1
|
Matsui S, Ri C, Bolanos LC, Choi K, Shibamiya A, Ishii A, Takaishi K, Oshima-Hasegawa N, Tsukamoto S, Takeda Y, Mimura N, Yoshimi A, Yokote K, Starczynowski DT, Sakaida E, Muto T. Metabolic reprogramming regulated by TRAF6 contributes to the leukemia progression. Leukemia 2024; 38:1032-1045. [PMID: 38609495 PMCID: PMC11073974 DOI: 10.1038/s41375-024-02245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
TNF receptor associated factor 6 (TRAF6) is an E3 ubiquitin ligase that has been implicated in myeloid malignancies. Although altered TRAF6 expression is observed in human acute myeloid leukemia (AML), its role in the AML pathogenesis remains elusive. In this study, we showed that the loss of TRAF6 in AML cells significantly impairs leukemic function in vitro and in vivo, indicating its functional importance in AML subsets. Loss of TRAF6 induces metabolic alterations, such as changes in glycolysis, TCA cycle, and nucleic acid metabolism as well as impaired mitochondrial membrane potential and respiratory capacity. In leukemic cells, TRAF6 expression shows a positive correlation with the expression of O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT), which catalyzes the addition of O-GlcNAc to target proteins involved in metabolic regulation. The restoration of growth capacity and metabolic activity in leukemic cells with TRAF6 loss, achieved through either forced expression of OGT or pharmacological inhibition of O-GlcNAcase (OGA) that removes O-GlcNAc, indicates the significant role of O-GlcNAc modification in the TRAF6-related cellular and metabolic dynamics. Our findings highlight the oncogenic function of TRAF6 in leukemia and illuminate the novel TRAF6/OGT/O-GlcNAc axis as a potential regulator of metabolic reprogramming in leukemogenesis.
Collapse
Affiliation(s)
- Shinichiro Matsui
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Chihiro Ri
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Lyndsey C Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Asuka Shibamiya
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Arata Ishii
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Koji Takaishi
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Nagisa Oshima-Hasegawa
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | | | - Yusuke Takeda
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Naoya Mimura
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
- Department of Transfusion Medicine and Cell Therapy, Chiba University Hospital, Chiba, Japan
| | - Tomoya Muto
- Department of Hematology, Chiba University Hospital, Chiba, Japan.
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan.
- Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
2
|
Shao S, Zhou D, Feng J, Liu Y, Baturuhu, Yin H, Zhan D. Regulation of inflammation and immunity in sepsis by E3 ligases. Front Endocrinol (Lausanne) 2023; 14:1124334. [PMID: 37465127 PMCID: PMC10351979 DOI: 10.3389/fendo.2023.1124334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by an abnormal infection-induced immune response. Despite significant advances in supportive care, sepsis remains a considerable therapeutic challenge and is the leading cause of death in the intensive care unit (ICU). Sepsis is characterized by initial hyper-inflammation and late immunosuppression. Therefore, immune-modulatory therapies have great potential for novel sepsis therapies. Ubiquitination is an essential post-translational protein modification, which has been known to be intimately involved in innate and adaptive immune responses. Several E3 ubiquitin ligases have been implicated in innate immune signaling and T-cell activation and differentiation. In this article, we review the current literature and discuss the role of E3 ligases in the regulation of immune response and their effects on the course of sepsis to provide insights into the prevention and therapy for sepsis.
Collapse
Affiliation(s)
- Shasha Shao
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daixing Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Obstetrics and Gynecology Department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baturuhu
- Department of Neurosurgery Intensive Care Unit (ICU), People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Huimei Yin
- Department of Emergency Medicine, People’s Hospital of Bortala Mongol Autonomous Prefecture, Bole, China
| | - Daqian Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Liposomes Bearing Non-Bilayer Phospholipid Arrangements Induce Specific IgG Anti-Lipid Antibodies by Activating NK1.1+, CD4+ T Cells in Mice. MEMBRANES 2022; 12:membranes12070643. [PMID: 35877846 PMCID: PMC9319584 DOI: 10.3390/membranes12070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Liposomes are artificial models of cellular membranes that are used as delivery systems for genes, drugs and protein antigens. We have previously used them to study the antigenic properties of their phospholipids. Here, we used them to induce the production of IgG anti-non-bilayer phospholipid arrangements (NPAs) antibodies in mice; these antibodies cause cell lysis and trigger a lupus-like disease in mice. We studied the mechanisms that lead to the production of these antibodies, and provide evidence that NK1.1+, CD4+ T cells respond to NPA-bearing liposomes and deliver the help required for specific B cell activation and antibody class-switching to IgG. We found increased numbers of IL-4-producing NK1.1+, CD4+ T cells in the secondary lymphoid organs of mice administered with NPAs, and these cells also expressed CD40L, which is required for B cell activation. Additionally, we isolated and purified NK1.1+, CD4+ T cells from spleens and determined that they over-expressed 40 genes, which are key players in inflammatory processes and B cell stimulation and have TRAF6 and UNC39B1 as key nodes in their network. These results show that liposomes are membrane models that can be used to analyze the immunogenicity of lipids.
Collapse
|
4
|
Gavali S, Liu J, Li X, Paolino M. Ubiquitination in T-Cell Activation and Checkpoint Inhibition: New Avenues for Targeted Cancer Immunotherapy. Int J Mol Sci 2021; 22:10800. [PMID: 34639141 PMCID: PMC8509743 DOI: 10.3390/ijms221910800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
The advent of T-cell-based immunotherapy has remarkably transformed cancer patient treatment. Despite their success, the currently approved immunotherapeutic protocols still encounter limitations, cause toxicity, and give disparate patient outcomes. Thus, a deeper understanding of the molecular mechanisms of T-cell activation and inhibition is much needed to rationally expand targets and possibilities to improve immunotherapies. Protein ubiquitination downstream of immune signaling pathways is essential to fine-tune virtually all immune responses, in particular, the positive and negative regulation of T-cell activation. Numerous studies have demonstrated that deregulation of ubiquitin-dependent pathways can significantly alter T-cell activation and enhance antitumor responses. Consequently, researchers in academia and industry are actively developing technologies to selectively exploit ubiquitin-related enzymes for cancer therapeutics. In this review, we discuss the molecular and functional roles of ubiquitination in key T-cell activation and checkpoint inhibitory pathways to highlight the vast possibilities that targeting ubiquitination offers for advancing T-cell-based immunotherapies.
Collapse
Affiliation(s)
| | | | | | - Magdalena Paolino
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, 17176 Solna, Sweden; (S.G.); (J.L.); (X.L.)
| |
Collapse
|
5
|
Balagopalan L, Malik H, McIntire KM, Garvey JA, Nguyen T, Rodriguez-Peña AB, Samelson LE. Bypassing ubiquitination enables LAT recycling to the cell surface and enhanced signaling in T cells. PLoS One 2020; 15:e0229036. [PMID: 32084172 PMCID: PMC7034843 DOI: 10.1371/journal.pone.0229036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/28/2020] [Indexed: 11/25/2022] Open
Abstract
LAT molecules defective in ubiquitination have an increased half-life and induce enhanced signaling when expressed in T cells. In this study, we have examined the role of ubiquitination in regulating LAT endocytosis, recycling, and degradation in resting and stimulated T cells. By tracking and comparing plasma membrane-labeled wild type and ubiquitination-resistant 2KR LAT, we find that ubiquitination promotes the degradation of surface LAT in T cells. Activation of T cells increases LAT ubiquitination and promotes trafficking of internalized LAT to lysosomes for degradation. Ubiquitination of LAT does not change internalization rates from the cell surface, but prevents efficient recycling of LAT to the surface of T cells. Our study demonstrates that surface LAT levels are tightly controlled by ubiquitination. LAT in unstimulated cells lacks ubiquitin allowing for increased LAT stability and efficient T cell activation upon TCR triggering; ubiquitination leads to efficient removal of LAT after activation.
Collapse
Affiliation(s)
- Lakshmi Balagopalan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (LB); (LES)
| | - Hiba Malik
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine M. McIntire
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph A. Garvey
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiffany Nguyen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana B. Rodriguez-Peña
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence E. Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (LB); (LES)
| |
Collapse
|
6
|
Arkee T, Bishop GA. TRAF family molecules in T cells: Multiple receptors and functions. J Leukoc Biol 2019; 107:907-915. [PMID: 31749173 DOI: 10.1002/jlb.2mr1119-397r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
The TNFR superfamily of receptors, the major focus of the recent TNFR Superfamily Conference held in June 2019, employ the TNFR-associated factor (TRAF) family of adaptor proteins in key aspects of their signaling pathways. Although many early studies investigated TRAF functions via exogenous overexpression in nonhematopoietic cell lines, it has subsequently become clear that whereas TRAFs share some overlap in function, each also plays unique biologic roles, that can be highly context dependent. This brief review summarizes the current state of knowledge of functions of each of the TRAF molecules that mediate important functions in T lymphocytes: TRAFs 1, 2, 3, 5, and 6. Due to our current appreciation of the contextual nature of TRAF function, our focus is upon findings made specifically in T lymphocytes. Key T cell functions for each TRAF are detailed, as well as future knowledge gaps of interest and importance.
Collapse
Affiliation(s)
- Tina Arkee
- Graduate Program in Immunology, The University of Iowa, Iowa City, Iowa, USA.,Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA
| | - Gail A Bishop
- Graduate Program in Immunology, The University of Iowa, Iowa City, Iowa, USA.,Medical Scientist Training Program, The University of Iowa, Iowa City, Iowa, USA.,Depts. of Microbiology & Immunology and Internal Medicine, The University of Iowa, Iowa City, Iowa, USA.,Iowa City VA Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
7
|
Dybas JM, O'Leary CE, Ding H, Spruce LA, Seeholzer SH, Oliver PM. Integrative proteomics reveals an increase in non-degradative ubiquitylation in activated CD4 + T cells. Nat Immunol 2019; 20:747-755. [PMID: 31061531 DOI: 10.1038/s41590-019-0381-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022]
Abstract
Despite gathering evidence that ubiquitylation can direct non-degradative outcomes, most investigations of ubiquitylation in T cells have focused on degradation. Here, we integrated proteomic and transcriptomic datasets from primary mouse CD4+ T cells to establish a framework for predicting degradative or non-degradative outcomes of ubiquitylation. Di-glycine remnant profiling was used to reveal ubiquitylated proteins, which in combination with whole-cell proteomic and transcriptomic data allowed prediction of protein degradation. Analysis of ubiquitylated proteins identified by di-glycine remnant profiling indicated that activation of CD4+ T cells led to an increase in non-degradative ubiquitylation. This correlated with an increase in non-proteasome-targeted K29, K33 and K63 polyubiquitin chains. This study revealed over 1,200 proteins that were ubiquitylated in primary mouse CD4+ T cells and highlighted the relevance of non-proteasomally targeted ubiquitin chains in T cell signaling.
Collapse
Affiliation(s)
- Joseph M Dybas
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Claire E O'Leary
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hua Ding
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynn A Spruce
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steven H Seeholzer
- Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paula M Oliver
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Cell Pathology Division, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Alvarez F, Fritz JH, Piccirillo CA. Pleiotropic Effects of IL-33 on CD4 + T Cell Differentiation and Effector Functions. Front Immunol 2019; 10:522. [PMID: 30949175 PMCID: PMC6435597 DOI: 10.3389/fimmu.2019.00522] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
IL-33, a member of the IL-1 family of cytokines, was originally described in 2005 as a promoter of type 2 immune responses. However, recent evidence reveals a more complex picture. This cytokine is released locally as an alarmin upon cellular damage where innate cell types respond to IL-33 by modulating their differentiation and influencing the polarizing signals they provide to T cells at the time of antigen presentation. Moreover, the prominent expression of the IL-33 receptor, ST2, on GATA3+ T helper 2 cells (TH2) demonstrated that IL-33 could have a direct impact on T cells. Recent observations reveal that T-bet+ TH1 cells and Foxp3+ regulatory T (TREG) cells can also express the ST2 receptor, either transiently or permanently. As such, IL-33 can have a direct effect on the dynamics of T cell populations. As IL-33 release was shown to play both an inflammatory and a suppressive role, understanding the complex effect of this cytokine on T cell homeostasis is paramount. In this review, we will focus on the factors that modulate ST2 expression on T cells, the effect of IL-33 on helper T cell responses and the role of IL-33 on TREG cell function.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Pedros C, Altman A, Kong KF. Role of TRAFs in Signaling Pathways Controlling T Follicular Helper Cell Differentiation and T Cell-Dependent Antibody Responses. Front Immunol 2018; 9:2412. [PMID: 30405612 PMCID: PMC6204373 DOI: 10.3389/fimmu.2018.02412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/28/2018] [Indexed: 01/02/2023] Open
Abstract
Follicular helper T (TFH) cells represent a highly specialized CD4+ T cell subpopulation that supports the generation of germinal centers (GC) and provides B cells with critical signals promoting antibody class switching, generation of high affinity antibodies, and memory formation. TFH cells are characterized by the expression of the chemokine receptor CXCR5, the transcription factor Bcl-6, costimulatory molecules ICOS, and PD-1, and the production of cytokine IL-21. The acquisition of a TFH phenotype is a complex and multistep process that involves signals received through engagement of the TCR along with a multitude of costimulatory molecules and cytokines receptors. Members of the Tumor necrosis factor Receptor Associated Factors (TRAF) represent one of the major classes of signaling mediators involved in the differentiation and functions of TFH cells. TRAF molecules are the canonical adaptor molecules that physically interact with members of the Tumor Necrosis Factor Receptor Superfamily (TNFRSF) and actively modulate their downstream signaling cascades through their adaptor function and/or E3 ubiquitin ligase activity. OX-40, GITR, and 4-1BB are the TRAF-dependent TNFRSF members that have been implicated in the differentiation and functions of TFH cells. On the other hand, emerging data demonstrate that TRAF proteins also participate in signaling from the TCR and CD28, which deliver critical signals leading to the differentiation of TFH cells. More intriguingly, we recently showed that the cytoplasmic tail of ICOS contains a conserved TANK-binding kinase 1 (TBK1)-binding motif that is shared with TBK1-binding TRAF proteins. The presence of this TRAF-mimicking signaling module downstream of ICOS is required to mediate the maturation step during TFH differentiation. In addition, JAK-STAT pathways emanating from IL-2, IL-6, IL-21, and IL-27 cytokine receptors affect TFH development, and crosstalk between TRAF-mediated pathways and the JAK-STAT pathways can contribute to generate integrated signals required to drive and sustain TFH differentiation. In this review, we will introduce the molecular interactions and the major signaling pathways controlling the differentiation of TFH cells. In each case, we will highlight the contributions of TRAF proteins to these signaling pathways. Finally, we will discuss the role of individual TRAF proteins in the regulation of T cell-dependent humoral responses.
Collapse
Affiliation(s)
- Christophe Pedros
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Kok-Fai Kong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| |
Collapse
|
10
|
Carpier JM, Zucchetti AE, Bataille L, Dogniaux S, Shafaq-Zadah M, Bardin S, Lucchino M, Maurin M, Joannas LD, Magalhaes JG, Johannes L, Galli T, Goud B, Hivroz C. Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation. J Exp Med 2018; 215:1245-1265. [PMID: 29440364 PMCID: PMC5881459 DOI: 10.1084/jem.20162042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 11/30/2017] [Accepted: 01/11/2018] [Indexed: 12/24/2022] Open
Abstract
The adapter molecule linker for activation of T cells (LAT) orchestrates the formation of signalosomes upon T cell receptor (TCR) stimulation. LAT is present in different intracellular pools and is dynamically recruited to the immune synapse upon stimulation. However, the intracellular traffic of LAT and its function in T lymphocyte activation are ill defined. We show herein that LAT, once internalized, transits through the Golgi-trans-Golgi network (TGN), where it is repolarized to the immune synapse. This retrograde transport of LAT depends on the small GTPase Rab6 and the target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) Syntaxin-16, two regulators of the endosome-to-Golgi/TGN retrograde transport. We also show in vitro in Syntaxin-16- or Rab6-silenced human cells and in vivo in CD4+ T lymphocytes of the Rab6 knockout mouse that this retrograde traffic controls TCR stimulation. These results establish that the retrograde traffic of LAT from the plasma membrane to the Golgi-TGN controls the polarized delivery of LAT at the immune synapse and T lymphocyte activation.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Andres E Zucchetti
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Laurence Bataille
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Stéphanie Dogniaux
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Sabine Bardin
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Marco Lucchino
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Mathieu Maurin
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Leonel D Joannas
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Joao Gamelas Magalhaes
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| | - Ludger Johannes
- Cellular and Chemical Biology of Membranes and Therapeutic Delivery Unit, Institut Curie, Paris Sciences and Lettres Research University, INSERM U1143, CNRS UMR 3666, Paris, France
| | - Thierry Galli
- Center of Psychiatry and Neurosciences, Membrane Traffic in Health and Diseased Brain, Université Paris Descartes, Sorbonne Paris Cité, INSERM ERL U950, Paris, France
| | - Bruno Goud
- Molecular Mechanisms of Intracellular Transport Group, Institut Curie, Paris Sciences and Lettres Research University, CNRS UMR 144, Paris, France
| | - Claire Hivroz
- Crosstalk between T Cells and Dendritic Cells Group, Institut Curie, Paris Sciences and Lettres Research University, INSERM U932, Paris, France
| |
Collapse
|
11
|
Wallis AM, Bishop GA. TRAF3 regulation of inhibitory signaling pathways in B and T lymphocytes by kinase and phosphatase localization. J Leukoc Biol 2018; 103:1089-1098. [PMID: 29345428 DOI: 10.1002/jlb.2mir0817-339rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
This brief review presents current understanding of how the signaling adapter protein TRAF3 can both induce and block inhibitory signaling pathways in B and T lymphocytes, via association with kinases and phosphatases, and subsequent regulation of their localization within the cell. In B lymphocytes, signaling through the interleukin 6 receptor (IL-6R) induces association of TRAF3 with IL-6R-associated JAK1, to which TRAF3 recruits the phosphatase PTPN22 (protein tyrosine phosphatase number 22) to dephosphorylate JAK1 and STAT3, inhibiting IL-6R signaling. An important biological consequence of this inhibition is restraining the size of the plasma cell compartment, as their differentiation is IL-6 dependent. Similarly, in T lymphocytes, interleukin 2 receptor (IL-2R) signaling recruits TRAF3, which in turn recruits the phosphatase TCPTP (T cell protein tyrosine phosphatase) to dephosphorylate JAK3. The resulting inhibition of IL-2R signaling limits the IL-2-dependent size of the T regulatory cell (Treg) compartment. TRAF3 also inhibits type 1 IFN receptor (IFNαR) signaling to T cells by this mechanism, restraining expression of IFN-stimulated gene expression. In contrast, TRAF3 association with two inhibitors of TCR signaling, C-terminal Src kinase (Csk) and PTPN22, promotes their localization to the cytoplasm, away from the membrane TCR complex. TRAF3 thus enhances TCR signaling and downstream T cell activation. Implications are discussed for these regulatory roles of TRAF3 in lymphocytes, as well as potential future directions.
Collapse
Affiliation(s)
| | - Gail A Bishop
- Graduate Program in Immunology, Iowa City, Iowa, USA
- Department of Microbiology & Immunology, The University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, Iowa, USA
- Veterans' Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Lalani AI, Zhu S, Gokhale S, Jin J, Xie P. TRAF molecules in inflammation and inflammatory diseases. ACTA ACUST UNITED AC 2017. [PMID: 29527458 DOI: 10.1007/s40495-017-0117-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purpose of Review This review presents an overview of the current knowledge of TRAF molecules in inflammation with an emphasis on available human evidence and direct in vivo evidence of mouse models that demonstrate the contribution of TRAF molecules in the pathogenesis of inflammatory diseases. Recent Findings The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of cytoplasmic proteins was initially identified as signaling adaptors that bind directly to the intracellular domains of receptors of the TNF-R superfamily. It is now appreciated that TRAF molecules are widely employed in signaling by a variety of adaptive and innate immune receptors as well as cytokine receptors. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Most of these signaling pathways have been linked to inflammation, and therefore TRAF molecules were expected to regulate inflammation and inflammatory responses since their discovery in 1990s. However, direct in vivo evidence of TRAFs in inflammation and especially in inflammatory diseases had been lacking for many years, partly due to the difficulty imposed by early lethality of TRAF2-/-, TRAF3-/-, and TRAF6-/- mice. With the creation of conditional knockout and lineage-specific transgenic mice of different TRAF molecules, our understanding about TRAFs in inflammation and inflammatory responses has rapidly advanced during the past decade. Summary Increasing evidence indicates that TRAF molecules are versatile and indispensable regulators of inflammation and inflammatory responses and that aberrant expression or function of TRAFs contributes to the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Almin I Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Samantha Gokhale
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, New Jersey 08854
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Department of Pharmacology, Anhui Medical University, Meishan Road 81st, Shushan District, Hefei, Anhui province, China
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey 08854
- Member, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
13
|
Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X, Huang X. miR-146a Inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol 2017; 162:3645-3659. [PMID: 28825144 PMCID: PMC7086938 DOI: 10.1007/s00705-017-3516-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 07/18/2017] [Indexed: 12/28/2022]
Abstract
During dengue virus (DENV) infection, the virus manipulates different cellular pathways to assure productive replication, including autophagy. However, it remains unclear how this autophagic process is regulated. Here, we have demonstrated a novel role for the microRNA miR-146a in negatively regulating the cellular autophagic pathway in DENV-infected A549 cells and THP-1 cells. Overexpression of miR-146a significantly blocked DENV2-induced autophagy, and LNA-mediated inhibition of miR-146a counteracted these effects. Moreover, co-overexpression of TRAF6, a target of miR-146a, significantly reversed the inhibitory effect of miR-146a on autophagy. Notably, treatment with recombinant IFN-β fully restored the autophagic activity in TRAF6-silenced cells. Furthermore, our data showed that, in DENV2-infected A549 cells, autophagy promoted a pro-inflammatory response to significantly increase TNF-α and IL-6 production. Taken together, our results define a novel role for miR-146a as a negative regulator of DENV-induced autophagy and identify TRAF6 as a key target of this microRNA in modulating the DENV-autophagy interaction.
Collapse
Affiliation(s)
- Jieying Pu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Siyu Wu
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Heping Xie
- Department of Traditional Chinese Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuye Li
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, 1 Qide Road, Guangzhou, 510440, China.
| | - Xi Huang
- Program of Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Molecular mechanisms underlying the evolution of the slp76 signalosome. Sci Rep 2017; 7:1509. [PMID: 28473706 PMCID: PMC5431462 DOI: 10.1038/s41598-017-01660-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
The well-defined mammalian slp76-signalosome is crucial for T-cell immune response, yet whether slp76-signalosome exists in invertebrates and how it evolved remain unknown. Here we investigated slp76-signalosome from an evolutionary perspective in amphioxus Branchiostoma belcheri (bb). We proved slp76-signalosome components bbslp76, bbGADS and bbItk are present in amphioxus and bbslp76 interacts with bbGADS and bbItk, but differences exist between the interaction manners within slp76-signalosome components of amphioxus and human (h). Specifically, bbslp76 has a unique WW-domain that blocked its association with hItk and decreased TCR-induced tyrosine-phosphorylation and NFAT-activation. Deletion of WW-domain shifted the constitutive association between bbslp76 and hPLCγ1 to a TCR-enhanced association. Among slp76-signalosome, the interaction between slp76 and PLCγ1 is the most conserved and the binding between Itk and slp76 evolved from constitutive to stimulation-regulated. Sequence alignment and 3D structural analysis of slp76-signalosome molecules from keystone species indicated slp76 evolved into a more unfolded and flexible adaptor due to lack of WW-domain and several low-complexity-regions (LCRs) while GADS turned into a larger protein by a LCR gain, thus preparing more space for nucleating the coevolving slp76-signalosome. Altogether, through deletion of WW-domain and manipulation of LCRs, slp76-signalosome evolves from a rigid and stimulation-insensitive to a more flexible and stimulation-responding complex.
Collapse
|
15
|
Gao SF, Zhong B, Lin D. Regulation of T helper cell differentiation by E3 ubiquitin ligases and deubiquitinating enzymes. Int Immunopharmacol 2016; 42:150-156. [PMID: 27914308 DOI: 10.1016/j.intimp.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
CD4 T cells are essential components of adaptive immunity and play a critical role in anti-pathogenic or anti-tumor responses as well as autoimmune and allergic diseases. Naive CD4 T cells differentiate into distinct subsets of T helper (Th) cells by various signals including TCR, costimulatory and cytokine signals. Accumulating evidence suggests that these signaling pathways are critically regulated by ubiquitination and deubiquitination, two reversible posttranslational modifications mediated by E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), respectively. In this review, we briefly introduce the signaling pathways that control the differentiation of Th cells and then focused on the roles of E3s- and DUBs-mediated ubiquitin modification or demodification in regulating Th cell differentiation.
Collapse
Affiliation(s)
- Si-Fa Gao
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Bo Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
16
|
Onnis A, Finetti F, Baldari CT. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front Immunol 2016; 7:50. [PMID: 26913036 PMCID: PMC4753310 DOI: 10.3389/fimmu.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena , Siena , Italy
| | | | - Cosima T Baldari
- Department of Life Sciences, University of Siena , Siena , Italy
| |
Collapse
|
17
|
Abstract
Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) is broadly involved in different receptor-mediated signaling pathways. Considerable progress was made recently in understanding the role of TRAF3 in T cell biology. Here we review these new findings about how TRAF3 participates in T cell development and function. The different roles of TRAF3 in distinct immune cells are also compared. That TRAF3 is required for T cell effector functions, and invariant Natural Killer T cell function and development, was unexpected. Another surprising finding is that TRAF3 normally restrains regulatory T cell development. It is now clear that TRAF3 regulates signaling to T cells not only through costimulatory members of the TNFR superfamily, but also through the T cell receptor complex, and cytokine receptors. The diverse roles it plays support the multifaceted nature of this molecule. How TRAF3 mediates integration of different signaling cascades is an important topic for future study.
Collapse
Key Words
- DC, dendritic cell
- IBD, inflammatory bowel disease
- ICOS, inducible co-stimulator
- IKK, IκB kinase
- IL-2 receptor
- IL-2, interleukin-2
- Jak1, Janus kinase 1
- LMC, litter mate control
- LMP1, latent membrane protein-1
- MAPK, mitogen-activated protein kinase
- MΦ, macrophage
- NIK, NF-κB inducing kinase
- NLR, nucleotide binding-oligomerization domain (NOD)-like receptor
- RLR, retinoic acid-inducible gene (RIG)-I-like receptor
- SLAM, signaling lymphocyte activation molecule
- SOCS1, Suppressor of cytokine signaling 1
- T cell
- T cell receptor
- T-TRAF3−/−, CD4CreTRAF3flox/flox
- TCPTP, T cell protein tyrosine phosphatase
- TCR, T cell receptor
- TFH, follicular helper T cell
- TFR, follicular Treg cell
- TLR, Toll-like receptor
- TNFR, Tumor necrosis factor receptor
- TRAF3
- TRAF3, TNFR-associated factor 3
- Tcm cell, central memory T cell
- Tem cell, effector memory T cell
- Treg cell, regulatory T cell
- adaptor molecule
- iNKT cell, invariant Natural Killer T cell
- invariant Natural Killer T cell
- regulatory T cell
- signaling pathway
Collapse
Affiliation(s)
- Zuoan Yi
- a Departments of Microbiology ; University of Iowa ; Iowa City , IA USA
| | | | | |
Collapse
|
18
|
A novel miR-200b-3p/p38IP pair regulates monocyte/macrophage differentiation. Cell Discov 2016; 2:15043. [PMID: 27462440 PMCID: PMC4860955 DOI: 10.1038/celldisc.2015.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023] Open
Abstract
Monocyte/macrophage differentiation represents a major branch of hematopoiesis and is a central event in the immune response, but the molecular mechanisms underlying are not fully delineated. Here we show that p38 mitogen-activated protein kinase (MAPK) interacting protein (p38IP) is downregulated during monocyte/macrophage differentiation in vitro. Overexpression of p38IP halted monocyte/macrophage differentiation, whereas forward knockdown of p38IP by RNA interference induced G1/S arrest and promoted monocyte differentiation into macrophages and the maturation of macrophages as well. Moreover, we found that miR-200b-3p was upregulated during monocyte/macrophage differentiation and mediated the downregulation of p38IP by binding to the 3′ untranslated terminal region of p38IP mRNA. Overexpression of a miR-200b-3p mimic resembled the effect of p38IP knockdown, whereas a miR-200b-3p inhibitor blocked monocyte/macrophage differentiation by enhancing p38IP expression. Further western blotting analysis revealed that p38IP downregulation enhanced the activity of p38 MAPK and the subsequent accumulation of cyclin-dependent kinase inhibitor p21, thus promoting G1/S arrest and monocyte/macrophage differentiation. Moreover, the decline of GCN5 acetyltransferase caused by p38IP downregulation was required but was not sufficient for monocyte/macrophage differentiation. This study demonstrated a new role for p38IP and a novel miR-200b-3p/p38IP pair in the regulation of monocyte/macrophage differentiation.
Collapse
|
19
|
Wang X, Chen Z, Wang Q, Li Y. Assessment of TCR-induced Sumoylation of PKC-θ. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Wang X, Li Y. PKC-θ in vitro Kinase Activity Assay. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
21
|
O'Leary CE, Lewis EL, Oliver PM. Ubiquitylation as a Rheostat for TCR Signaling: From Targeted Approaches Toward Global Profiling. Front Immunol 2015; 6:618. [PMID: 26732666 PMCID: PMC4679856 DOI: 10.3389/fimmu.2015.00618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/26/2015] [Indexed: 12/24/2022] Open
Abstract
T cell receptor (TCR) signaling must be precisely tuned to limit collateral damage and prevent reactivity to self, while still allowing robust protective immune responses that control pathogen invasion. One process that can be used to promote, modify, or terminate TCR signaling is ubiquitylation. During ubiquitylation, ubiquitin is covalently attached to target proteins through a multistep process, in which E3 ubiquitin ligases promote the formation of ubiquitin chains on selected substrates. Ubiquitylation can facilitate protein–protein interactions, direct a protein to a specific subcellular location, or initiate protein destruction. Like phosphorylation, ubiquitylation is a reversible process – deubiquitylating enzymes counteract ligase function by removing ubiquitin chains. This reversibility also allows for ubiquitin chain “editing.” Based on an emerging wealth of information from genetic loss-of-function studies showing that deregulation of ubiquitylation pathways leads to immune dysfunction, it has become increasingly apparent that the dynamic process of ubiquitylation is critical for normal immune cell function. In this review, we will describe how ubiquitylation acts as a key modulator and integrator of signaling downstream of TCR engagement. Specifically, we highlight the known roles of the substrate-specific E3 ligases and deubiquitylating enzymes in TCR signaling and T cell activation. While it is clear that ubiquitin enzymes tune T cell signaling and T cell function, elucidating the molecular mechanisms by which these proteins modulate T cells has met with significant challenges. Identifying substrates of these enzymes has been a particular challenge, and thus substrates of many E3 ligases and deubiquitylating enzymes remain largely unknown. To that end, we discuss the promise, and some practical considerations, of using proteomics-based techniques for unbiased identification of putative substrates of ubiquitin cascade proteins within primary T cells. These methods provide an exciting opportunity for further defining how TCR signals are regulated and for identifying new targets for therapeutic modulation.
Collapse
Affiliation(s)
- Claire E O'Leary
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Emma L Lewis
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Paula M Oliver
- Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
22
|
Yang Y, Wu S, Wang Y, Pan S, Lan B, Liu Y, Zhang L, Leng Q, Chen D, Zhang C, He B, Cao Y. The Us3 Protein of Herpes Simplex Virus 1 Inhibits T Cell Signaling by Confining Linker for Activation of T Cells (LAT) Activation via TRAF6 Protein. J Biol Chem 2015; 290:15670-15678. [PMID: 25907557 DOI: 10.1074/jbc.m115.646422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is the most prevalent human virus and causes global morbidity because the virus is able to infect multiple cell types. Remarkably, HSV infection switches between lytic and latent cycles, where T cells play a critical role. However, the precise way of virus-host interactions is incompletely understood. Here we report that HSV-1 productively infected Jurkat T-cells and inhibited antigen-induced T cell receptor activation. We discovered that HSV-1-encoded Us3 protein interrupted TCR signaling and interleukin-2 production by inactivation of the linker for activation of T cells. This study unveils a mechanism by which HSV-1 intrudes into early events of TCR-mediated cell signaling and may provide novel insights into HSV infection, during which the virus escapes from host immune surveillance.
Collapse
Affiliation(s)
- Yin Yang
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Songfang Wu
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yu Wang
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shuang Pan
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Bei Lan
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yaohui Liu
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Liming Zhang
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qianli Leng
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Da Chen
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Cuizhu Zhang
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612.
| | - Youjia Cao
- Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
23
|
Friend SF, Deason-Towne F, Peterson LK, Berger AJ, Dragone LL. Regulation of T cell receptor complex-mediated signaling by ubiquitin and ubiquitin-like modifications. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2014; 3:107-123. [PMID: 25628960 PMCID: PMC4299764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/10/2014] [Indexed: 06/04/2023]
Abstract
Post-translational protein modifications are a dynamic method of regulating protein function in response to environmental signals. As with any cellular process, T cell receptor (TCR) complex-mediated signaling is highly regulated, since the strength and duration of TCR-generated signals governs T cell development and activation. While regulation of TCR complex-mediated signaling by phosphorylation has been well studied, regulation by ubiquitin and ubiquitin-like modifiers is still an emerging area of investigation. This review will examine how ubiquitin, E3 ubiquitin ligases, and other ubiquitin-like modifications such as SUMO and NEDD8 regulate TCR complex-mediated signaling.
Collapse
Affiliation(s)
- Samantha F Friend
- Department of Pediatrics, University of Colorado School of MedicineAurora, CO 80045, USA
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish HealthDenver, CO 80206, USA
| | - Francina Deason-Towne
- Department of Pediatrics, University of Colorado School of MedicineAurora, CO 80045, USA
- Department of Biology, Regis UniversityDenver, CO 80221, USA
| | - Lisa K Peterson
- Department of Pediatrics, University of Colorado School of MedicineAurora, CO 80045, USA
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish HealthDenver, CO 80206, USA
| | - Allison J Berger
- Takeda Pharmaceuticals International Co.Cambridge, MA 02139, USA
| | - Leonard L Dragone
- Department of Pediatrics, University of Colorado School of MedicineAurora, CO 80045, USA
- Integrated Department of Immunology, University of Colorado School of Medicine and National Jewish HealthDenver, CO 80206, USA
- Division of Rheumatology, Colorado Children’s HospitalAurora, CO 80045, USA
- Since completing this study, Dr. Dragone has joined Genentech, a member of the Roche group. GenentechSouth San Francisco, CA 94090, USA
| |
Collapse
|
24
|
Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 2013; 25:147-56. [PMID: 24433987 DOI: 10.1016/j.cytogfr.2013.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 12/27/2022]
Abstract
TRAF3 is an adapter protein that serves and regulates the functions of several types of receptors, located both inside the cell and at the plasma membrane. These include members of the TNF receptor superfamily (TNFR-SF), toll-like receptors (TLR), and cytokine receptors. It has become increasingly evident that the roles and functions of TRAF3 are highly context-dependent. TRAF3 can serve distinct roles for different receptors in the same cell, and also has highly cell-type-dependent functions. This review focuses upon the current state of knowledge regarding how TRAF3 regulates the biology and effector functions of B and T lymphocytes, two major cell types of the adaptive immune response in which TRAF3 has markedly distinct roles.
Collapse
|
25
|
Abstract
The tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) family of intracellular proteins were originally identified as signaling adaptors that bind directly to the cytoplasmic regions of receptors of the TNF-R superfamily. The past decade has witnessed rapid expansion of receptor families identified to employ TRAFs for signaling. These include Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-I-like receptors (RLRs), T cell receptor, IL-1 receptor family, IL-17 receptors, IFN receptors and TGFβ receptors. In addition to their role as adaptor proteins, most TRAFs also act as E3 ubiquitin ligases to activate downstream signaling events. TRAF-dependent signaling pathways typically lead to the activation of nuclear factor-κBs (NF-κBs), mitogen-activated protein kinases (MAPKs), or interferon-regulatory factors (IRFs). Compelling evidence obtained from germ-line and cell-specific TRAF-deficient mice demonstrates that each TRAF plays indispensable and non-redundant physiological roles, regulating innate and adaptive immunity, embryonic development, tissue homeostasis, stress response, and bone metabolism. Notably, mounting evidence implicates TRAFs in the pathogenesis of human diseases such as cancers and autoimmune diseases, which has sparked new appreciation and interest in TRAF research. This review presents an overview of the current knowledge of TRAFs, with an emphasis on recent findings concerning TRAF molecules in signaling and in human diseases.
Collapse
Affiliation(s)
- Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Nelson Labs Room B336, Piscataway, New Jersey 08854.
| |
Collapse
|