of macrophage extracellular traps (METs), a novel mechanism to augment NE-induced airway inflammation in CF. To test whether human blood monocyte derived macrophages (hBMDM) from CF and non-CF subjects take up proteolytically active NE resulting in clipping of chromatin binding proteins and the release of METs. Human BMDM from CF and non-CF subjects were treated with FITC-NE to determine NE localization. Intracellular NE activity was determined by DQ-elastin assay. MET DNA release was detected by Pico-green for hBMDM, and visualized by confocal microscopy for hBMDM, and for alveolar macrophages harvested from intratracheal NE-exposed Cftr-null and wild-type littermate mice. Immunofluorescence assays for histone citrullination and western analyses for histone clipping were performed. FITC-NE was localized to cytoplasmic and nuclear domains, and NE retained proteolytic activity in hBMDM. NE (100 to 500 nM) significantly increased extracellular DNA release from hBMDM. NE activated MET release by confocal microscopy in hBMDM, and in alveolar macrophages from Cftr-null and Cftr wild-type mice. NE-triggered MET release was associated with H3 citrullination and partial cleavage of Histone H3 but not H4. Exposure to NE caused release of METs from both CF and non-CF hBMDM in vitro and murine alveolar macrophages in vivo. MET release was associated with NE-activated H3 clipping, a mechanism associated with chromatin decondensation, a prerequisite for METs.
Collapse
Affiliation(s)
- Apparao B Kummarapurugu
- Children's Hospital of Richmond at Virginia Commonwealth University, 480853, Pediatric Pulmonology, Richmond, Virginia, United States;
| | - Shuo Zheng
- Children's Hospital of Richmond at VCU, 480853, Pediatric Pulmonology, Richmond, Virginia, United States
| | - Jonathan Ma
- Virginia Commonwealth University Department of Pediatrics, 466504, Richmond, Virginia, United States
| | - Shobha Ghosh
- Virginia Commonwealth University Department of Internal Medicine, 122693, Richmond, Virginia, United States
| | - Adam Hawkridge
- Virginia Commonwealth University School of Pharmacy, 15535, Richmond, Virginia, United States
| | - Judith A Voynow
- Children's Hospital of Richmond at VCU, 480853, Division of Pediatric Pulmonology, Richmond, Virginia, United States
| |
Collapse
|
4
|
Shivarov V, Blazhev G. Bringing Together the Power of T Cell Receptor Mimic and Bispecific Antibodies for Cancer Immunotherapy: Still a Long Way to Go. Monoclon Antib Immunodiagn Immunother 2021; 40:81-85. [PMID: 33900820 DOI: 10.1089/mab.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antibody-based cancer immunotherapy has revolutionized oncology. The first successful therapeutic antibodies relied on eliciting immune-mediated cytotoxicity (rituximab) or modulation of intracellular signaling (trastuzumab). Further attempts to enhance the antitumor effects led to the development of immunoconjugates with radioactive or cytotoxic compounds (tositumomab, brentuximab vedotin). Another line of research led to the bispecific antibodies that can enhance the formation of immunological synapse between cancer and cytotoxic T cells (blinatumomab). Despite the constant advances in design and production, the application of monoclonal antibodies in cancer treatment remains limited by the presence of specific cell surface markers. A rational approach to target intracellular cancer antigens was proposed almost two decades ago by the development of anti-peptide human leukocyte antigen (HLA) complex (T cell receptor-like/mimic) antibodies. They could recognize specifically cancer neoantigens expressed in the context of specific HLA molecules theoretically providing unprecedented specificity. Furthermore, they can be developed in a semigeneric format, that is, to target common neoantigens expressed in the context of common HLA molecules. It is rationale to expect that the development of such antibodies in the format of bispecific antibody constructs can bring together the power of specific antibody-based recognition and that of T cell-mediated lysis. There are already some preliminary reports that suggest such constructs would be an achievable goal. In this brief review, we discuss some of the successful preclinical developments in the field and the major challenges that are yet to be addressed.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Genetics, Faculty of Biology, St. Kliment Ohridski Sofia University, Sofia, Bulgaria.,Medical Department, PRAHS, Sofia, Bulgaria
| | - Georgi Blazhev
- Department of Genetics, Faculty of Biology, St. Kliment Ohridski Sofia University, Sofia, Bulgaria
| |
Collapse
|
5
|
Yang X, Xie S, Yang X, Cueva JC, Hou X, Tang Z, Yao H, Mo F, Yin S, Liu A, Lu X. Opportunities and Challenges for Antibodies against Intracellular Antigens. Am J Cancer Res 2019; 9:7792-7806. [PMID: 31695801 PMCID: PMC6831482 DOI: 10.7150/thno.35486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Therapeutic antibodies are one most significant advances in immunotherapy, the development of antibodies against disease-associated MHC-peptide complexes led to the introduction of TCR-like antibodies. TCR-like antibodies combine the recognition of intracellular proteins with the therapeutic potency and versatility of monoclonal antibodies (mAb), offering an unparalleled opportunity to expand the repertoire of therapeutic antibodies available to treat diseases like cancer. This review details the current state of TCR-like antibodies and describes their production, mechanisms as well as their applications. In addition, it presents an insight on the challenges that they must overcome in order to become commercially and clinically validated.
Collapse
|
6
|
Hu D, Ansari D, Zhou Q, Sasor A, Said Hilmersson K, Andersson R. Low P4HA2 and high PRTN3 expression predicts poor survival in patients with pancreatic cancer. Scand J Gastroenterol 2019; 54:246-251. [PMID: 30880498 DOI: 10.1080/00365521.2019.1574360] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The tumor microenvironment in pancreatic cancer has a multifaceted role in disease development and progression. Prolyl 4-hydroxylase subunit alpha 2 (P4HA2) and proteinase 3 (PRTN3) are involved in the synthesis and degradation of collagen in the tumor microenvironment and have been identified as prognostic biomarker candidates for pancreatic cancer in our previous mass spectrometric study. This study aimed at validating prognostic performance of P4HA2 and PRTN3 in a larger cohort of patients. METHODS The expression of P4HA2 and PRTN3 was evaluated with tissue microarrays and immunohistochemistry in 140 patients with pancreatic cancer who underwent surgical resection. Kaplan-Meier and Cox proportional hazards regression modeling were used to explore the association of P4HA2 and PRTN3, either separately or combined, with clinicopathological factors and survival. RESULTS Most tumors were positive for P4HA2 (133/140, 95%), whereas 77 tumors (55%) were positive for PRTN3. Expression levels of P4HA2 and PRTN3 did not separately correlate with disease-free or overall survival, in either uni- or multivariable analysis. However, a low P4HA2 and high PRTN3 expression correlated with shorter disease-free survival (median 7.0 vs. 13.4 months, adjusted HR 3.24, 95% CI: 1.13-9.25, p = .028) and overall survival (median 8.5 vs. 25.8 months, adjusted HR 8.14, 95% CI: 3.41-19.44, p < .001). CONCLUSION Our data show that a low P4HA2 and high PRTN3 expression correlates with poor survival in patients with pancreatic cancer, indicating the involvement of collagen deposition in the restraint of the tumor. The tumoral expression of PRTN3 reinforces the therapeutic potential of PR1-targeting immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Dingyuan Hu
- a Department of Gastroenterology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,b Department of Surgery, Clinical Sciences , Lund University and Skåne University Hospital , Lund , Sweden
| | - Daniel Ansari
- b Department of Surgery, Clinical Sciences , Lund University and Skåne University Hospital , Lund , Sweden
| | - Qimin Zhou
- b Department of Surgery, Clinical Sciences , Lund University and Skåne University Hospital , Lund , Sweden
| | - Agata Sasor
- c Department of Pathology , Skåne University Hospital , Lund , Sweden
| | - Katarzyna Said Hilmersson
- b Department of Surgery, Clinical Sciences , Lund University and Skåne University Hospital , Lund , Sweden
| | - Roland Andersson
- b Department of Surgery, Clinical Sciences , Lund University and Skåne University Hospital , Lund , Sweden
| |
Collapse
|
7
|
Herrmann AC, Im JS, Pareek S, Ruiz-Vasquez W, Lu S, Sergeeva A, Mehrens J, He H, Alatrash G, Sukhumalchandra P, St John L, Clise-Dwyer K, Zha D, Molldrem JJ. A Novel T-Cell Engaging Bi-specific Antibody Targeting the Leukemia Antigen PR1/HLA-A2. Front Immunol 2019; 9:3153. [PMID: 30713535 PMCID: PMC6345694 DOI: 10.3389/fimmu.2018.03153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Despite substantial advances in the treatment of acute myeloid leukemia (AML), only 30% of patients survive more than 5 years. Therefore, new therapeutics are much needed. Here, we present a novel therapeutic strategy targeting PR1, an HLA-A2 restricted myeloid leukemia antigen. Previously, we have developed and characterized a novel T-cell receptor-like monoclonal antibody (8F4) that targets PR1/HLA-A2 and eliminates AML xenografts by antibody-dependent cellular cytotoxicity (ADCC). To improve the potency of 8F4, we adopted a strategy to link T-cell cytotoxicity with a bi-specific T-cell-engaging antibody that binds PR1/HLA-A2 on leukemia and CD3 on neighboring T-cells. The 8F4 bi-specific antibody maintained high affinity and specific binding to PR1/HLA-A2 comparable to parent 8F4 antibody, shown by flow cytometry and Bio-Layer Interferometry. In addition, 8F4 bi-specific antibody activated donor T-cells in the presence of HLA-A2+ primary AML blasts and cell lines in a dose dependent manner. Importantly, activated T-cells lysed HLA-A2+ primary AML blasts and cell lines after addition of 8F4 bi-specific antibody. In conclusion, our studies demonstrate the therapeutic potential of a novel bi-specific antibody targeting the PR1/HLA-A2 leukemia-associated antigen, justifying further clinical development of this strategy.
Collapse
Affiliation(s)
- Amanda C Herrmann
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jin S Im
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sumedha Pareek
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wilfredo Ruiz-Vasquez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sijie Lu
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anna Sergeeva
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer Mehrens
- Oncology Research for Biologics and Immunotherapy Translation Platform, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong He
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St John
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Dongxing Zha
- Oncology Research for Biologics and Immunotherapy Translation Platform, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Alatrash G, Qiao N, Zhang M, Zope M, Perakis AA, Sukhumalchandra P, Philips AV, Garber HR, Kerros C, St John LS, Khouri MR, Khong H, Clise-Dwyer K, Miller LP, Wolpe S, Overwijk WW, Molldrem JJ, Ma Q, Shpall EJ, Mittendorf EA. Fucosylation Enhances the Efficacy of Adoptively Transferred Antigen-Specific Cytotoxic T Lymphocytes. Clin Cancer Res 2019; 25:2610-2620. [PMID: 30647079 DOI: 10.1158/1078-0432.ccr-18-1527] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Inefficient homing of adoptively transferred cytotoxic T lymphocytes (CTLs) to tumors is a major limitation to the efficacy of adoptive cellular therapy (ACT) for cancer. However, through fucosylation, a process whereby fucosyltransferases (FT) add fucose groups to cell surface glycoproteins, this challenge may be overcome. Endogenously fucosylated CTLs and ex vivo fucosylated cord blood stem cells and regulatory T cells were shown to preferentially home to inflamed tissues and marrow. Here, we show a novel approach to enhance CTL homing to leukemic marrow and tumor tissue. EXPERIMENTAL DESIGN Using the enzyme FT-VII, we fucosylated CTLs that target the HLA-A2-restricted leukemia antigens CG1 and PR1, the HER2-derived breast cancer antigen E75, and the melanoma antigen gp-100. We performed in vitro homing assays to study the effects of fucosylation on CTL homing and target killing. We used in vivo mouse models to demonstrate the effects of ex vivo fucosylation on CTL antitumor activities against leukemia, breast cancer, and melanoma. RESULTS Our data show that fucosylation increases in vitro homing and cytotoxicity of antigen-specific CTLs. Furthermore, fucosylation enhances in vivo CTL homing to leukemic bone marrow, breast cancer, and melanoma tissue in NOD/SCID gamma (NSG) and immunocompetent mice, ultimately boosting the antitumor activity of the antigen-specific CTLs. Importantly, our work demonstrates that fucosylation does not interfere with CTL specificity. CONCLUSIONS Together, our data establish ex vivo CTL fucosylation as a novel approach to improving the efficacy of ACT, which may be of great value for the future of ACT for cancer.
Collapse
Affiliation(s)
- Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Na Qiao
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mao Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Madhushree Zope
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander A Perakis
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne V Philips
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa S St John
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria R Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiep Khong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Ma
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Department of Surgical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts.
| |
Collapse
|
9
|
Yang TH, St John LS, Garber HR, Kerros C, Ruisaard KE, Clise-Dwyer K, Alatrash G, Ma Q, Molldrem JJ. Membrane-Associated Proteinase 3 on Granulocytes and Acute Myeloid Leukemia Inhibits T Cell Proliferation. THE JOURNAL OF IMMUNOLOGY 2018; 201:1389-1399. [PMID: 30021768 DOI: 10.4049/jimmunol.1800324] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Proteinase 3 (P3), a serine protease expressed by myeloid cells, localized within azurophil granules, and also expressed on the cellular membrane of polymorphonuclear neutrophils (PMN), is the target of autoimmunity in granulomatosis with polyangiitis. PR1, an HLA-A2 restricted nonameric peptide derived from P3, has been targeted effectively in myeloid leukemia. We previously showed (Molldrem et al. 2003. JClinInvest 111: 639-647) that overexpression of P3 in chronic myeloid leukemia induces apoptosis of high-affinity PR1-specific T cells, leading to deletional tolerance and leukemia outgrowth. In this study, we investigated the effect of membrane P3 (mP3)-expressing PMN and acute myeloid leukemia (AML) blasts on the proliferation of CD4 and CD8 T cells in vitro. We demonstrate that mP3-expressing PMN significantly inhibits autologous healthy donor T cell proliferation but does not affect cytokine production in activated T cells and that this effect requires cell proximity and was abrogated by P3 blockade. This inhibition required P3 enzyme activity. However, suppression was not reversed by either the addition of catalase or the inhibition of arginase I. In addition to P3 blockade, anti-low density lipoprotein receptor-related protein 1 (LRP1) Ab also restored T cells' capacity to proliferate. Last, we show dose-dependent inhibition of T cell proliferation by mP3-expressing AML blasts. Together, our findings demonstrate a novel mechanism whereby PMN- and AML-associated mP3 inhibits T cell proliferation via direct LRP1 and mP3 interaction, and we identify P3 as a novel target to modulate immunity in myeloid leukemia and autoimmune disease.
Collapse
Affiliation(s)
- Tian-Hui Yang
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Lisa S St John
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Haven R Garber
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Celine Kerros
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Kathryn E Ruisaard
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Karen Clise-Dwyer
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Gheath Alatrash
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Qing Ma
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Jeffrey J Molldrem
- Section of Transplant Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
10
|
Alatrash G, Perakis AA, Kerros C, Peters HL, Sukhumalchandra P, Zhang M, Jakher H, Zope M, Patenia R, Sergeeva A, Yi S, Young KH, Philips AV, Cernosek AM, Garber HR, Qiao N, Weng J, St John LS, Lu S, Clise-Dwyer K, Mittendorf EA, Ma Q, Molldrem JJ. Targeting the Leukemia Antigen PR1 with Immunotherapy for the Treatment of Multiple Myeloma. Clin Cancer Res 2018; 24:3386-3396. [PMID: 29661776 DOI: 10.1158/1078-0432.ccr-17-2626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
Purpose: PR1 is a human leukocyte antigen (HLA)-A2 nonameric peptide derived from neutrophil elastase (NE) and proteinase 3 (P3). We have previously shown that PR1 is cross-presented by solid tumors, leukemia, and antigen-presenting cells, including B cells. We have also shown that cross-presentation of PR1 by solid tumors renders them susceptible to killing by PR1-targeting immunotherapies. As multiple myeloma is derived from B cells, we investigated whether multiple myeloma is also capable of PR1 cross-presentation and subsequently capable of being targeted by using PR1 immunotherapies.Experimental Design: We tested whether multiple myeloma is capable of cross-presenting PR1 and subsequently becomes susceptible to PR1-targeting immunotherapies, using multiple myeloma cell lines, a xenograft mouse model, and primary multiple myeloma patient samples.Results: Here we show that multiple myeloma cells lack endogenous NE and P3, are able to take up exogenous NE and P3, and cross-present PR1 on HLA-A2. Cross-presentation by multiple myeloma utilizes the conventional antigen processing machinery, including the proteasome and Golgi, and is not affected by immunomodulating drugs (IMiD). Following PR1 cross-presentation, we are able to target multiple myeloma with PR1-CTL and anti-PR1/HLA-A2 antibody both in vitro and in vivoConclusions: Collectively, our data demonstrate that PR1 is a novel tumor-associated antigen target in multiple myeloma and that multiple myeloma is susceptible to immunotherapies that target cross-presented antigens. Clin Cancer Res; 24(14); 3386-96. ©2018 AACR.
Collapse
Affiliation(s)
- Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Alexander A Perakis
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haley L Peters
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mao Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haroon Jakher
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Madhushree Zope
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rebecca Patenia
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anna Sergeeva
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuhua Yi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken H Young
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne V Philips
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda M Cernosek
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Qiao
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jinsheng Weng
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa S St John
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sijie Lu
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Ma
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, Section of Transplant Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
11
|
Vola M, Mónaco A, Bascuas T, Rimsky G, Agorio CI, Chabalgoity JA, Moreno M. TLR7 agonist in combination with Salmonella as an effective antimelanoma immunotherapy. Immunotherapy 2018; 10:665-679. [PMID: 29562809 DOI: 10.2217/imt-2017-0188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM We evaluated a novel approach combining the use of attenuated Salmonella immunotherapy with a Toll-like receptor agonist, imiquimod, in B16F1 melanoma-bearing mice. MATERIALS & METHODS B16F1 melanoma-bearing mice were daily treated with topical imiquimod in combination with one intratumoral injection of attenuated Salmonella enterica serovar Typhimurium LVR01. RESULTS The combined therapy resulted in retarded tumor growth and prolonged survival. Combination treatment led to an enhancement in the expression of pro-inflammatory cytokines and chemokines in the tumor microenvironment, with a Th1-skewed profile, resulting in a broad antitumor response. The induced immunity was effective in controlling the occurrence of metastasis. CONCLUSION Salmonella LVR01 immunotherapy in combination with imiquimod is a novel approach that could be considered as an effective antimelanoma therapy.
Collapse
Affiliation(s)
- Magdalena Vola
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay.,Cátedra de Dermatología, Hospital de Clínicas 'Dr. Manuel Quintela'. Facultad de Medicina, Universidad de la República. Av. Italia s/n, Montevideo, Uruguay
| | - Amy Mónaco
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - Thais Bascuas
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - Geraldine Rimsky
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - Caroline Isabel Agorio
- Cátedra de Dermatología, Hospital de Clínicas 'Dr. Manuel Quintela'. Facultad de Medicina, Universidad de la República. Av. Italia s/n, Montevideo, Uruguay
| | - José Alejandro Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| | - María Moreno
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene. Facultad de Medicina, Universidad de la República. Av. A. Navarro 3051, Montevideo, CP 11600, Uruguay
| |
Collapse
|
12
|
Khan M, Carmona S, Sukhumalchandra P, Roszik J, Philips A, Perakis AA, Kerros C, Zhang M, Qiao N, John LSS, Zope M, Goldberg J, Qazilbash M, Jakher H, Clise-Dwyer K, Qiu Y, Mittendorf EA, Molldrem JJ, Kornblau SM, Alatrash G. Cathepsin G Is Expressed by Acute Lymphoblastic Leukemia and Is a Potential Immunotherapeutic Target. Front Immunol 2018; 8:1975. [PMID: 29422892 PMCID: PMC5790053 DOI: 10.3389/fimmu.2017.01975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Cathepsin G (CG) is a myeloid azurophil granule protease that is highly expressed by acute myeloid leukemia (AML) blasts and leukemia stem cells. We previously identified CG1 (FLLPTGAEA), a human leukocyte antigen-A2-restricted nonameric peptide derived from CG, as an immunogenic target in AML. In this report, we aimed to assess the level of CG expression in acute lymphoid leukemia (ALL) and its potential as an immunotherapeutic target in ALL. Using RT-PCR and western blots, we identified CG mRNA and protein, respectively, in B-ALL patient samples and cell lines. We also examined CG expression in a large cohort of 130 patients with ALL via reverse-phase protein array (RPPA). Our data show that CG is widely expressed by ALL and is a poor prognosticator. In addition to endogenous expression, we also provide evidence that CG can be taken up by ALL cells. Finally, we demonstrate that patient ALL can be lysed by CG1-specific cytotoxic T lymphocytes in vitro. Together, these data show high expression of CG by ALL and implicate CG as a target for immunotherapy in ALL.
Collapse
Affiliation(s)
- Maliha Khan
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Selena Carmona
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Jason Roszik
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX, United States
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Anne Philips
- Surgical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Alexander A. Perakis
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Mao Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Na Qiao
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa S. St. John
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Madhushree Zope
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan Goldberg
- Surgical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | - Mariam Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Haroon Jakher
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Yihua Qiu
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Jeffrey J. Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Steven M. Kornblau
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, United States
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
13
|
St John LS, Wan L, He H, Garber HR, Clise-Dwyer K, Alatrash G, Rezvani K, Shpall EJ, Bollard CM, Ma Q, Molldrem JJ. PR1-specific cytotoxic T lymphocytes are relatively frequent in umbilical cord blood and can be effectively expanded to target myeloid leukemia. Cytotherapy 2017; 18:995-1001. [PMID: 27378343 DOI: 10.1016/j.jcyt.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS PR1 is an HLA-A2 restricted leukemia-associated antigen derived from neutrophil elastase and proteinase 3, both of which are normally stored in the azurophil granules of myeloid cells but overexpressed in myeloid leukemic cells. PR1-specific cytotoxic lymphocytes (PR1-CTLs) have activity against primary myeloid leukemia in vitro and in vivo and thus could have great potential in the setting of adoptive cellular therapy (ACT). Adult peripheral blood-derived PR1-CTLs are infrequent but preferentially lyse myeloid leukemia cells. We sought to examine PR1-CTLs in umbilical cord blood (UCB) because UCB units provide a rapidly available cell source and a lower risk of graft-versus-host disease, even in the setting of mismatched human leukocyte antigen (HLA) loci. METHODS We first determined the frequency of PR1-CTLs in HLA-A2(+) UCB units and then successfully expanded them ex vivo using repeated stimulation with PR1 peptide-pulsed antigen-presenting cells (APCs). After expansion, we assessed the PR1-CTL phenotype (naive, effector, memory) and function against PR1-expressing target cells. RESULTS PR1-CTLs are detected at an average frequency of 0.14% within the CD8(+) population of fresh UCB units, which is 45 times higher than in healthy adult peripheral blood. UCB PR1-CTLs are phenotypically naive, consistent with the UCB CD8(+) population as a whole. In addition, the cells can be expanded by stimulation with PR1 peptide-pulsed APCs. Expansion results in an increased frequency of PR1-CTLs, up to 4.56%, with an average 20-fold increase in total number. After expansion, UCB PR1-CTLs express markers consistent with effector memory T cells. Expanded UCB PR1-CTLs are functional in vitro as they are able to produce cytokines and lyse PR1-expressing leukemia cell lines. CONCLUSIONS This study is the first report to show that T cells specific for a leukemia-associated antigen are found at a significantly higher frequency in UCB than adult blood. Our results also demonstrate specific cytotoxicity of expanded UCB-derived PR1-CTLs against PR1-expressing targets. Together, our data suggest that UCB PR1-CTLs could be useful to prevent or treat leukemia relapse in myeloid leukemia patients.
Collapse
Affiliation(s)
- Lisa S St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Liping Wan
- Department of Hematology, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China
| | - Hong He
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Haven R Garber
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Karen Clise-Dwyer
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Gheath Alatrash
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Katayoun Rezvani
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Elizabeth J Shpall
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's Research Institute, Washington, DC, USA
| | - Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Jeffrey J Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
14
|
Kerros C, Tripathi SC, Zha D, Mehrens JM, Sergeeva A, Philips AV, Qiao N, Peters HL, Katayama H, Sukhumalchandra P, Ruisaard KE, Perakis AA, St John LS, Lu S, Mittendorf EA, Clise-Dwyer K, Herrmann AC, Alatrash G, Toniatti C, Hanash SM, Ma Q, Molldrem JJ. Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 2017; 292:10295-10305. [PMID: 28468826 DOI: 10.1074/jbc.m116.773051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/24/2017] [Indexed: 01/13/2023] Open
Abstract
Neutrophil elastase (NE) can be rapidly taken up by tumor cells that lack endogenous NE expression, including breast cancer, which results in cross-presentation of PR1, an NE-derived HLA-A2-restricted peptide that is an immunotherapy target in hematological and solid tumor malignancies. The mechanism of NE uptake, however, remains unknown. Using the mass spectrometry-based approach, we identify neuropilin-1 (NRP1) as a NE receptor that mediates uptake and PR1 cross-presentation in breast cancer cells. We demonstrated that soluble NE is a specific, high-affinity ligand for NRP1 with a calculated Kd of 38.7 nm Furthermore, we showed that NRP1 binds to the RRXR motif in NE. Notably, NRP1 knockdown with interfering RNA or CRISPR-cas9 system and blocking using anti-NRP1 antibody decreased NE uptake and, subsequently, susceptibility to lysis by PR1-specific cytotoxic T cells. Expression of NRP1 in NRP1-deficient cells was sufficient to induce NE uptake. Altogether, because NRP1 is broadly expressed in tumors, our findings suggest a role for this receptor in immunotherapy strategies that target cross-presented antigens.
Collapse
Affiliation(s)
- Celine Kerros
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | - Dongxing Zha
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jennifer M Mehrens
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Anna Sergeeva
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Anne V Philips
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Na Qiao
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Haley L Peters
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Hiroyuki Katayama
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | - Kathryn E Ruisaard
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Alexander A Perakis
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Lisa S St John
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sijie Lu
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | | | - Karen Clise-Dwyer
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Amanda C Herrmann
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Gheath Alatrash
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Carlo Toniatti
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Samir M Hanash
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Qing Ma
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Jeffrey J Molldrem
- From the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
15
|
Kolonin MG, Sergeeva A, Staquicini DI, Smith TL, Tarleton CA, Molldrem JJ, Sidman RL, Marchiò S, Pasqualini R, Arap W. Interaction between Tumor Cell Surface Receptor RAGE and Proteinase 3 Mediates Prostate Cancer Metastasis to Bone. Cancer Res 2017; 77:3144-3150. [PMID: 28428279 DOI: 10.1158/0008-5472.can-16-0708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 10/07/2016] [Accepted: 04/13/2017] [Indexed: 01/09/2023]
Abstract
Human prostate cancer often metastasizes to bone, but the biological basis for such site-specific tropism remains largely unresolved. Recent work led us to hypothesize that this tropism may reflect pathogenic interactions between RAGE, a cell surface receptor expressed on malignant cells in advanced prostate cancer, and proteinase 3 (PR3), a serine protease present in inflammatory neutrophils and hematopoietic cells within the bone marrow microenvironment. In this study, we establish that RAGE-PR3 interaction mediates homing of prostate cancer cells to the bone marrow. PR3 bound to RAGE on the surface of prostate cancer cells in vitro, inducing tumor cell motility through a nonproteolytic signal transduction cascade involving activation and phosphorylation of ERK1/2 and JNK1. In preclinical models of experimental metastasis, ectopic expression of RAGE on human prostate cancer cells was sufficient to promote bone marrow homing within a short timeframe. Our findings demonstrate how RAGE-PR3 interactions between human prostate cancer cells and the bone marrow microenvironment mediate bone metastasis during prostate cancer progression, with potential implications for prognosis and therapeutic intervention. Cancer Res; 77(12); 3144-50. ©2017 AACR.
Collapse
Affiliation(s)
- Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Anna Sergeeva
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniela I Staquicini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico.,Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Tracey L Smith
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico.,Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Christy A Tarleton
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico.,Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard L Sidman
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Serena Marchiò
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico.,Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico.,Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Center-FPO, IRCCS, Candiolo, Italy
| | - Renata Pasqualini
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico. .,Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Wadih Arap
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico. .,Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
16
|
Peters HL, Tripathi SC, Kerros C, Katayama H, Garber HR, St John LS, Federico L, Meraz IM, Roth JA, Sepesi B, Majidi M, Ruisaard K, Clise-Dwyer K, Roszik J, Gibbons DL, Heymach JV, Swisher SG, Bernatchez C, Alatrash G, Hanash S, Molldrem JJ. Serine Proteases Enhance Immunogenic Antigen Presentation on Lung Cancer Cells. Cancer Immunol Res 2017; 5:319-329. [PMID: 28254787 DOI: 10.1158/2326-6066.cir-16-0141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/28/2016] [Accepted: 02/27/2017] [Indexed: 11/16/2022]
Abstract
Immunotherapies targeting immune checkpoints have proven efficacious in reducing the burden of lung cancer in patients; however, the antigenic targets of these reinvigorated T cells remain poorly defined. Lung cancer tumors contain tumor-associated macrophages (TAM) and neutrophils, which release the serine proteases neutrophil elastase (NE) and proteinase 3 (P3) into the tumor microenvironment. NE and P3 shape the antitumor adaptive immune response in breast cancer and melanoma. In this report, we demonstrate that lung cancer cells cross-presented the tumor-associated antigen PR1, derived from NE and P3. Additionally, NE and P3 enhanced the expression of human leukocyte antigen (HLA) class I molecules on lung cancer cells and induced unique, endogenous peptides in the immunopeptidome, as detected with mass spectrometry sequencing. Lung cancer patient tissues with high intratumoral TAMs were enriched for MHC class I genes and T-cell markers, and patients with high TAM and cytotoxic T lymphocyte (CTL) infiltration had improved overall survival. We confirmed the immunogenicity of unique, endogenous peptides with cytotoxicity assays against lung cancer cell lines, using CTLs from healthy donors that had been expanded against select peptides. Finally, CTLs specific for serine proteases-induced endogenous peptides were detected in lung cancer patients using peptide/HLA-A2 tetramers and were elevated in tumor-infiltrating lymphocytes. Thus, serine proteases in the tumor microenvironment of lung cancers promote the presentation of HLA class I immunogenic peptides that are expressed by lung cancer cells, thereby increasing the antigen repertoire that can be targeted in lung cancer. Cancer Immunol Res; 5(4); 319-29. ©2017 AACR.
Collapse
Affiliation(s)
- Haley L Peters
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Satyendra C Tripathi
- Department of Clinical Cancer Prevention-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa S St John
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lorenzo Federico
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ismail M Meraz
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mourad Majidi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathryn Ruisaard
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samir Hanash
- Department of Clinical Cancer Prevention-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Dubrovsky L, Brea EJ, Pankov D, Casey E, Dao T, Liu C, Scheinberg DA. Mechanisms of leukemia resistance to antibody dependent cellular cytotoxicity. Oncoimmunology 2016; 5:e1211221. [PMID: 27757306 DOI: 10.1080/2162402x.2016.1211221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/04/2016] [Indexed: 01/22/2023] Open
Abstract
Specific immunotherapy for acute leukemia remains a great unmet need. Native unmodified monoclonal antibody therapies, while promising, are inadequately effective for these malignancies, and multiple mechanisms for failure have been described. Antibody-dependent cellular cytotoxicity or phagocytosis is the primary modality of mAb-mediated cell killing in vivo, but ultimately leads to relapse of the leukemias, in model systems and in humans. By use of a T-cell receptor mimic mAb ESKM, derived against a WT1 peptide expressed in complex with HLA-A*02:01, whose only mechanism of therapeutic action is ADCC, we evaluated the mechanisms of leukemic relapse from its potent therapeutic action in mouse xenograft models of human leukemia. Leukemia escape was not associated with loss of the antigenic target, downregulation of cell surface HLA, antibody pharmacokinetic or biodistribution issues, or development of leukemia cell-intrinsic resistance to ADCC. Interestingly, the rapidity of leukemic growth determined whether leukemia was able to evade cytotoxicity independent of the presence of sufficient effector cells. By engineering leukemia cells with upregulated p27Kip1 and slower cell cycling times, we show that relapse was inversely correlated with growth rates resulting in the eventual inadequacy of effector to target ratio. Moreover, lack of migration of effector cells into lymphomatous pockets of ALL also allowed local escape. Successful leukemia therapy with mAb might therefore be improved in similar situations by combination with measures to reduce burden and slow leukemia cell growth.
Collapse
Affiliation(s)
- Leonid Dubrovsky
- Molecular Pharmacology Program, Sloan-Kettering Institute, New York, NY, USA; Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elliott Joseph Brea
- Molecular Pharmacology Program, Sloan-Kettering Institute, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| | - Dmitry Pankov
- Molecular Pharmacology Program, Sloan-Kettering Institute, New York, NY, USA; Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Emily Casey
- Molecular Pharmacology Program, Sloan-Kettering Institute , New York, NY, USA
| | - Tao Dao
- Molecular Pharmacology Program, Sloan-Kettering Institute , New York, NY, USA
| | - Cheng Liu
- Eureka Therapeutics , Emeryville, CA, USA
| | - David A Scheinberg
- Molecular Pharmacology Program, Sloan-Kettering Institute, New York, NY, USA; Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
18
|
Ma Q, Garber HR, Lu S, He H, Tallis E, Ding X, Sergeeva A, Wood MS, Dotti G, Salvado B, Ruisaard K, Clise-Dwyer K, John LS, Rezvani K, Alatrash G, Shpall EJ, Molldrem JJ. A novel TCR-like CAR with specificity for PR1/HLA-A2 effectively targets myeloid leukemia in vitro when expressed in human adult peripheral blood and cord blood T cells. Cytotherapy 2016; 18:985-994. [PMID: 27265873 DOI: 10.1016/j.jcyt.2016.05.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS The PR1 peptide, derived from the leukemia-associated antigens proteinase 3 and neutrophil elastase, is overexpressed on HLA-A2 in acute myeloid leukemia (AML). We developed a T-cell receptor (TCR)-like monoclonal antibody (8F4) that binds the PR1/HLA-A2 complex on the surface of AML cells, efficiently killing them in vitro and eliminating them in preclinical models. Humanized 8F4 (h8F4) with high affinity for the PR1/HLA-A2 epitope was used to construct an h8F4- chimeric antigen receptor (CAR) that was transduced into T cells to mediate anti-leukemia activity. METHODS Human T cells were transduced to express the PR1/HLA-A2-specific CAR (h8F4-CAR-T cells) containing the scFv of h8F4 fused to the intracellular signaling endo-domain of CD3 zeta chain through the transmembrane and intracellular costimulatory domain of CD28. RESULTS Adult human normal peripheral blood (PB) T cells were efficiently transduced with the h8F4-CAR construct and predominantly displayed an effector memory phenotype with a minor population (12%) of central memory cells in vitro. Umbilical cord blood (UCB) T cells could also be efficiently transduced with the h8F4-CAR. The PB and UCB-derived h8F4-CAR-T cells specifically recognized the PR1/HLA-A2 complex and were capable of killing leukemia cell lines and primary AML blasts in an HLA-A2-dependent manner. CONCLUSIONS Human adult PB and UCB-derived T cells expressing a CAR derived from the TCR-like 8F4 antibody rapidly and efficiently kill AML in vitro. Our data could lead to a new treatment paradigm for AML in which targeting leukemia stem cells could transfer long-term immunity to protect against relapse.
Collapse
Affiliation(s)
- Qing Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Haven R Garber
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Sijie Lu
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Hong He
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Eran Tallis
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Xiaoling Ding
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Anna Sergeeva
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Michael S Wood
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara Salvado
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn Ruisaard
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Karen Clise-Dwyer
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Lisa St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Katayoun Rezvani
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Gheath Alatrash
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Elizabeth J Shpall
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA
| | - Jeffrey J Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas M.D. Anderson Cancer Center, Texas, USA.
| |
Collapse
|
19
|
Chawla A, Alatrash G, Philips AV, Qiao N, Sukhumalchandra P, Kerros C, Diaconu I, Gall V, Neal S, Peters HL, Clise-Dwyer K, Molldrem JJ, Mittendorf EA. Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells. Cancer Immunol Immunother 2016; 65:741-51. [PMID: 27129972 PMCID: PMC5764112 DOI: 10.1007/s00262-016-1841-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/09/2016] [Indexed: 12/24/2022]
Abstract
Neutrophil elastase (NE) is an innate immune cell-derived inflammatory mediator that we have shown increases the presentation of tumor-associated peptide antigens in breast cancer. In this study, we extend these observations to show that NE uptake has a broad effect on enhancing antigen presentation by breast cancer cells. We show that NE increases human leukocyte antigen (HLA) class I expression on the surface of breast cancer cells in a concentration and time-dependent manner. HLA class I upregulation requires internalization of enzymatically active NE. Western blots of NE-treated breast cancer cells confirm that the expression of total HLA class I as well as the antigen-processing machinery proteins TAP1, LMP2, and calnexin does not change following NE treatment. This suggests that NE does not increase the efficiency of antigen processing; rather, it mediates the upregulation of HLA class I by stabilizing and reducing membrane recycling of HLA class I molecules. Furthermore, the effects of NE extend beyond breast cancer since the uptake of NE by EBV-LCL increases the presentation of HLA class I-restricted viral peptides, as shown by their increased sensitivity to lysis by EBV-specific CD8+ T cells. Together, our results show that NE uptake increases the responsiveness of breast cancer cells to adaptive immunity by broad upregulation of membrane HLA class I and support the conclusion that the innate inflammatory mediator NE enhances tumor cell recognition and increases tumor sensitivity to the host adaptive immune response.
Collapse
Affiliation(s)
- Akhil Chawla
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0900, Houston, TX, 77030, USA.
| | - Anne V Philips
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Na Qiao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0900, Houston, TX, 77030, USA
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0900, Houston, TX, 77030, USA
| | - Iulia Diaconu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Victor Gall
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Neal
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haley L Peters
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0900, Houston, TX, 77030, USA
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0900, Houston, TX, 77030, USA
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 0900, Houston, TX, 77030, USA
| | - Elizabeth A Mittendorf
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1434, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Sergeeva A, He H, Ruisaard K, St John L, Alatrash G, Clise-Dwyer K, Li D, Patenia R, Hong R, Sukhumalchandra P, You MJ, Gagea M, Ma Q, Molldrem JJ. Activity of 8F4, a T-cell receptor-like anti-PR1/HLA-A2 antibody, against primary human AML in vivo. Leukemia 2016; 30:1475-84. [PMID: 27055866 PMCID: PMC4935597 DOI: 10.1038/leu.2016.57] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/03/2016] [Accepted: 02/26/2016] [Indexed: 01/10/2023]
Abstract
The PR1 peptide, derived from the leukemia-associated antigens proteinase 3 and neutrophil elastase, is overexpressed on HLA-A2 in acute myeloid leukemia (AML). We developed a high affinity T cell receptor-like murine monoclonal antibody, 8F4, which binds to the PR1/HLA-A2 complex, mediates lysis of AML, and inhibits leukemia colony formation. Here, we explored whether 8F4 was active in vivo against chemotherapy-resistant AML, including secondary AML. In a screening model, co-incubation of AML with 8F4 ex vivo prevented engraftment of all tested AML subtypes in immunodeficient NSG mice. In a treatment model of established human AML, administration of 8F4 significantly reduced or eliminated AML xenografts and extended survival compared with isotype antibody-treated mice. Moreover, in secondary transfer experiments, mice inoculated with bone marrow from 8F4-treated mice showed no evidence of AML engraftment, supporting possible activity of 8F4 against the subset of AML with self-renewing potential. Our data provide evidence that 8F4 antibody is highly active in AML, including chemotherapy-resistant disease, supporting its potential use as a therapeutic agent in patients with AML.
Collapse
Affiliation(s)
- A Sergeeva
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H He
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K Ruisaard
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - L St John
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - G Alatrash
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K Clise-Dwyer
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Li
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Patenia
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Hong
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Sukhumalchandra
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M J You
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M Gagea
- Department of Veterinary Medicine and Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Q Ma
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J J Molldrem
- Section of Transplantation Immunology, Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
21
|
Ishii K, Barrett AJ. Novel immunotherapeutic approaches for the treatment of acute leukemia (myeloid and lymphoblastic). Ther Adv Hematol 2016; 7:17-39. [PMID: 26834952 PMCID: PMC4713888 DOI: 10.1177/2040620715616544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There have been major advances in our understanding of the multiple interactions between malignant cells and the innate and adaptive immune system. While the attention of immunologists has hitherto focused on solid tumors, the specific immunobiology of acute leukemias is now becoming defined. These discoveries have pointed the way to immune interventions building on the established graft-versus-leukemia (GVL) effect from hematopoietic stem-cell transplant (HSCT) and extending immunotherapy beyond HSCT to individuals with acute leukemia with a diversity of immune manipulations early in the course of the leukemia. At present, clinical results are in their infancy. In the coming years larger studies will better define the place of immunotherapy in the management of acute leukemias and lead to treatment approaches that combine conventional chemotherapy, immunotherapy and HSCT to achieve durable cures.
Collapse
Affiliation(s)
- Kazusa Ishii
- Hematology Branch, National Heart, Lung, and Blood Institute, US National Institutes of Health, Bethesda, MD, USA
| | - Austin J. Barrett
- Stem Cell Allotransplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
22
|
Dubrovsky L, Dao T, Gejman RS, Brea EJ, Chang AY, Oh CY, Casey E, Pankov D, Scheinberg DA. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology 2015; 5:e1049803. [PMID: 26942058 DOI: 10.1080/2162402x.2015.1049803] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023] Open
Abstract
The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.
Collapse
Affiliation(s)
| | - Tao Dao
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Ron S Gejman
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Elliott J Brea
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Aaron Y Chang
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Claire Y Oh
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Emily Casey
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | - Dmitry Pankov
- Memorial Sloan Kettering Cancer Center ; New York, NY USA
| | | |
Collapse
|
23
|
Zhao L, Lu YT, Li F, Wu K, Hou S, Yu J, Shen Q, Wu D, Song M, OuYang WH, Luo Z, Lee T, Fang X, Shao C, Xu X, Garcia MA, Chung LWK, Rettig M, Tseng HR, Posadas EM. High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:2897-902. [PMID: 23529932 PMCID: PMC3875622 DOI: 10.1002/adma.201205237] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/21/2013] [Indexed: 05/17/2023]
Abstract
Handpick single cancer cells: a modified NanoVelcro Chip is coupled with ArcturusXT laser capture microdissection (LCM) technology to enable the detection and isolation of single circulating tumor cells (CTCs) from patients with prostate cancer (PC). This new approach paves the way for conducting next-generation sequencing (NGS) on single CTCs.
Collapse
Affiliation(s)
| | | | | | - Kui Wu
- BGI-ShenZhen, 2 F, Building No. 11, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Shuang Hou
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Juehua Yu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Qinglin Shen
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Dongxia Wu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Min Song
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Wei-Han OuYang
- CytoLumina Technologies Corp. 21038 Commerce Point Dr. Walnut, California 91789, USA
| | - Zheng Luo
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Tom Lee
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beiyi Street 2#, Zhongguancun, Beijing, 100190 (P.R. China)
| | - Chen Shao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xun Xu
- BGI-ShenZhen, 2 F, Building No. 11, Beishan Industrial Zone, Yantian District Shenzhen 518083, China
| | - Mitch A. Garcia
- CytoLumina Technologies Corp. 21038 Commerce Point Dr. Walnut, California 91789, USA
| | - Leland W. K. Chung
- Urologic Oncology Program & Uro-Oncology Research Program; Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center 8700 Beverly Blvd. Los Angeles, California 90048, USA
| | - Matthew Rettig
- Departments of Medicine and Urology, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Chief, Division of Hematology-Oncology, VA Greater Los Angeles Healthcare System
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI), University of California at Los Angeles 570 Westwood Plaza, Build 114, Los Angeles, California 90095-1770, USA
| | - Edwin M. Posadas
- Urologic Oncology Program & Uro-Oncology Research Program; Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center 8700 Beverly Blvd. Los Angeles, California 90048, USA
| |
Collapse
|