1
|
Corral-Ruiz GM, Pérez-Vega MJ, Galán-Salinas A, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Sánchez-Torres LE. Thymic atrophy induced by Plasmodium berghei ANKA and Plasmodium yoelii 17XL infection. Immunol Lett 2023; 264:4-16. [PMID: 37875239 DOI: 10.1016/j.imlet.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The thymus is the anatomical site where T cells undergo a complex process of differentiation, proliferation, selection, and elimination of autorreactive cells which involves molecular signals in different intrathymic environment. However, the immunological functions of the thymus can be compromised upon exposure to different infections, affecting thymocyte populations. In this work, we investigated the impact of malaria parasites on the thymus by using C57BL/6 mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL; these lethal infection models represent the most severe complications, cerebral malaria, and anemia respectively. Data showed a reduction in the thymic weight and cellularity involving different T cell maturation stages, mainly CD4-CD8- and CD4+CD8+ thymocytes, as well as an increased presence of apoptotic cells, leading to significant thymic cortex reduction. Thymus atrophy showed no association with elevated serum cytokines levels, although increased glucocorticoid levels did. The severity of thymic damage in both models reached the same extend although it occurs at different stages of infection, showing that thymic atrophy does not depend on parasitemia level but on the specific host-parasite interaction.
Collapse
Affiliation(s)
- G M Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
2
|
Gonçalves R, Couto J, Ferreirinha P, Costa JM, Silvério D, Silva ML, Fernandes AI, Madureira P, Alves NL, Lamas S, Saraiva M. SARS-CoV-2 variants induce distinct disease and impact in the bone marrow and thymus of mice. iScience 2023; 26:105972. [PMID: 36687317 PMCID: PMC9838028 DOI: 10.1016/j.isci.2023.105972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved to variants associated with milder disease. We employed the k18-hACE2 mouse model to study how differences in the course of infection by SARS-CoV-2 variants alpha, delta, and omicron relate to tissue pathology and the immune response triggered. We documented a variant-specific pattern of infection severity, inducing discrete lung and blood immune responses and differentially impacting primary lymphoid organs. Infections with variants alpha and delta promoted bone marrow (BM) emergency myelopoiesis, with blood and lung neutrophilia. The defects in the BM hematopoietic compartment extended to the thymus, with the infection by the alpha variant provoking a marked thymic atrophy. Importantly, the changes in the immune responses correlated with the severity of infection. Our study provides a comprehensive platform to investigate the modulation of disease by SARS-CoV-2 variants and underscores the impact of this infection on the function of primary lymphoid organs.
Collapse
Affiliation(s)
- Rute Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Couto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - José Maria Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,FEUP—Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Diogo Silvério
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Marta L. Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ana Isabel Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Pedro Madureira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,Immunethep, Biocant Park, 3060-197 Cantanhede, Portugal
| | - Nuno L. Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Lamas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal,IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal,Corresponding author
| |
Collapse
|
3
|
Savino W, Durães J, Maldonado-Galdeano C, Perdigon G, Mendes-da-Cruz DA, Cuervo P. Thymus, undernutrition, and infection: Approaching cellular and molecular interactions. Front Nutr 2022; 9:948488. [PMID: 36225882 PMCID: PMC9549110 DOI: 10.3389/fnut.2022.948488] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Undernutrition remains a major issue in global health. Low protein-energy consumption, results in stunting, wasting and/or underweight, three deleterious forms of malnutrition that affect roughly 200 million children under the age of five years. Undernutrition compromises the immune system with the generation of various degrees of immunodeficiency, which in turn, renders undernourished individuals more sensitive to acute infections. The severity of various infectious diseases including visceral leishmaniasis (VL), influenza, and tuberculosis is associated with undernutrition. Immunosuppression resulting from protein-energy undernutrition severely impacts primary and secondary lymphoid organs involved in the response to related pathogens. The thymus-a primary lymphoid organ responsible for the generation of T lymphocytes-is particularly compromised by both undernutrition and infectious diseases. In this respect, we will discuss herein various intrathymic cellular and molecular interactions seen in undernutrition alone or in combination with acute infections. Many examples illustrated in studies on humans and experimental animals clearly revealed that protein-related undernutrition causes thymic atrophy, with cortical thymocyte depletion. Moreover, the non-lymphoid microenvironmental compartment of the organ undergoes important changes in thymic epithelial cells, including their secretory products such as hormones and extracellular matrix proteins. Of note, deficiencies in vitamins and trace elements also induce thymic atrophy. Interestingly, among the molecular interactions involved in the control of undernutrition-induced thymic atrophy is a hormonal imbalance with a rise in glucocorticoids and a decrease in leptin serum levels. Undernutrition also yields a negative impact of acute infections upon the thymus, frequently with the intrathymic detection of pathogens or their antigens. For instance, undernourished mice infected with Leishmania infantum (that causes VL) undergo drastic thymic atrophy, with significant reduction in thymocyte numbers, and decreased levels of intrathymic chemokines and cytokines, indicating that both lymphoid and microenvironmental compartments of the organ are affected. Lastly, recent data revealed that some probiotic bacteria or probiotic fermented milks improve the thymus status in a model of malnutrition, thus raising a new field for investigation, namely the thymus-gut connection, indicating that probiotics can be envisioned as a further adjuvant therapy in the control of thymic changes in undernutrition accompanied or not by infection.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jonathan Durães
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carolina Maldonado-Galdeano
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriela Perdigon
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Patricia Cuervo
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Mileto SJ, Hutton ML, Walton SL, Das A, Ioannidis LJ, Ketagoda D, Quinn KM, Denton KM, Hansen DS, Lyras D. Bezlotoxumab prevents extraintestinal organ damage induced by Clostridioides difficile infection. Gut Microbes 2022; 14:2117504. [PMID: 36045589 PMCID: PMC9450906 DOI: 10.1080/19490976.2022.2117504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridioides difficile is the most common cause of infectious antibiotic-associated diarrhea, with disease mediated by two major toxins TcdA and TcdB. In severe cases, systemic disease complications may arise, resulting in fatal disease. Systemic disease in animal models has been described, with thymic damage an observable consequence of severe disease in mice. Using a mouse model of C. difficile infection, we examined this disease phenotype, focussing on the thymus and serum markers of systemic disease. The efficacy of bezlotoxumab, a monoclonal TcdB therapeutic, to prevent toxin mediated systemic disease complications was also examined. C. difficile infection causes toxin-dependent thymic damage and CD4+CD8+ thymocyte depletion in mice. These systemic complications coincide with changes in biochemical markers of liver and kidney function, including increased serum urea and creatinine, and hypoglycemia. Administration of bezlotoxumab during C. difficile infection prevents systemic disease and thymic atrophy, without blocking gut damage, suggesting the leakage of gut contents into circulation may influence systemic disease. As the thymus has such a crucial role in T cell production and immune system development, these findings may have important implications in relapse of C. difficile disease and impaired immunity during C. difficile infection. The prevention of thymic atrophy and reduced systemic response following bezlotoxumab treatment, without altering colonic damage, highlights the importance of systemic disease in C. difficile infection, and provides new insights into the mechanism of action for this therapeutic.Abbreviations: Acute kidney injury (AKI); Alanine Transaminase (ALT); Aspartate Aminotransferase (AST); C. difficile infection (CDI); chronic kidney disease (CKD); combined repetitive oligo-peptides (CROPS); cardiovascular disease (CVD); Double positive (DP); hematoxylin and eosin (H&E); immunohistochemical (IHC); multiple organ dysfunction syndrome (MODS); phosphate buffered saline (PBS); standard error of the mean (SEM); surface layer proteins (SLP); Single positive (SP); wild-type (WT).
Collapse
Affiliation(s)
- Steven J. Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Melanie L. Hutton
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Sarah L. Walton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Antariksh Das
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Lisa J. Ioannidis
- Walter and Eliza Hall Insitiute, Infectious Diseases and Immune Defence Division, Parkville, Australia,Department of Medical Biology, the University of Melbourne, Parkville, Australia
| | - Don Ketagoda
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia
| | - Kylie M. Quinn
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia,RMIT University School of Biomedical and Health Sciences, Chronic Inflammatory and Infectious Diseases Program, Bundoora, Australia
| | - Kate M. Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Diana S. Hansen
- Walter and Eliza Hall Insitiute, Infectious Diseases and Immune Defence Division, Parkville, Australia,Department of Medical Biology, the University of Melbourne, Parkville, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Australia,CONTACT Dena Lyras Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, 19 Innovation Walk, Clayton, Victoria3800, Australia
| |
Collapse
|
5
|
Barreira-Silva P, Melo-Miranda R, Nobrega C, Roque S, Serre-Miranda C, Borges M, Armada G, de Sá Calçada D, Behar SM, Appelberg R, Correia-Neves M. IFNγ and iNOS-Mediated Alterations in the Bone Marrow and Thymus and Its Impact on Mycobacterium avium-Induced Thymic Atrophy. Front Immunol 2021; 12:696415. [PMID: 34987496 PMCID: PMC8721011 DOI: 10.3389/fimmu.2021.696415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Disseminated infection with the high virulence strain of Mycobacterium avium 25291 leads to progressive thymic atrophy. We previously showed that M. avium-induced thymic atrophy results from increased glucocorticoid levels that synergize with nitric oxide (NO) produced by interferon gamma (IFNγ) activated macrophages. Where and how these mediators act is not understood. We hypothesized that IFNγ and NO promote thymic atrophy through their effects on bone marrow (BM) T cell precursors and T cell differentiation in the thymus. We show that M. avium infection cause a reduction in the percentage and number of common lymphoid progenitors (CLP). Additionally, BM precursors from infected mice show an overall impaired ability to reconstitute thymi of RAGKO mice, in part due to IFNγ. Thymi from infected mice present an IFNγ and NO-driven inflammation. When transplanted under the kidney capsule of uninfected mice, thymi from infected mice are unable to sustain T cell differentiation. Finally, we observed increased thymocyte death via apoptosis after infection, independent of both IFNγ and iNOS; and a decrease on active caspase-3 positive thymocytes, which is not observed in the absence of iNOS expression. Together our data suggests that M. avium-induced thymic atrophy results from a combination of defects mediated by IFNγ and NO, including alterations in the BM T cell precursors, the thymic structure and the thymocyte differentiation.
Collapse
Affiliation(s)
- Palmira Barreira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| | - Rita Melo-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Claudia Nobrega
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Cláudia Serre-Miranda
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Borges
- Research Unit on Applied Molecular Biosciences (UCIBIO)/Rede de Química e Tecnologia (REQUINTE), Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gisela Armada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Daniela de Sá Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
| | - Samuel M. Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Rui Appelberg
- Instituto de Investigação e Inovação em Saúde (i3S), Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biomimetics Research Group (ICVS/3B’s), PT Government Associate Laboratory, Braga, Portugal
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Palmira Barreira-Silva, ; Margarida Correia-Neves,
| |
Collapse
|
6
|
de Araújo TE, Gomes AO, Coelho-Dos-Reis JG, Carneiro ACAV, Machado AS, Andrade GMQ, Vasconcelos-Santos DV, Januário JN, Peruhype-Magalhães V, Teixeira-Carvalho A, Vitor RWA, Antonelli LRDV, Ferro EAV, Martins-Filho OA. Long-term impact of congenital toxoplasmosis on phenotypic and functional features of circulating leukocytes from infants one year after treatment onset. Clin Immunol 2021; 232:108859. [PMID: 34563685 DOI: 10.1016/j.clim.2021.108859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/17/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Changes in immune response of children with congenital toxoplasmosis (CT) regarding infection evolution and therapeutic intervention was addressed. Infants with CT presented increased counts of monocytes, CD3-CD16-CD56High, CD3+CD56+ and CD4+ T-cells 1-year after treatment onset (TOXO1-yearAT). Smaller numbers of CD3-CD16-CD56+ and TCRγδ+ T-cells were specifically observed in infants with retinochoroidal lesions (L(+)). When infants were classified based on the baseline status, expansion of CD3-CD16-CD56High and CD4+ T-cells were observed in L(+) who had active, active/cicatricial or cicatricial lesions. Infants who had active or active/cicatricial lesions display augmented numbers of monocytes, CD3-CD16+CD56+, CD3+CD56+, CD8+DR+ and TCRγδ+ T-cells and those with active/cicatricial or cicatricial at baseline displayed increase in CD14+CD64+ monocytes. Moreover, all L(+) had increased IFN-γ+ and IL-10+ CD4+ T-cells, while L(-) had increased ratios of TNF+, IFN-γ+ and IL-4+ NK-cells upon antigen-specific stimulation. Persistent alterations in leukocytes in TOXO1-yearAT suggest long-term sequels in the immune system of infants with CT.
Collapse
Affiliation(s)
- Thádia Evelyn de Araújo
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Avenida João Naves de Ávila 2121, Santa Mônica, 38408-100 Uberlândia, MG, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Barro Preto, 30190-002 Belo Horizonte, MG, Brazil.
| | - Angelica Oliveira Gomes
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Rua Frei Paulino, 30, Nossa Sra. da Abadia, 38025-180 Uberaba, MG, Brazil
| | - Jordana Grazziela Coelho-Dos-Reis
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | | | - Anderson Silva Machado
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Gláucia Manzan Queiroz Andrade
- Departamento de Pediatria, Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, Santa Efigênia, 30130-100 Belo Horizonte, MG, Brazil; Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, Santa Efigênia, 30130-100 Belo Horizonte, MG, Brazil
| | - Daniel Vitor Vasconcelos-Santos
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, Santa Efigênia, 30130-100 Belo Horizonte, MG, Brazil; Departamento de Oftalmologia e Otorrinolaringologia, Faculdade de Medicina, UFMG, Belo Horizonte, MG, Brazil
| | - José Nélio Januário
- Núcleo de Ações e Pesquisa em Apoio Diagnóstico (NUPAD), Universidade Federal de Minas Gerais, Avenida Professor Alfredo Balena 190, Santa Efigênia, 30130-100 Belo Horizonte, MG, Brazil
| | - Vanessa Peruhype-Magalhães
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Barro Preto, 30190-002 Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Barro Preto, 30190-002 Belo Horizonte, MG, Brazil
| | - Ricardo Wagner Almeida Vitor
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Barro Preto, 30190-002 Belo Horizonte, MG, Brazil.
| | - Eloisa Amalia Vieira Ferro
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Avenida João Naves de Ávila 2121, Santa Mônica, 38408-100 Uberlândia, MG, Brazil
| | - Olindo Assis Martins-Filho
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Avenida João Naves de Ávila 2121, Santa Mônica, 38408-100 Uberlândia, MG, Brazil; Instituto René Rachou, Fundação Oswaldo Cruz, Avenida Augusto de Lima, 1715, Barro Preto, 30190-002 Belo Horizonte, MG, Brazil
| | | |
Collapse
|
7
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
8
|
The Teleost Thymus in Health and Disease: New Insights from Transcriptomic and Histopathological Analyses of Turbot, Scophthalmus maximus. BIOLOGY 2020; 9:biology9080221. [PMID: 32823553 PMCID: PMC7465915 DOI: 10.3390/biology9080221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
The thymus is a primary lymphoid organ that plays a pivotal role in the adaptive immune system. The immunobiology of the thymus in fish is considered to be similar to that of mammals, but it is actually poorly characterized in several cultured teleost species. In particular, while investigations in human and veterinary medicine have highlighted that the thymus can be affected by different pathological conditions, little is known about its response during disease in fish. To better understand the role of the thymus under physiological and pathological conditions, we conducted a study in turbot (Scophthalmus maximus), a commercially valuable flatfish species, combining transcriptomic and histopathological analyses. The myxozoan parasite Enteromyxum scophthalmi, which represents a major challenge to turbot production, was used as a model of infection. The thymus tissues of healthy fish showed overrepresented functions related to its immunological role in T-cell development and maturation. Large differences were observed between the transcriptomes of control and severely infected fish. Evidence of inflammatory response, apoptosis modulation, and declined thymic function associated with loss of cellularity was revealed by both genomic and morphopathological analyses. This study presents the first description of the turbot thymus transcriptome and provides novel insights into the role of this organ in teleosts’ immune responses.
Collapse
|
9
|
Streptococcus suis Serotype 2 Infection Causes Host Immunomodulation through Induction of Thymic Atrophy. Infect Immun 2020; 88:IAI.00950-19. [PMID: 31932328 DOI: 10.1128/iai.00950-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/04/2020] [Indexed: 02/05/2023] Open
Abstract
Streptococcus suis serotype 2 is an important bacterial pathogen of swine and is also an emerging zoonotic agent that may be harmful to human health. Although the virulence genes of S. suis have been extensively studied, the mechanisms by which they damage the central immune organs have rarely been studied. In the current work, we wanted to uncover more details about the impact and mechanisms of S. suis on specific populations of thymic and immune cells in infected mice. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) assays revealed that S. suis infection induced apoptosis in CD3+, CD14+, and epithelial cells from the thymus. S. suis infection resulted in a rapid depletion of mitochondrial permeability and release of cytochrome c (CytC) and apoptosis-inducing factor (AIF) through upregulation of Bax expression and downregulation of Bcl-xl and Bcl2 expression in thymocytes. Moreover, S. suis infection increased cleavage of caspase-3, caspase-8, and caspase-9. Thus, S. suis induced thymocyte apoptosis through a p53- and caspase-dependent pathway, which led to a decrease of CD3+ cells in the thymus, subsequently decreasing the numbers of CD4+ and CD8+ cells in the peripheral blood. Finally, expression dysregulation of proinflammatory cytokines in the serum, including interleukin 2 (IL-2), IL-6, IL-12 (p70), tumor necrosis factor (TNF), and IL-10, was observed in mice after S. suis type 2 infection. Taken together, these results suggest that S. suis infection can cause atrophy of the thymus and induce apoptosis of thymocytes in mice, thus likely suppressing host immunity.
Collapse
|
10
|
Resende M, Cardoso MS, Fróis-Martins R, Borges M, Jordan MB, Castro AG, Appelberg R. TNF-Mediated Compensatory Immunity to Mycobacterium avium in the Absence of Macrophage Activation by IFN-γ. THE JOURNAL OF IMMUNOLOGY 2019; 203:2451-2458. [PMID: 31562208 DOI: 10.4049/jimmunol.1801594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
Granuloma formation is a hallmark of several infectious diseases, including those caused by Mycobacterium sp These structures are composed of accumulations of inflammatory cells, and it has been shown that cytokines such as IFN-γ and TNF-α are required for granuloma assembly during M. avium infections in mice. Macrophages (MΦs) insensitive to IFN-γ (MIIG) mice have MΦs, monocytes, and dendritic cells that are unresponsive to IFN-γ. We observed that although IFN-γ-/- mice present an exacerbated infection, the same is not true for MIIG animals, where the same levels of protection as the wild-type animals were observed in the liver and partial protection in the spleen. Unlike IFN-γ-/- mice, MIIG mice still develop well-defined granulomas, suggesting that IFN-γ-mediated MΦ activation is not required for granuloma assembly. This work also shows that MIIG animals exhibit increased cell recruitment with higher CD4+ T cells numbers as well as increased IFN-γ and TNF-α expression, suggesting that TNF-α may have a role in protection and may compensate the lack of MΦ response to IFN-γ in the MIIG model. TNF-α-deficient MIIG mice (MIIG.TNF-α-/-) exhibited increased bacterial burdens when compared with MIIG mice. These results suggest that in the absence of IFN-γ signaling in MΦs, TNF-α has a protective role against M. avium.
Collapse
Affiliation(s)
- Mariana Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; .,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Marcos S Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Fróis-Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Margarida Borges
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Michael B Jordan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center/University of Cincinnati College of Medicine, Cincinnati, OH 45229; and
| | - António Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| | - Rui Appelberg
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Majumdar S, Adiga V, Raghavan A, Rananaware SR, Nandi D. Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology 2019; 157:21-36. [PMID: 30659606 DOI: 10.1111/imm.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
The development of immunocompetent T cells entails a complex pathway of differentiation in the thymus. Thymic atrophy occurs with ageing and during conditions such as malnutrition, infections and cancer chemotherapy. The comparative changes in thymic subsets under different modes of thymic atrophy and the mechanisms involved are not well characterized. These aspects were investigated, using mice infected with Salmonella Typhimurium, injection with lipopolysaccharide (LPS), an inflammatory but non-infectious stimulus, etoposide (Eto), a drug used to treat some cancers, and dexamethasone (Dex), a steroid used in some inflammatory diseases. The effects on the major subpopulations of thymocytes based on multicolour flow cytometry studies were, first, the CD4- CD8- double-negative (DN) cells, mainly DN2-4, were reduced with infection, LPS and Eto treatment, but not with Dex. Second, the CD8+ CD3lo immature single-positive cells (ISPs) were highly sensitive to infection, LPS and Eto, but not Dex. Third, treatment with LPS, Eto and Dex reduced all three subpopulations of CD4+ CD8+ double-positive (DP) thymocytes, i.e. DP1, DP2 and DP3, but the DP3 subset was relatively more resistant during infection. Fourth, both CD4+ and CD8+ single-positive (SP) thymocytes were lowered by Eto and Dex, but not during infection. Notably, LPS lowered CD4+ SP subsets, whereas the CD8+ SP subsets were relatively more resistant. Interestingly, the reactive oxygen species quencher, N-acetyl cysteine, greatly improved the survival of thymocytes, especially DNs, ISPs and DPs, during infection and LPS treatment. The implications of these observations for the development of potential thymopoietic drugs are discussed.
Collapse
Affiliation(s)
- Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Starikova EA, Golovin AS, Vasilyev KA, Karaseva AB, Serebriakova MK, Sokolov AV, Kudryavtsev IV, Burova LA, Voynova IV, Suvorov AN, Vasilyev VB, Freidlin IS. Role of arginine deiminase in thymic atrophy during experimental Streptococcus pyogenes infection. Scand J Immunol 2019; 89:e12734. [PMID: 30471128 DOI: 10.1111/sji.12734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
Expression of gene of arginine deiminase (AD) allows adaptation of Streptococcus pyogenes to adverse environmental conditions. AD activity can lead to L-arginine deficiency in the host cells' microenvironment. Bioavailability of L-arginine is an important factor regulating the functions of the immune cells in mammals. By introducing a mutation into S pyogenes M46-16, we obtained a strain with inactivated arcA/sagp gene (M49-16 delArcA), deficient in AD. This allowed elucidating the function of AD in pathogenesis of streptococcal infection. The virulence of the parental and mutant strains was examined in a murine model of subcutaneous streptococcal infection. L-arginine concentration in the plasma of mice infected with S pyogenes M49-16 delArcA remained unchanged in course of the entire experiment. At the same time mice infected with S pyogenes M49-16 demonstrated gradual diminution of L-arginine concentration in the blood plasma, which might be due to the activity of streptococcal AD. Mice infected with S pyogenes M49-16 delArcA demonstrated less intensive bacterial growth in the primary foci and less pronounced bacterial dissemination as compared with animals infected with the parental strain S pyogenes M46-16. Similarly, thymus involution, alterations in apoptosis, thymocyte subsets and Treg cells differentiation were less pronounced in mice infected with S pyogenes M49-16 delArcA than in those infected with the parental strain. The results obtained showed that S pyogenes M49-16 delArcA, unable to produce AD, had reduced virulence in comparison with the parental S pyogenes M49-16 strain. AD is an important factor for the realization of the pathogenic potential of streptococci.
Collapse
Affiliation(s)
| | | | | | - Alena Borisovna Karaseva
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - Alexey Victorovich Sokolov
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Igor Vladimirovich Kudryavtsev
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Far Eastern Federal University Vladivostok, Russia
| | | | - Irina Vitalyevna Voynova
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alexander Nikolaevich Suvorov
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Vadim Borisovich Vasilyev
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia
| | - Irina Solomonovna Freidlin
- Federal State Budgetary Scientific Institution, Institute of Experimental Medicine, St. Petersburg, Russia.,Saint-Petersburg State University, St. Petersburg, Russia.,Pavlov First Saint-Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
13
|
Tajima A, Pradhan I, Geng X, Trucco M, Fan Y. Construction of Thymus Organoids from Decellularized Thymus Scaffolds. Methods Mol Biol 2019; 1576:33-42. [PMID: 27730537 PMCID: PMC5389928 DOI: 10.1007/7651_2016_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the hallmarks of modern medicine is the development of therapeutics that can modulate immune responses, especially the adaptive arm of immunity, for disease intervention and prevention. While tremendous progress has been made in the past decades, manipulating the thymus, the primary lymphoid organ responsible for the development and education of T lymphocytes, remains a challenge. One of the major obstacles is the difficulty to reproduce its unique extracellular matrix (ECM) microenvironment that is essential for maintaining the function and survival of thymic epithelial cells (TECs), the predominant population of cells in the thymic stroma. Here, we describe the construction of functional thymus organoids from decellularized thymus scaffolds repopulated with isolated TECs. Thymus decellularization was achieved by freeze-thaw cycles to induce intracellular ice crystal formation, followed by detergent-induced cell lysis. Cellular debris was removed with extensive wash. The decellularized thymus scaffolds can largely retain the 3D extracellular matrix (ECM) microenvironment that can support the recolonization of TECs. When transplanted into athymic nude mice, the reconstructed thymus organoids can effectively promote the homing of bone marrow-derived lymphocyte progenitors and support the development of a diverse and functional T cell repertoire. Bioengineering of thymus organoids can be a promising approach to rejuvenate/modulate the function of T-cell mediated adaptive immunity in regenerative medicine.
Collapse
Affiliation(s)
- Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Isha Pradhan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
| | - Xuehui Geng
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Microbiology and Immunology, Medical College of Drexel University, Philadelphia, PA, USA
| | - Yong Fan
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Microbiology and Immunology, Medical College of Drexel University, Philadelphia, PA, USA.
- Institute of Cellular Therapeutics, Allegheny Health Network, Room 1107 South Tower, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
14
|
D’Attilio L, Santucci N, Bongiovanni B, Bay ML, Bottasso O. Tuberculosis, the Disrupted Immune-Endocrine Response and the Potential Thymic Repercussion As a Contributing Factor to Disease Physiopathology. Front Endocrinol (Lausanne) 2018; 9:214. [PMID: 29765355 PMCID: PMC5938357 DOI: 10.3389/fendo.2018.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Upon the pathogen encounter, the host seeks to ensure an adequate inflammatory reaction to combat infection but at the same time tries to prevent collateral damage, through several regulatory mechanisms, like an endocrine response involving the production of adrenal steroid hormones. Our studies show that active tuberculosis (TB) patients present an immune-endocrine imbalance characterized by an impaired cellular immunity together with increased plasma levels of cortisol, pro-inflammatory cytokines, and decreased amounts of dehydroepiandrosterone. Studies in patients undergoing specific treatment revealed that cortisol levels remained increased even after several months of initiating therapy. In addition to the well-known metabolic and immunological effects, glucocorticoids are involved in thymic cortical depletion with immature thymocytes being quite sensitive to such an effect. The thymus is a central lymphoid organ supporting thymocyte T-cell development, i.e., lineage commitment, selection events and thymic emigration. While thymic TB is an infrequent manifestation of the disease, several pieces of experimental and clinical evidence point out that the thymus can be infected by mycobacteria. Beyond this, the thymic microenvironment during TB may be also altered because of the immune-hormonal alterations. The thymus may be then an additional target of organ involvement further contributing to a deficient control of infection and disease immunopathology.
Collapse
|
15
|
Majumdar S, Nandi D. Thymic Atrophy: Experimental Studies and Therapeutic Interventions. Scand J Immunol 2017; 87:4-14. [PMID: 28960415 DOI: 10.1111/sji.12618] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/01/2017] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The thymus is essential for T cell development and maturation. It is extremely sensitive to atrophy, wherein loss in cellularity of the thymus and/or disruption of the thymic architecture occur. This may lead to lower naïve T cell output and limited TCR diversity. Thymic atrophy is often associated with ageing. What is less appreciated is that proper functioning of the thymus is critical for reduction in morbidity and mortality associated with various clinical conditions including infections and transplantation. Therefore, therapeutic interventions which possess thymopoietic potential and lower thymic atrophy are required. These treatments enhance thymic output, which is a vital factor in generating favourable outcomes in clinical conditions. In this review, experimental studies on thymic atrophy in rodents and clinical cases where the thymus atrophies are discussed. In addition, mechanisms leading to thymic atrophy during ageing as well as during various stress conditions are reviewed. Therapies such as zinc supplementation, IL7 administration, leptin treatment, keratinocyte growth factor administration and sex steroid ablation during thymic atrophy involving experiments in animals and various clinical scenarios are reviewed. Interventions that have been used across different scenarios to reduce the extent of thymic atrophy and enhance its output are discussed. This review aims to speculate on the roles of combination therapies, which by acting additively or synergistically may further alleviate thymic atrophy and boost its function, thereby strengthening cellular T cell responses.
Collapse
Affiliation(s)
- S Majumdar
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| | - D Nandi
- Department of Biochemistry & Centre for Infectious Diseases Research, Indian Institute of Science, Bangalore, India
| |
Collapse
|
16
|
Ansari AR, Liu H. Acute Thymic Involution and Mechanisms for Recovery. Arch Immunol Ther Exp (Warsz) 2017; 65:401-420. [PMID: 28331940 DOI: 10.1007/s00005-017-0462-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022]
Abstract
Acute thymic involution (ATI) is usually regarded as a virulence trait. It is caused by several infectious agents (bacteria, viruses, parasites, fungi) and other factors, including stress, pregnancy, malnutrition and chemotherapy. However, the complex mechanisms that operate during ATI differ substantially from each other depending on the causative agent. For instance, a transient reduction in the size and weight of the thymus and depletion of populations of T cell subsets are hallmarks of ATI in many cases, whereas severe disruption of the anatomical structure of the organ is also associated with some factors, including fungal, parasitic and viral infections. However, growing evidence shows that ATI may be therapeutically halted or reversed. In this review, we highlight the current progress in this field with respect to numerous pathological factors and discuss the possible mechanisms. Moreover, these new observations also show that ATI can be mechanistically reversed.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.,Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS), Jhang, Pakistan.,University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Huazhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Majumdar S, Deobagkar-Lele M, Adiga V, Raghavan A, Wadhwa N, Ahmed SM, Rananaware SR, Chakraborty S, Joy O, Nandi D. Differential susceptibility and maturation of thymocyte subsets during Salmonella Typhimurium infection: insights on the roles of glucocorticoids and Interferon-gamma. Sci Rep 2017; 7:40793. [PMID: 28091621 PMCID: PMC5238503 DOI: 10.1038/srep40793] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/09/2016] [Indexed: 11/08/2022] Open
Abstract
The thymus is known to atrophy during infections; however, a systematic study of changes in thymocyte subpopulations has not been performed. This aspect was investigated, using multi-color flow cytometry, during oral infection of mice with Salmonella Typhimurium (S. Typhimurium). The major highlights are: First, a block in the developmental pathway of CD4-CD8- double negative (DN) thymocytes is observed. Second, CD4+CD8+ double positive (DP) thymocytes, mainly in the DP1 (CD5loCD3lo) and DP2 (CD5hiCD3int), but not DP3 (CD5intCD3hi), subsets are reduced. Third, single positive (SP) thymocytes are more resistant to depletion but their maturation is delayed, leading to accumulation of CD24hiCD3hi SP. Kinetic studies during infection demonstrated differences in sensitivity of thymic subpopulations: Immature single positive (ISP) > DP1, DP2 > DN3, DN4 > DN2 > CD4+ > CD8+. Upon infection, glucocorticoids (GC), inflammatory cytokines, e.g. Ifnγ, etc are induced, which enhance thymocyte death. Treatment with RU486, the GC receptor antagonist, increases the survival of most thymic subsets during infection. Studies with Ifnγ-/- mice demonstrated that endogenous Ifnγ produced during infection enhances the depletion of DN2-DN4 subsets, promotes the accumulation of DP3 and delays the maturation of SP thymocytes. The implications of these observations on host cellular responses during infections are discussed.
Collapse
Affiliation(s)
- Shamik Majumdar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mukta Deobagkar-Lele
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| | - Abinaya Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Nitin Wadhwa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Syed Moiz Ahmed
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Omana Joy
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
- Flow Cytometry Facility, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Pasula R, Britigan BE, Kesavalu B, Abdalla MY, Martin WJ. Airway delivery of interferon-γ overexpressing macrophages confers resistance to Mycobacterium avium infection in SCID mice. Physiol Rep 2016; 4:4/21/e13008. [PMID: 27856731 PMCID: PMC5112490 DOI: 10.14814/phy2.13008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium avium (M. avium) causes significant pulmonary infection, especially in immunocompromised hosts. Alveolar macrophages (AMs) represent the first line of host defense against infection in the lung. Interferon gamma (IFN‐γ) activation of AMs enhances in vitro killing of pathogens such as M. avium. We hypothesized that airway delivery of AMs into the lungs of immunodeficient mice infected with M. avium will inhibit M. avium growth in the lung and that this macrophage function is in part IFN‐γ dependent. In this study, normal BALB/c and BALB/c SCID mice received M. avium intratracheally while on mechanical ventilation. After 30 days, M. avium numbers increased in a concentration‐dependent manner in SCID mice compared with normal BALB/c mice. Airway delivery of IFN‐γ‐activated BALB/c AMs or J774A.1 macrophages overexpressing IFN‐γ into the lungs of SCID mice resulted in a significant decrease in M. avium growth (P < 0.01, both comparisons) and limited dissemination to other organs. In addition, airway delivery of IFN‐γ activated AMs and macrophages overexpressing IFN‐γ increased the levels of IFN‐γ and TNF‐α in SCID mice. A similar protective effect against M. avium infection using J774A.1 macrophages overexpressing IFN‐γ was observed in IFN‐γ knockout mice. These data suggest that administration of IFN‐γ activated AMs or macrophages overexpressing IFN‐γ may partially restore local alveolar host defense against infections like M. avium, even in the presence of ongoing systemic immunosuppression.
Collapse
Affiliation(s)
- Rajamouli Pasula
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bradley E Britigan
- Research Service, VA Medical Center - Nebraska/Western Iowa, Omaha, Nebraska.,Department of Internal Medicine and Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Banurekha Kesavalu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Maher Y Abdalla
- Research Service, VA Medical Center - Nebraska/Western Iowa, Omaha, Nebraska.,Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - William J Martin
- College of Public Health, The Ohio State University, Columbus, Ohio
| |
Collapse
|
19
|
Kugler DG, Flomerfelt FA, Costa DL, Laky K, Kamenyeva O, Mittelstadt PR, Gress RE, Rosshart SP, Rehermann B, Ashwell JD, Sher A, Jankovic D. Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. J Exp Med 2016; 213:3041-3056. [PMID: 27849554 PMCID: PMC5154934 DOI: 10.1084/jem.20151636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 08/05/2016] [Accepted: 10/18/2016] [Indexed: 12/12/2022] Open
Abstract
Kugler et al. show that systemic infection with Toxoplasma gondii triggers a long-term impairment in thymic function, which leads to an immunodeficient state reflected in decreased antimicrobial resistance. Because antigen-stimulated naive T cells either die as effectors or enter the activated/memory pool, continuous egress of new T lymphocytes from thymus is essential for maintenance of peripheral immune homeostasis. Unexpectedly, we found that systemic infection with the protozoan Toxoplasma gondii triggers not only a transient increase in activated CD4+ Th1 cells but also a persistent decrease in the size of the naive CD4+ T lymphocyte pool. This immune defect is associated with decreased thymic output and parasite-induced destruction of the thymic epithelium, as well as disruption of the overall architecture of that primary lymphoid organ. Importantly, the resulting quantitative and qualitative deficiency in naive CD4+ T cells leads to an immunocompromised state that both promotes chronic toxoplasma infection and leads to decreased resistance to challenge with an unrelated pathogen. These findings reveal that systemic infectious agents, such as T. gondii, can induce long-term immune alterations associated with impaired thymic function. When accumulated during the lifetime of the host, such events, even when occurring at low magnitude, could be a contributing factor in immunological senescence.
Collapse
Affiliation(s)
- David G Kugler
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Francis A Flomerfelt
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diego L Costa
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Karen Laky
- T Cell Development Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Olena Kamenyeva
- Biological Imaging, Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Paul R Mittelstadt
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ronald E Gress
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stephan P Rosshart
- Immunology Section, Liver Diseases Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
20
|
Chen AL, Sun X, Wang W, Liu JF, Zeng X, Qiu JF, Liu XJ, Wang Y. Activation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. J Neuroinflammation 2016; 13:266. [PMID: 27733201 PMCID: PMC5062856 DOI: 10.1186/s12974-016-0743-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 10/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunosuppression has been described as a consequence of brain injury and infection by different mechanisms. Angiostrongylus cantonensis can cause injury to the central nervous system and eosinophilic meningitis to human. Both T cell and B cell immunity play an essential role in the resistance of the infection. However, whether brain injury caused by A. cantonensis infection can lead to immunosuppression is not clear. Therefore, the present study sought to observe the alteration of immune responses in mice infected with A. cantonensis. METHODS Mice were infected with 20 third-stage A. cantonensis larvae. The messenger RNA (mRNA) expression of inflammatory mediators in brain tissues was observed by qRT-PCR. Cell surface markers including CD3, CD4, CD8, CD19, B220, 7-AAD, annexin-V, IgM, AA4.1, and CD23 were evaluated by using flow cytometry. The immune functions of T and B lymphocytes were detected upon stimulation by ConA and antibody responses to a nonself antigen OVA, respectively. Activation of the hypothalamic-pituitary-adrenal axis was evaluated by analyzing the concentration of plasma corticosterone and levels of mRNA for corticotropin-releasing hormone, tyrosine hydroxylase, and c-fos. RESULTS A. cantonensis infection results in obvious immunosuppression evidenced as progressive spleen and thymus atrophy and significant decrease in the number of lymphocyte subsets including B cells, CD3+ T cells, CD4+ T cells, and CD8+ T cells, as well as reduced T cell proliferation at 21 days post-infection and antibody reaction to exogenous protein after infection. However, the sharp decrease of splenic and thymic cells was not due to cell apoptosis but to B cell genesis cessation and impairing thymocyte development. In addition, helminthicide treatment with albendazole on infected mice at 7 days post-infection could prevent immunosuppressive symptoms. Importantly, infected mice displayed hypothalamic-pituitary-adrenal axis activation, with peak responses occurring at 16 days post-infection, and glucocorticoid receptor antagonist could partially restore the infection-induced cessation of B cell genesis. CONCLUSIONS Brain injury caused by A. cantonensis infection, like that of brain stroke and trauma, enhanced endogenous corticosteroid activity, resulting in peripheral immunosuppression.
Collapse
Affiliation(s)
- Ai-Ling Chen
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.,Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214002, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Wei Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Jin-Feng Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xin Zeng
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jing-Fan Qiu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Xin-Jian Liu
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China
| | - Yong Wang
- Department of Pathogen Biology, Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
21
|
Silva JP, Gonçalves C, Costa C, Sousa J, Silva-Gomes R, Castro AG, Pedrosa J, Appelberg R, Gama FM. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J Control Release 2016; 235:112-124. [PMID: 27261333 DOI: 10.1016/j.jconrel.2016.05.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 01/21/2023]
Abstract
Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, recently joined HIV/AIDS on the top rank of deadliest infectious diseases. Low patient compliance due to the expensive, long-lasting and multi-drug standard therapies often results in treatment failure and emergence of multi-drug resistant strains. In this scope, antimicrobial peptides (AMPs) arise as promising candidates for TB treatment. Here we describe the ability of the exogenous AMP LLKKK18 to efficiently kill mycobacteria. The peptide's potential was boosted by loading into self-assembling Hyaluronic Acid (HA) nanogels. These provide increased stability, reduced cytotoxicity and degradability, while potentiating peptide targeting to main sites of infection. The nanogels were effectively internalized by macrophages and the peptide presence and co-localization with mycobacteria within host cells was confirmed. This resulted in a significant reduction of the mycobacterial load in macrophages infected in vitro with the opportunistic M. avium or the pathogenic M. tuberculosis, an effect accompanied by lowered pro-inflammatory cytokine levels (IL-6 and TNF-α). Remarkably, intra-tracheal administration of peptide-loaded nanogels significantly reduced infection levels in mice infected with M. avium or M. tuberculosis, after just 5 or 10 every other day administrations. Considering the reported low probability of resistance acquisition, these findings suggest a great potential of LLKKK18-loaded nanogels for TB therapeutics.
Collapse
Affiliation(s)
- João P Silva
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| | - Carine Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - César Costa
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal
| | - Jeremy Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita Silva-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Appelberg
- Department of Immunophysiology, University of Porto, 4050-313 Porto, Portugal
| | - F Miguel Gama
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal.
| |
Collapse
|
22
|
Duan X, Lu J, Zhou K, Wang J, Wu J, Fu Gao G, Fang M. NK-cells are involved in thymic atrophy induced by influenza A virus infection. J Gen Virol 2016; 96:3223-3235. [PMID: 26346306 DOI: 10.1099/jgv.0.000276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
NK-cells have traditionally been viewed as innate effector lymphocytes that serve as a first line of defence against a range of viruses and tumours. More recently, the importance of NK-cell immunoregulatory functions has been highlighted. NK-cells can inhibit antiviral T-cell responses, and also play an important role in controlling harmful T-cell activity in autoimmunity and transplantation settings. Moreover, immunopathological effects of NK-cells during infection have been reported. Nevertheless, the phenotype and function of NK-cells in the thymus during influenza virus infection is not understood. In the present study, we demonstrated that influenza A virus (IAV) infection in mice led to severe thymic atrophy caused by increased thymic T-cell apoptosis and suppressed proliferation. We found that NK-cells played a critical role in this phenotype. IFN-c production by NK-cells was a contributing factor for thymic atrophy during IAV infection. Taken together, our data indicate that NK-cells are involved in the thymic atrophy associated with IAV infection.
Collapse
Affiliation(s)
- Xuefeng Duan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| | - Jiao Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Kai Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Jihua Wu
- Department of Pathology, 306 Hospital of PLA, Beijing, PR China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China.,Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
23
|
Liu B, Zhang X, Deng W, Liu J, Li H, Wen M, Bao L, Qu J, Liu Y, Li F, An Y, Qin C, Cao B, Wang C. Severe influenza A(H1N1)pdm09 infection induces thymic atrophy through activating innate CD8(+)CD44(hi) T cells by upregulating IFN-γ. Cell Death Dis 2014; 5:e1440. [PMID: 25275588 PMCID: PMC4649502 DOI: 10.1038/cddis.2014.323] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 11/12/2022]
Abstract
Thymic atrophy has been described as a consequence of infection by several pathogens including highly pathogenic avian influenza virus and is induced through diverse mechanisms. However, whether influenza A(H1N1)pdm09 infection induces thymic atrophy and the mechanisms underlying this process have not been completely elucidated. Our results show that severe infection of influenza A(H1N1)pdm09 led to progressive thymic atrophy and CD4+CD8+ double-positive (DP) T-cells depletion due to apoptosis. The viruses were present in thymus, where they activated thymic innate CD8+CD44hi single-positive (SP) thymocytes to secrete a large amount of IFN-γ. Milder thymic atrophy was observed in innate CD8+ T-cell-deficient mice (C57BL/6J). Neutralization of IFN-γ could significantly rescue the atrophy, but peramivir treatment did not significantly alleviate thymic atrophy. In this study, we demonstrated that thymic innate CD8+CD44hi SP T-cells have critical roles in influenza A(H1N1)pdm09 infection-induced thymic atrophy through secreting IFN-γ. This exceptional mechanism might serve as a target for the prevention and treatment of thymic atrophy induced by influenza A(H1N1)pdm09.
Collapse
Affiliation(s)
- B Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - X Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - W Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - H Li
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - M Wen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - L Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - J Qu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - Y Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - F Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Y An
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - C Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - B Cao
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China
| | - C Wang
- 1] Department of Infectious Diseases and Clinical Microbiology, Beijing Chao-Yang Hospital, Beijing Institute of Respiratory Medicine, Capital Medical University, Beijing, China [2] Department of Respiratory Medicine, Capital Medical University, Beijing, China [3] Beijing Institute of Respiratory Medicine, Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Beijing, China [4] Beijing Institute of Respiratory Medicine, Beijing Hospital, Ministry of Heath, P. R. China, Beijing, China
| |
Collapse
|
24
|
de Meis J, Savino W. Mature peripheral T cells are important to preserve thymus function and selection of thymocytes during Mycobacterium tuberculosis infection. Immunotherapy 2014; 5:573-6. [PMID: 23725281 DOI: 10.2217/imt.13.41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Evaluation of: Nobrega C, Nunes-Alves C, Cerqueira-Rodrigues B et al. T cells home to the thymus and control infection. J. Immunol. 190, 1646-1658 (2013). It is well documented that the thymus is a target organ for a large variety of pathogens (virus, bacteria, fungi and protozoa). Moreover, the presence of pathogen-derived antigens in the thymus of infected mice seems to interfere with the capacity of mature T cells to respond to the invading organism. In this way, Nobrega and colleagues demonstrated in 2010 that Mycobacterium avium infection in the thymus leads to the appearance of differentiated T cells tolerogenic for bacterial antigens. In the present and elegant study, the same group demonstrates that T-cell recirculation from the periphery to the thymus is a mechanism that allows the immune system to respond to thymic infection. A Mycobacterium-infected thymus increases the production of Th1-effector chemokines, such as CXCL9 and CXCL10, which in turn recruit CXCR3(+) peripheral T cells involved in intrathymic bacterial control. Taken together, these findings may represent an important issue of the host response, in terms of different pathogens able to infect the thymus.
Collapse
Affiliation(s)
- Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Manguinhos, Rio de Janeiro, Brazil
| | | |
Collapse
|
25
|
Deobagkar-Lele M, Victor ES, Nandi D. c-Jun NH2 -terminal kinase is a critical node in the death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Eur J Immunol 2013; 44:137-49. [PMID: 24105651 DOI: 10.1002/eji.201343506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/15/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Thymic atrophy, due to the depletion of CD4(+) CD8(+) thymocytes, is observed during infections with numerous pathogens. Several mechanisms, such as glucocorticoids and inflammatory cytokines, are known to be involved in this process; however, the roles of intracellular signaling molecules have not been investigated. In this study, the functional role of c-Jun NH2 -terminal kinase (JNK) during infection-induced thymic atrophy was addressed. The levels of phosphorylated JNK in immature CD4(+) CD8(+) thymocytes from C57BL/6 (Nramp-deficient) and 129/SvJ (Nramp-sufficient) mice were increased upon oral infection of mice with Salmonella enterica serovar Typhimurium (S. typhimurium). Furthermore, inhibition of JNK signaling, but not ERK or p38 MAPK, prevented the in vitro death of infected thymocytes. Importantly, the in vivo inhibition of JNK signaling with SP600125 protected C57BL/6 CD4(+) CD8(+) thymocytes from depletion via multiple mechanisms as follows: lower intracellular ROS, inflammatory cytokines, Bax and caspase 3 activity, increase in Bcl-xL amounts, and prevention of the loss in mitochondrial membrane potential. Notably, thymic architecture was preserved in infected mice treated with SP600125. Overall, this study identifies a novel role for JNK as a crucial regulator of the death of CD4(+) CD8(+) thymocytes during S. typhimurium infection.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
26
|
Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34:502-10. [PMID: 23871487 DOI: 10.1016/j.it.2013.06.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.
Collapse
|
27
|
Nobrega C, Nunes-Alves C, Cerqueira-Rodrigues B, Roque S, Barreira-Silva P, Behar SM, Correia-Neves M. T cells home to the thymus and control infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:1646-58. [PMID: 23315077 DOI: 10.4049/jimmunol.1202412] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The thymus is a target of multiple pathogens. How the immune system responds to thymic infection is largely unknown. Despite being considered an immune-privileged organ, we detect a mycobacteria-specific T cell response in the thymus following dissemination of Mycobacterium avium or Mycobacterium tuberculosis. This response includes proinflammatory cytokine production by mycobacteria-specific CD4(+) and CD8(+) T cells, which stimulates infected cells and controls bacterial growth in the thymus. Importantly, the responding T cells are mature peripheral T cells that recirculate back to the thymus. The recruitment of these cells is associated with an increased expression of Th1 chemokines and an enrichment of CXCR3(+) mycobacteria-specific T cells in the thymus. Finally, we demonstrate it is the mature T cells that home to the thymus that most efficiently control mycobacterial infection. Although the presence of mature T cells in the thymus has been recognized for some time, to our knowledge, these data are the first to show that T cell recirculation from the periphery to the thymus is a mechanism that allows the immune system to respond to thymic infection. Maintaining a functional thymic environment is essential to maintain T cell differentiation and prevent the emergence of central tolerance to the invading pathogens.
Collapse
Affiliation(s)
- Claudia Nobrega
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|