1
|
Chisca M, Larouche J, Xing Q, Kassiotis G. Antibodies against endogenous retroviruses. Immunol Rev 2024; 328:300-313. [PMID: 39152687 PMCID: PMC11659944 DOI: 10.1111/imr.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The human genome harbors hundreds of thousands of integrations of ancient retroviruses, amassed over millions of years of evolution. To reduce further amplification in the genome, the host prevents transcription of these now endogenous retroviruses (ERVs) through epigenetic repression and, with evolutionary time, ERVs are incapacitated by accumulating mutations and deletions. However, several members of recently endogenized ERV groups still retain the capacity to produce viral RNA, retroviral proteins, and higher order structures, including virions. The retention of viral characteristics, combined with the reversible nature of epigenetic repression, particularly as seen in cancer, allow for immunologically unanticipated ERV expression, perceived by the adaptive immune system as a genuine retroviral infection, to which it has to respond. Accordingly, antibodies reactive with ERV antigens have been detected in diverse disorders and, occasionally, in healthy individuals. Although they are part of self, the retroviral legacy of ERV antigens, and association with and, possibly, causation of disease states may set them apart from typical self-antigens. Consequently, the pathogenic or, indeed, host-protective capacity of antibodies targeting ERV antigens is likely to be context-dependent. Here, we review the immunogenicity of typical ERV proteins, with emphasis on the antibody response and its potential disease implications.
Collapse
Affiliation(s)
- Mihaela Chisca
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | | | - Qi Xing
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
| | - George Kassiotis
- Retroviral Immunology LaboratoryThe Francis Crick InstituteLondonUK
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
2
|
Abstract
Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, United Kingdom;
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Podschwadt P, Malyshkina A, Windmann S, Papadamakis A, Kerkmann L, Lapuente D, Tenbusch M, Lu M, Schindler M, Lang KS, Hansen W, Bayer W. Immune suppression of vaccine-induced CD8 + T-cell responses by gamma retrovirus envelope is mediated by interleukin-10-producing CD4 + T cells. Front Immunol 2022; 13:934399. [PMID: 36605206 PMCID: PMC9807908 DOI: 10.3389/fimmu.2022.934399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Retroviral envelope (Env) proteins have long been recognized to exhibit immunosuppressive properties, which affect the CD8+ T-cell response to an infection but also to immunization. Interestingly, we previously showed in the Friend murine leukemia virus (F-MuLV) model that the surface Env protein gp70 also plays a role in immunosuppression, in addition to the immunosuppressive function attributed to the transmembrane Env protein. We now demonstrate that immunization with F-MuLV Env leads to a significant increase in interleukin-10 (IL-10)-producing CD4+ T cells and that the induction of CD8+ T-cell responses in the presence of Env is rescued if the capacity of CD4+ T cells to produce IL-10 is abrogated, indicating a mechanistic role of IL-10-producing CD4+ T cells in mediating the Env-induced suppression of CD8+ T-cell responses in Env co-immunization. We found that CD8+ T-cell responses against different immunogens are not all equally affected. On the other hand, suppression of immunity was observed not only in co-immunization experiments but also for immune control of subcutaneous tumor growth after an Env immunization. Finally, we show that suppression of CD8+ T cells by the surface Env protein is observed not only for Friend MuLV Env but also for the Env proteins of other gamma retroviruses. Taken together, our results show that IL-10-producing CD4+ T cells mechanistically underlie the Env-mediated suppression of CD8+ T-cell responses and suggest the presence of an immunosuppressive motif in the surface Env protein of gamma retroviruses.
Collapse
Affiliation(s)
- Philip Podschwadt
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sonja Windmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Athanasios Papadamakis
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Leonie Kerkmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dennis Lapuente
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Schindler
- Department for Molecular Virology, Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, University Tübingen, Tübingen, Germany
| | - Karl Sebastian Lang
- Institute for Immunology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute for Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany,*Correspondence: Wibke Bayer,
| |
Collapse
|
4
|
Skartsis N, Ferreira LMR, Tang Q. The dichotomous outcomes of TNFα signaling in CD4 + T cells. Front Immunol 2022; 13:1042622. [PMID: 36466853 PMCID: PMC9708889 DOI: 10.3389/fimmu.2022.1042622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 09/26/2023] Open
Abstract
TNFa blocking agents were the first-in-class biologic drugs used for the treatment of autoimmune disease. Paradoxically, however, exacerbation of autoimmunity was observed in some patients. TNFa is a pleiotropic cytokine that has both proinflammatory and regulatory effects on CD4+ T cells and can influence the adaptive immune response against autoantigens. Here, we critically appraise the literature and discuss the intricacies of TNFa signaling that may explain the controversial findings of previous studies. The pleiotropism of TNFa is based in part on the existence of two biologically active forms of TNFa, soluble and membrane-bound, with different affinities for two distinct TNF receptors, TNFR1 and TNFR2, leading to activation of diverse downstream molecular pathways involved in cell fate decisions and immune function. Distinct membrane expression patterns of TNF receptors by CD4+ T cell subsets and their preferential binding of distinct forms of TNFα produced by a diverse pool of cellular sources during different stages of an immune response are important determinants of the differential outcomes of TNFa-TNF receptor signaling. Targeted manipulation of TNFa-TNF receptor signaling on select CD4+ T cell subsets may offer specific therapeutic interventions to dampen inflammation while fortifying immune regulation for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Skartsis
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, MN, United States
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Gladstone University of California San Francisco (UCSF) Institute of Genome Immunology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
5
|
Signaling pathway(s) of TNFR2 required for the immunoregulatory effect of CD4 +Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 108:108823. [PMID: 35623290 DOI: 10.1016/j.intimp.2022.108823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
Abstract
CD4+Foxp3+ regulatory T cells (Tregs), a subpopulation of CD4+ T cells, are engaged in maintaining the periphery tolerance and preventing autoimmunity. Recent studies showed that tumor necrosis factor receptor 2 (TNFR2) is preferentially expressed by Tregs and the expression of this receptor identifies the maximally suppressive Tregs. That is, TNFR2 is a liable phenotypic and functional surface marker of Tregs. Moreover, TNF activates and expands Tregs through TNFR2. However, it is very interesting which signaling pathway(s) of TNFR2 is required for the inhibitory effect of Tregs. Compelling evidence shows three TNFR2 signaling pathways in Tregs, including NF-κB, MAPK and PI3K-Akt pathways. Here, we summarize and discuss the latest progress in the studies on the downstream signaling pathways of TNF-TNFR2 for controlling Treg homeostasis, differentiation and proliferation.
Collapse
|
6
|
Schroeter CB, Huntemann N, Bock S, Nelke C, Kremer D, Pfeffer K, Meuth SG, Ruck T. Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Front Immunol 2021; 12:747143. [PMID: 34691057 PMCID: PMC8529161 DOI: 10.3389/fimmu.2021.747143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cells (Tregs) are the major determinant of peripheral immune tolerance. Many Treg subsets have been described, however thymus-derived and peripherally induced Tregs remain the most important subpopulations. In multiple sclerosis, a prototypical autoimmune disorder of the central nervous system, Treg dysfunction is a pathogenic hallmark. In contrast, induction of Treg proliferation and enhancement of their function are central immune evasion mechanisms of infectious pathogens. In accordance, Treg expansion is compartmentalized to tissues with high viral replication and prolonged in chronic infections. In friend retrovirus infection, Treg expansion is mainly based on excessive interleukin-2 production by infected effector T cells. Moreover, pathogens seem also to enhance Treg functions as shown in human immunodeficiency virus infection, where Tregs express higher levels of effector molecules such as cytotoxic T-lymphocyte-associated protein 4, CD39 and cAMP and show increased suppressive capacity. Thus, insights into the molecular mechanisms by which intracellular pathogens alter Treg functions might aid to find new therapeutic approaches to target central nervous system autoimmunity. In this review, we summarize the current knowledge of the role of pathogens for Treg function in the context of autoimmune neuroinflammation. We discuss the mechanistic implications for future therapies and provide an outlook for new research directions.
Collapse
Affiliation(s)
- Christina B Schroeter
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas Huntemann
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefanie Bock
- Department of Neurology With Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Simultaneous or prior activation of intrahepatic type I interferon signaling leads to hepatitis B virus persistence in a mouse model. J Virol 2021; 95:e0003421. [PMID: 34550772 DOI: 10.1128/jvi.00034-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It remains controversial how interferon (IFN) response contributes to hepatitis B virus (HBV) control and pathogenesis. A previous study identified that hydrodynamic injection (HI) of type I IFN (IFN-I) inducer polyinosinic-polycytidylic acid (poly(I:C)) leads to HBV clearance in a chronic HBV mouse model. However, recent studies have suggested that premature IFN-I activation in the liver may facilitate HBV persistence. In the present study, we investigated how the early IFN-I response induces an immunosuppressive signaling cascade and thus causes HBV persistence. We performed HI of the plasmid adeno-associated virus (pAAV)/HBV 1.2 into adult BALB/c mice to establish an adult acute HBV replication model. Activation of the IFN-I signaling pathway following poly(I:C) stimulation or murine cytomegalovirus (MCMV) infection resulted in subsequent HBV persistence. HI of poly(I:C) with the pAAV/HBV 1.2 plasmid resulted in not only the production of IFN-I and the anti-inflammatory cytokine interleukin (IL)-10 but also the expansion of intrahepatic regulatory T cells (Tregs), Kupffer cells (KCs) and myeloid-derived suppressor cells (MDSCs), all of which impaired the T cell response. However, when poly(I:C) was injected at day 14 after the HBV plasmid injection, it significantly enhanced HBV specific T cell responses. In addition, interferon-alpha/beta receptor (IFNAR) blockade rescued T cell response by downregulating of IL-10 expression and decreasing Treg and KC expansion. Consistently, Treg depletion or IL-10 blockade also controlled HBV replication. Importance: IFN-I plays a double-edged sword role during chronic HBV infection. Here, we identified that application of IFN-I at different time points causes contrast outcome. Activation of the IFN-I pathway before HBV replication induces an immunosuppressive signaling cascade in the liver, and consequently caused HBV persistence while IFN-I activation post HBV infection enhances HBV-specific T cell responses and thus promote HBV clearance. This result provided an important clue to the mechanism of HBV persistence in adult individuals.
Collapse
|
8
|
Moore TC, Hasenkrug KJ. B-Cell Control of Regulatory T Cells in Friend Virus Infection. J Mol Biol 2021; 433:166583. [PMID: 32598936 DOI: 10.1016/j.jmb.2020.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes have well-established effector roles during viral infections, including production of antibodies and functioning as antigen-presenting cells for CD4+ and CD8+ T cells. B cells have also been shown to regulate immune responses and induce regulatory T cells (Tregs). In the Friend virus (FV) model, Tregs are known to inhibit effector CD8+ T-cell responses and contribute to virus persistence. Recent work has uncovered a role for B cells in the induction and activation of Tregs during FV infection. In addition to inducing Tregs, B cell antibody production and antigen-presenting cell activity is a target of Treg suppression. This review focuses on the dynamic interactions between B cells and Tregs during FV infection.
Collapse
Affiliation(s)
- Tyler C Moore
- College of Science and Technology, Bellevue University, 1000 Galvin Road South, Bellevue, NE 68005, USA.
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 S. 4th Street, Hamilton, MT 59840, USA.
| |
Collapse
|
9
|
Ross JA, Malyshkina A, Otto L, Liu J, Dittmer U. Inhibition of IL-2 or NF- κB Subunit c-Rel-Dependent Signaling Inhibits Expansion of Regulatory T Cells During Acute Friend Retrovirus Infection. Viral Immunol 2020; 33:353-360. [PMID: 32315584 DOI: 10.1089/vim.2019.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In retroviral infections, different immunological mechanisms are involved in the development of a chronic infection. In the Friend virus (FV) model, regulatory T cells (Tregs) were found to induce CD8+ T cell dysfunction before viral clearance is achieved and thus contribute to viral chronicity. Although studied for decades, the exact suppressive mechanisms of Tregs in the FV model remain elusive and an unavailable therapeutic target. However, extracellular IL-2 and intracellular NF-κB signaling were shown to be important pathways for Treg expansion and activation. Therefore, we decided to focus on these two pathways to test therapeutic approaches inhibiting Treg activation during FV infection. In this study, we show that the inhibition of either IL-2 or the NF-κB subunit c-Rel, impaired Treg expansion and activation at 2 weeks post-FV infection. Total numbers of Tregs as well as activated Tregs were reduced in FV-infected mice after treatment with anti-IL-2 antibodies or the c-Rel blocking reagent pentoxifylline. Surprisingly, this did not affect the expansion or function of virus-specific CD8+ T cells nor viral loads in the spleen. However, our data suggest that neutralization of IL-2 as well as blocking c-Rel efficiently inhibits virus-induced Treg expansion.
Collapse
Affiliation(s)
- Jean Alexander Ross
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lucas Otto
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute for Experimental Immunology and Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
11
|
Copsel S, Wolf D, Komanduri KV, Levy RB. The promise of CD4 +FoxP3 + regulatory T-cell manipulation in vivo: applications for allogeneic hematopoietic stem cell transplantation. Haematologica 2019; 104:1309-1321. [PMID: 31221786 PMCID: PMC6601084 DOI: 10.3324/haematol.2018.198838] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
CD4+FoxP3+ regulatory T cells (Tregs) are a non-redundant population critical for the maintenance of self-tolerance. Over the past decade, the use of these cells for therapeutic purposes in transplantation and autoimmune disease has emerged based on their capacity to inhibit immune activation. Basic science discoveries have led to identifying key receptors on Tregs that can regulate their proliferation and function. Notably, the understanding that IL-2 signaling is crucial for Treg homeostasis promoted the hypothesis that in vivo IL-2 treatment could provide a strategy to control the compartment. The use of low-dose IL-2 in vivo was shown to selectively expand Tregs versus other immune cells. Interestingly, a number of other Treg cell surface proteins, including CD28, CD45, IL-33R and TNFRSF members, have been identified which can also induce activation and proliferation of this population. Pre-clinical studies have exploited these observations to prevent and treat mice developing autoimmune diseases and graft-versus-host disease post-allogeneic hematopoietic stem cell transplantation. These findings support the development of translational strategies to expand Tregs in patients. Excitingly, the use of low-dose IL-2 for patients suffering from graft-versus-host disease and autoimmune disease has demonstrated increased Treg levels together with beneficial outcomes. To date, promising pre-clinical and clinical studies have directly targeted Tregs and clearly established the ability to increase their levels and augment their function in vivo. Here we review the evolving field of in vivo Treg manipulation and its application to allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | - Krishna V Komanduri
- Department of Microbiology and Immunology.,Sylvester Comprehensive Cancer Center.,Division of Transplantation and Cellular Therapy, Department of Medicine
| | - Robert B Levy
- Department of Microbiology and Immunology .,Division of Transplantation and Cellular Therapy, Department of Medicine.,Department of Ophthalmology, Miller School of Medicine, University of Miami, FL, USA
| |
Collapse
|
12
|
Effects of Friend Virus Infection and Regulatory T Cells on the Antigen Presentation Function of B Cells. mBio 2019; 10:mBio.02578-18. [PMID: 30670616 PMCID: PMC6343038 DOI: 10.1128/mbio.02578-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The primary role of B cells in immunity is considered the production of pathogen-specific antibodies, but another, less-well-studied, function of B cells is to present foreign antigens to T cells to stimulate their activation and proliferation. Dendritic cells (DCs) are considered the most important antigen-presenting cells (APCs) for CD8+ T cells, but DCs lose APC function when infected with Friend virus (FV), a model retrovirus of mice. Interestingly, B cells were better able to stimulate CD8+ T cell responses when they were infected with FV. We also found that the activation status of B cells under homeostatic conditions was potently modulated by regulatory T cells. This study illustrates an important link between B cell and T cell responses and illustrates an additional mechanism by which regulatory T cells suppress critical T cell responses during viral infections. Friend virus (FV) is a naturally occurring mouse retrovirus that infects dividing cells of the hematopoietic lineage, including antigen-presenting cells (APCs). The infection of APCs by viruses often induces their dysfunction, and it has been shown that FV infection reduces the ability of dendritic cells (DCs) to prime critical CD8+ T cell responses. Nonetheless, mice mount vigorous CD8+ T cell responses, so we investigated whether B cells might serve as alternative APCs during FV infection. Direct ex vivo analysis of B cells from FV-infected mice revealed that infected but not uninfected B cells upregulated expression of the costimulatory molecules CD80, CD86, and CD40, as well as major histocompatibility complex class II (MHC-II) molecules. Furthermore, in vitro studies showed that, compared to uninfected B cells from the same mice, the FV-infected B cells had significantly enhanced APC function, as measured by their capacity to prime CD8+ T cell activation and proliferation. Thus, in contrast to DCs, infection of B cells with FV enhanced their APC capacity and ability to stimulate the CD8+ T cell responses essential for virus control. FV infections also induce the activation and expansion of regulatory T cells (Tregs), so it was of interest to determine the impact of Tregs on B cell activation. The upregulation of costimulatory molecule expression and APC function of B cells was even more strongly enhanced by in vivo depletion of regulatory T cells than infection. Thus, Tregs exert potent homeostatic suppression of B cell activation that is partially overcome by FV infection.
Collapse
|
13
|
He T, Liu S, Chen S, Ye J, Wu X, Bian Z, Chen X. The p38 MAPK Inhibitor SB203580 Abrogates Tumor Necrosis Factor-Induced Proliferative Expansion of Mouse CD4 +Foxp3 + Regulatory T Cells. Front Immunol 2018; 9:1556. [PMID: 30038619 PMCID: PMC6046375 DOI: 10.3389/fimmu.2018.01556] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/25/2018] [Indexed: 12/27/2022] Open
Abstract
There is now compelling evidence that tumor necrosis factor (TNF) preferentially activates and expands CD4+Foxp3+ regulatory T cells (Tregs) through TNF receptor type II (TNFR2). However, it remains unclear which signaling transduction pathway(s) of TNFR2 is required for the stimulation of Tregs. Previously, it was shown that the interaction of TNF–TNFR2 resulted in the activation of a number of signaling pathways, including p38 MAPK, NF-κB, in T cells. We thus examined the role of p38 MAPK and NF-κB in TNF-mediated activation of Tregs, by using specific small molecule inhibitors. The results show that treatment with specific p38 MAPK inhibitor SB203580, rather than NF-κB inhibitors (Sulfasalazine and Bay 11-7082), abrogated TNF-induced expansion of Tregs in vitro. Furthermore, upregulation of TNFR2 and Foxp3 expression in Tregs by TNF was also markedly inhibited by SB203580. The proliferative expansion and the upregulation of TNFR2 expression on Tregs in LPS-treated mice were mediated by TNF–TNFR2 interaction, as shown by our previous study. The expansion of Tregs in LPS-treated mice were also markedly inhibited by in vivo treatment with SB203580. Taken together, our data clearly indicate that the activation of p38 MAPK is attributable to TNF/TNFR2-mediated activation and proliferative expansion of Tregs. Our results also suggest that targeting of p38 MAPK by pharmacological agent may represent a novel strategy to up- or downregulation of Treg activity for therapeutic purposes.
Collapse
Affiliation(s)
- Tianzhen He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Shuoyang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Shaokui Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jingyi Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Xueqiang Wu
- Department of Oncology, Beijing Aerospace General Hospital, Beijing, China
| | - Zhaoxiang Bian
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
14
|
Nelson A, Cunha C, Nishimura MI, Iwashima M. Activated human Foxp3 + regulatory T cells produce membrane-bound TNF. Cytokine 2018; 111:454-459. [PMID: 29885993 DOI: 10.1016/j.cyto.2018.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
TNF is a multifunctional cytokine that is critical to host defense against pathogens but can also drive the pathophysiology of inflammatory diseases. Inhibition of TNF occasionally causes exacerbation of some autoimmune diseases, suggesting a role for TNF in the regulation of immune homeostasis. Here, we demonstrate that human peripheral blood CD4+CD25+Foxp3+ regulatory T cells (Tregs) express membrane-bound TNF, a potent activator of the type 2 TNF receptor. While the type 1 TNF receptor can cause cell death and is expressed ubiquitously, the type 2 receptor promotes cell growth and its expression is limited mainly to immune and endothelial cells. When autocrine TNF is blocked in an in vitro culture without IL-2, activated Tregs stop proliferating. These data indicate a novel role for TNF as a Treg-derived autocrine growth factor.
Collapse
Affiliation(s)
- Alexander Nelson
- Institute of Infectious Disease and Immunology, Stritch School of Medicine, Loyola University Chicago, USA
| | - Christina Cunha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, USA
| | - Michael I Nishimura
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, USA
| | - Makio Iwashima
- Institute of Infectious Disease and Immunology, Stritch School of Medicine, Loyola University Chicago, USA; Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, USA; Van Kampen Cardiopulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, USA.
| |
Collapse
|
15
|
Moore TC, Messer RJ, Hasenkrug KJ. Regulatory T cells suppress virus-specific antibody responses to Friend retrovirus infection. PLoS One 2018; 13:e0195402. [PMID: 29614127 PMCID: PMC5882174 DOI: 10.1371/journal.pone.0195402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
Recent vaccine studies with experimental antigens have shown that regulatory T cells (Tregs) constrain the magnitude of B cell responses. This homeostatic Treg-mediated suppression is thought to reduce the potential of germinal center (GC) responses to generate autoreactive antibodies. However, essentially opposite results were observed in live influenza infections where Tregs promoted B cell and antibody responses. Thus, it remains unclear whether Tregs dampen or enhance B cell responses, especially during live viral infections. Here, we use mice infected with Friend retrovirus (FV), which induces a robust expansion of Tregs. Depletion of Tregs led to elevated activation, proliferation, and class switching of B cells. In addition, Treg depletion enhanced the production of virus-specific and virus-neutralizing antibodies and reduced FV viremia. Thus, in contrast to influenza infection, Tregs either directly or indirectly suppress B cells during mouse retroviral infection indicating that the ultimate effect of Tregs on B cell responses is specific to the particular infectious agent.
Collapse
Affiliation(s)
- Tyler C. Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
| | - Ronald J. Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zou H, Li R, Hu H, Hu Y, Chen X. Modulation of Regulatory T Cell Activity by TNF Receptor Type II-Targeting Pharmacological Agents. Front Immunol 2018; 9:594. [PMID: 29632537 PMCID: PMC5879105 DOI: 10.3389/fimmu.2018.00594] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
There is now compelling evidence that tumor necrosis factor (TNF)-TNF receptor type II (TNFR2) interaction plays a decisive role in the activation, expansion, and phenotypical stability of suppressive CD4+Foxp3+ regulatory T cells (Tregs). In an effort to translate this basic research finding into a therapeutic benefit, a number of agonistic or antagonistic TNFR2-targeting biological agents with the capacity to activate or inhibit Treg activity have been developed and studied. Recent studies also show that thalidomide analogs, cyclophosphamide, and other small molecules are able to act on TNFR2, resulting in the elimination of TNFR2-expressing Tregs. In contrast, pharmacological agents, such as vitamin D3 and adalimumab, were reported to induce the expansion of Tregs by promoting the interaction of transmembrane TNF (tmTNF) with TNFR2. These studies clearly show that TNFR2-targeting pharmacological agents represent an effective approach to modulating the function of Tregs and thus may be useful in the treatment of major human diseases such as autoimmune disorders, graft-versus-host disease (GVHD), and cancer. In this review, we will summarize and discuss the latest progress in the study of TNFR2-targeting pharmacological agents and their therapeutic potential based on upregulation or downregulation of Treg activity.
Collapse
Affiliation(s)
- Huimin Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ruixin Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
17
|
Salomon BL, Leclerc M, Tosello J, Ronin E, Piaggio E, Cohen JL. Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Front Immunol 2018; 9:444. [PMID: 29593717 PMCID: PMC5857565 DOI: 10.3389/fimmu.2018.00444] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Tumor necrosis factor α (TNF) is a potent pro-inflammatory cytokine that has deleterious effect in some autoimmune diseases, which led to the use of anti-TNF drugs in some of these diseases. However, some rare patients treated with these drugs paradoxically develop an aggravation of their disease or new onset autoimmunity, revealing an immunosuppressive facet of TNF. A possible mechanism of this observation is the direct and positive effect of TNF on regulatory T cells (Tregs) through its binding to the TNF receptor type 2 (TNFR2). Indeed, TNF is able to increase expansion, stability, and possibly function of Tregs via TNFR2. In this review, we discuss the role of TNF in graft-versus-host disease as an example of the ambivalence of this cytokine in the pathophysiology of an immunopathology, highlighting the therapeutic potential of triggering TNFR2 to boost Treg expansion. We also describe new targets in immunotherapy of cancer, emphasizing on the putative suppressive effect of TNF in antitumor immunity and of the interest of blocking TNFR2 to regulate the Treg compartment.
Collapse
Affiliation(s)
- Benoît L Salomon
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Mathieu Leclerc
- Université Paris-Est and INSERM U955, Créteil, France.,Service d'Hématologie Clinique et de Thérapie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| | - Jimena Tosello
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Emilie Ronin
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Eliane Piaggio
- Center of Cancer Immunotherapy and Centre d'Investigation Clinique Biothérapie 1428, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - José L Cohen
- Université Paris-Est and INSERM U955, Créteil, France.,Centre d'Investigation Clinique Biothérapie, Assistance Publique Hôpitaux de Paris (APHP), Hôpital H. Mondor, Créteil, France
| |
Collapse
|
18
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
19
|
Abstract
Regulatory T cells (Tregs) are immunosuppressive cells of the immune system that control autoimmune reactivity. Tregs also respond during immune reactions to infectious agents in order to limit immunopathological damage from potent effectors such as CD8+ cytolytic T lymphocytes. We have used the Friend virus (FV) model of retroviral infection in mice to investigate how viral infections induce Tregs. During acute FV infection, there is significant activation and expansion of thymus-derived (natural) Tregs that suppress virus-specific CD8+ T cell responses. Unlike conventional T cells, the responding Tregs are not virus specific, so the mechanisms that induce their expansion are of great interest. We now show that B cells provide essential signals for Treg expansion during FV infection. Treg responses are greatly diminished in B cell-deficient mice but can be restored by adoptive transfers of B cells at the time of infection. The feeble Treg responses in B cell-deficient mice are associated with enhanced virus-specific CD8+ T cell responses and accelerated virus control during the first 2 weeks of infection. In vitro experiments demonstrated that B cells promote Treg activation and proliferation through a glucocorticoid-induced receptor superfamily member 18 (GITR) ligand-dependent mechanism. Thus, B cells play paradoxically opposing roles during FV infection. They provide proliferative signals to immunsosuppressive Tregs, which slows early virus control, and they also produce virus-specific antibodies, which are essential for long-term virus control. When infectious agents invade a host, numerous immunological mechanisms are deployed to limit their replication, neutralize their spread, and destroy the host cells harboring the infection. Since immune responses also have a strong capacity to damage host cells and tissues, their magnitude, potency, and duration are under regulatory control. Regulatory T cells are an important component of this control, and the mechanisms that induce them to respond and exert immunosuppressive regulation are of great interest. In the current report, we show that B cells, the cells responsible for making pathogen-specific antibodies, are also involved in promoting the expansion of regulatory T cells during a retroviral infection. In vitro studies demonstrated that they do so via stimulation of the Tregs through interactions between cell surface molecules: GITR interactions with its ligand (GITRL) on B cells and GITR on regulatory T cells. These findings point the way toward therapeutics to better treat infections and autoimmune diseases.
Collapse
|
20
|
Kosinska AD, Pishraft-Sabet L, Wu W, Fang Z, Lenart M, Chen J, Dietze KK, Wang C, Kemper T, Lin Y, Yeh SH, Liu J, Dittmer U, Yuan Z, Roggendorf M, Lu M. Low hepatitis B virus-specific T-cell response in males correlates with high regulatory T-cell numbers in murine models. Hepatology 2017; 66:69-83. [PMID: 28295453 DOI: 10.1002/hep.29155] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/06/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022]
Abstract
UNLABELLED Hepatitis B virus (HBV) infection shows significant gender-related differences in pathogenesis, disease progression, and development of hepatocellular carcinoma. The gender-associated differences in HBV replication and viral protein levels may be associated with distinct HBV-specific immune responses in the host. In the present study, we examined the impact of gender on HBV-specific immune responses in two different mouse models representing transient and persistent hepadnaviral infection; hydrodynamic injection with the HBV genome mimicked acute HBV infection, whereas the efficacy of therapeutic vaccination was studied in the woodchuck hepatitis virus transgenic mouse model. Consistent with previous reports, significantly higher HBV DNA and protein levels were detected in male compared to female mice. Although hydrodynamic injection with the HBV genome resulted in similar numbers of intrahepatic HBV-specific cluster of differentiation 8-positive (CD8+ ) T cells, their functionality was significantly reduced in males and correlated with higher numbers of intrahepatic regulatory T cells (Tregs). Similar effects were observed in woodchuck hepatitis virus transgenic mice immunized with a DNA prime-recombinant adenovirus boost vaccination protocol. Male mice showed functionally suppressed woodchuck hepatitis virus-specific CD8+ T-cell responses in the liver and significantly higher numbers of intrahepatic Tregs compared to females. Blockade of Treg responses in male mice led to augmented effector functions of specific CD8+ T cells and subsequently improved virus control in both models of transient and persistent hepadnaviral infection. CONCLUSION The functionality of virus-specific CD8+ T cells in male mice was suppressed by intrahepatic Tregs and inversely correlated with levels of hepadnaviral DNA and viral protein; the induction of intrahepatic Tregs by viral replication and/or protein levels may explain the gender-related differences in the outcomes of HBV infection and limit the success of immunotherapeutic strategies in male patients. (Hepatology 2017;66:69-83).
Collapse
Affiliation(s)
- Anna D Kosinska
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany.,Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Leila Pishraft-Sabet
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Weimin Wu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Zhong Fang
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Marzena Lenart
- Department of Clinical Immunology, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Kirsten K Dietze
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Cong Wang
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Thekla Kemper
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,NTU Center for Genomic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jia Liu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Shanghai Public Health Clinical Center, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Michael Roggendorf
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Penaloza-MacMaster P. CD8 T-cell regulation by T regulatory cells and the programmed cell death protein 1 pathway. Immunology 2017; 151:146-153. [PMID: 28375543 DOI: 10.1111/imm.12739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
The primary function of the immune system is to protect the host from infectious microorganisms and cancers. However, a major component of the immune response involves the direct elimination of cells in the body and the induction of systemic inflammation, which may result in life-threatening immunopathology. Therefore, the immune system has developed complex mechanisms to regulate itself with a specialized subset of CD4 T lymphocytes (referred to as regulatory T cells) and immune checkpoint pathways, such as the programmed cell death protein 1 pathway. These immune regulatory mechanisms can be exploited by pathogens and tumours to establish persistence in the host, warranting a deeper understanding of how to fine-tune immune responses during these chronic diseases. Here, I discuss various features of immune regulatory pathways and what important aspects must be considered in the next generation of therapies to reverse immune exhaustion, understanding that this process is a natural mechanism to prevent the host from destroying itself.
Collapse
Affiliation(s)
- Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
22
|
Kassiotis G, Stoye JP. Immune responses to endogenous retroelements: taking the bad with the good. Nat Rev Immunol 2016; 16:207-19. [PMID: 27026073 DOI: 10.1038/nri.2016.27] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ultimate form of parasitism and evasion of host immunity is for the parasite genome to enter the germ line of the host species. Retroviruses have invaded the host germ line on the grandest scale, and this is evident in the extraordinary abundance of endogenous retroelements in the genome of all vertebrate species that have been studied. Many of these endogenous retroelements have retained viral characteristics; some also the capacity to replicate and, consequently, the potential to trigger host innate and adaptive immune responses. However, although retroelements are mainly recognized for their pathogenic potential, recent evidence suggests that this 'enemy within' may also have beneficial roles in tuning host immune reactivity. In this Review, we discuss how the immune system recognizes and is shaped by endogenous retroelements.
Collapse
Affiliation(s)
- George Kassiotis
- Retroviral Immunology, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK.,Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Jonathan P Stoye
- Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK.,Retrovirus-Host Interactions, the Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
23
|
Park HJ, Oh JH, Ha SJ. Phenotypic and Functional Analysis of Activated Regulatory T Cells Isolated from Chronic Lymphocytic Choriomeningitis Virus-infected Mice. J Vis Exp 2016. [PMID: 27404802 DOI: 10.3791/54138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regulatory T (Treg) cells, which express Foxp3 as a transcription factor, are subsets of CD4(+) T cells. Treg cells play crucial roles in immune tolerance and homeostasis maintenance by regulating the immune response. The primary role of Treg cells is to suppress the proliferation of effector T (Teff) cells and the production of cytokines such as IFN-γ, TNF-α, and IL-2. It has been demonstrated that Treg cells' ability to inhibit the function of Teff cells is enhanced during persistent pathogen infection and cancer development. To clarify the function of Treg cells under resting or inflamed conditions, a variety of in vitro suppression assays using mouse or human Treg cells have been devised. The main aim of this study is to develop a method to compare the differences in phenotype and suppressive function between resting and activated Treg cells. To isolate activated Treg cells, mice were infected with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13), a chronic strain of LCMV. Treg cells isolated from the spleen of LCMV CL13-infected mice exhibited both the activated phenotype and enhanced suppressive activity compared with resting Treg cells isolated from naïve mice. Here, we describe the basic protocol for ex vivo phenotype analysis to distinguish activated Treg cells from resting Treg cells. Furthermore, we describe a protocol for the measurement of the suppressive activity of fully activated Treg cells.
Collapse
Affiliation(s)
- Hyo Jin Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University
| | - Ji Hoon Oh
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University;
| |
Collapse
|
24
|
Abel S, Ueffing K, Tatura R, Hutzler M, Hose M, Matuschewski K, Kehrmann J, Westendorf AM, Buer J, Hansen W. Plasmodium yoelii infection of BALB/c mice results in expansion rather than induction of CD4(+) Foxp3(+) regulatory T cells. Immunology 2016; 148:197-205. [PMID: 26932746 DOI: 10.1111/imm.12602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 01/08/2023] Open
Abstract
Recently, we demonstrated elevated numbers of CD4(+) Foxp3(+) regulatory T (Treg) cells in Plasmodium yoelii-infected mice contributing to the regulation of anti-malarial immune response. However, it remains unclear whether this increase in Treg cells is due to thymus-derived Treg cell expansion or induction of Treg cells in the periphery. Here, we show that the frequency of Foxp3(+) Treg cells expressing neuropilin-1 (Nrp-1) decreased at early time-points during P. yoelii infection, whereas percentages of Helios(+) Foxp3(+) Treg cells remained unchanged. Both Foxp3(+) Nrp-1(+) and Foxp3(+) Nrp-1(-) Treg cells from P. yoelii-infected mice exhibited a similar T-cell receptor Vβ chain usage and methylation pattern in the Treg-specific demethylation region within the foxp3 locus. Strikingly, we did not observe induction of Foxp3 expression in Foxp3(-) T cells adoptively transferred to P. yoelii-infected mice. Hence, our results suggest that P. yoelii infection triggered expansion of naturally occurring Treg cells rather than de novo induction of Foxp3(+) Treg cells.
Collapse
Affiliation(s)
- Simone Abel
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kristina Ueffing
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Roman Tatura
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marina Hutzler
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthias Hose
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kai Matuschewski
- Parasitology Unit, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
Dietze KK, Schimmer S, Kretzmer F, Wang J, Lin Y, Huang X, Wu W, Wang B, Lu M, Dittmer U, Yang D, Liu J. Characterization of the Treg Response in the Hepatitis B Virus Hydrodynamic Injection Mouse Model. PLoS One 2016; 11:e0151717. [PMID: 26986976 PMCID: PMC4795771 DOI: 10.1371/journal.pone.0151717] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in counter-regulating effector T cell responses in many infectious diseases. However, they can also contribute to the development of T cell dysfunction and pathogen persistence in chronic infections. Tregs have been reported to suppress virus-specific T cell responses in hepatitis B virus (HBV) infection of human patients as well as in HBV animal models. However, the phenotype and expansion of Tregs has so far only been investigated in other infections, but not in HBV. We therefore performed hydrodynamic injections of HBV plasmids into mice and analyzed the Treg response in the spleen and liver. Absolute Treg numbers significantly increased in the liver but not the spleen after HBV injection. The cells were natural Tregs that surprisingly did not show any activation or proliferation in response to the infection. However, they were able to suppress effector T cell responses, as selective depletion of Tregs significantly increased HBV-specific CD8+ T cell responses and accelerated viral antigen clearance. The data implies that natural Tregs infiltrate the liver in HBV infection without further activation or expansion but are still able to interfere with T cell mediated viral clearance.
Collapse
Affiliation(s)
- Kirsten K. Dietze
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Freya Kretzmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Lin
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Xuan Huang
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Weimin Wu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
26
|
Littwitz-Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology 2015. [PMID: 26220086 PMCID: PMC4518534 DOI: 10.1186/s12977-015-0191-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background It is well established that effector T cell responses are crucial for the control of most virus infections, but they are often tightly controlled by regulatory T cells (Treg) to minimize immunopathology. NK cells also contribute to virus control but it is not known if their antiviral effect is influenced by virus-induced Tregs as well. We therefore analyzed whether antiretroviral NK cell functions are inhibited by Tregs during an acute Friend retrovirus infection of mice. Results Selective depletion of Tregs by using the transgenic DEREG mouse model resulted in improved NK cell proliferation, maturation and effector cell differentiation. Suppression of NK cell functions depended on IL-2 consumption by Tregs, which could be overcome by specific NK cell stimulation with an IL-2/anti-IL-2 mAb complex. Conclusions The current study demonstrates that virus-induced Tregs indeed inhibit antiviral NK cell responses and describes a targeted immunotherapy that can abrogate the suppression of NK cells by Tregs. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0191-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ilseyar Akhmetzyanova
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Cecilia Vallet
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sandra Francois
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ulf Dittmer
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Kathrin Gibbert
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
27
|
Expanded regulatory T cells in chronically friend retrovirus-infected mice suppress immunity to a murine cytomegalovirus superinfection. J Virol 2014; 88:13892-6. [PMID: 25231296 DOI: 10.1128/jvi.01941-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It is still unclear whether expanded and activated regulatory T cells (Tregs) in chronic viral infections can influence primary immune responses against superinfections with unrelated viruses. Expanded Tregs found in the spleens of chronically Friend virus (FV)-infected mice decreased murine cytomegalovirus (mCMV)-specific CD8(+) T cell responses during acute mCMV superinfection. This suppression of mCMV-specific T cell immunity was found only in organs with FV-induced Treg expansion. Surprisingly, acute mCMV infection itself did not expand or activate Tregs.
Collapse
|
28
|
Joedicke JJ, Myers L, Carmody AB, Messer RJ, Wajant H, Lang KS, Lang PA, Mak TW, Hasenkrug KJ, Dittmer U. Activated CD8+ T cells induce expansion of Vβ5+ regulatory T cells via TNFR2 signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:2952-60. [PMID: 25098294 DOI: 10.4049/jimmunol.1400649] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vβ5(+) regulatory T cells (Tregs), which are specific for a mouse endogenous retroviral superantigen, become activated and proliferate in response to Friend virus (FV) infection. We previously reported that FV-induced expansion of this Treg subset was dependent on CD8(+) T cells and TNF-α, but independent of IL-2. We now show that the inflammatory milieu associated with FV infection is not necessary for induction of Vβ5(+) Treg expansion. Rather, it is the presence of activated CD8(+) T cells that is critical for their expansion. The data indicate that the mechanism involves signaling between the membrane-bound form of TNF-α on activated CD8(+) T cells and TNFR2 on Tregs. CD8(+) T cells expressing membrane-bound TNF-α but no soluble TNF-α remained competent to induce strong Vβ5(+) Treg expansion in vivo. In addition, Vβ5(+) Tregs expressing only TNFR2 but no TNFR1 were still responsive to expansion. Finally, treatment of naive mice with soluble TNF-α did not induce Vβ5(+) Treg expansion, but treatment with a TNFR2-specific agonist did. These results reveal a new mechanism of intercellular communication between activated CD8(+) T cell effectors and Tregs that results in the activation and expansion of a Treg subset that subsequently suppresses CD8(+) T cell functions.
Collapse
Affiliation(s)
- Jara J Joedicke
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Lara Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg 97080, Germany
| | - Karl S Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany; Department of Molecular Medicine II, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany; and
| | - Tak W Mak
- Department of Medical Biophysics and Immunology, The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840;
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany;
| |
Collapse
|
29
|
Thorborn G, Young GR, Kassiotis G. Effective T helper cell responses against retroviruses: are all clonotypes equal? J Leukoc Biol 2014; 96:27-37. [PMID: 24737804 DOI: 10.1189/jlb.2ri0613-347r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The critical importance of CD4(+) T cells in coordinating innate and adaptive immune responses is evidenced by the susceptibility to various pathogenic and opportunistic infections that arises from primary or acquired CD4(+) T cell immunodeficiency, such as following HIV-1 infection. However, despite the clearly defined roles of cytotoxic CD8(+) T cells and antibodies in host protection from retroviruses, the ability of CD4(+) T cells to exert a similar function remains unclear. Recent studies in various settings have drawn attention to the complexity of the T cell response within and between individuals. Distinct TCR clonotypes within an individual differ substantially in their response to the same epitope. Functionally similar, "public" TCR clonotypes can also dominate the response of different individuals. TCR affinity for antigen directly influences expansion and differentiation of responding T cells, also likely affecting their ultimate protective capacity. With this increasing understanding of the parameters that determine the magnitude and effector type of the T cell response, we are now better equipped to address the protective capacity against retroviruses of CD4(+) T cell clonotypes induced by natural infection or vaccination.
Collapse
Affiliation(s)
| | - George R Young
- Divisions of Immunoregulation and Virology, Medical Research Council National Institute for Medical Research, The Ridgeway, London, United Kingdom; and
| | - George Kassiotis
- Divisions of Immunoregulation and Department of Medicine, Faculty of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
30
|
Takamura S, Kajiwara E, Tsuji-Kawahara S, Masumoto T, Fujisawa M, Kato M, Chikaishi T, Kawasaki Y, Kinoshita S, Itoi M, Sakaguchi N, Miyazawa M. Infection of adult thymus with murine retrovirus induces virus-specific central tolerance that prevents functional memory CD8+ T cell differentiation. PLoS Pathog 2014; 10:e1003937. [PMID: 24651250 PMCID: PMC3961338 DOI: 10.1371/journal.ppat.1003937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
In chronic viral infections, persistent antigen presentation causes progressive exhaustion of virus-specific CD8+ T cells. It has become clear, however, that virus-specific naïve CD8+ T cells newly generated from the thymus can be primed with persisting antigens. In the setting of low antigen density and resolved inflammation, newly primed CD8+ T cells are preferentially recruited into the functional memory pool. Thus, continual recruitment of naïve CD8+ T cells from the thymus is important for preserving the population of functional memory CD8+ T cells in chronically infected animals. Friend virus (FV) is the pathogenic murine retrovirus that establishes chronic infection in adult mice, which is bolstered by the profound exhaustion of virus-specific CD8+ T cells induced during the early phase of infection. Here we show an additional evasion strategy in which FV disseminates efficiently into the thymus, ultimately leading to clonal deletion of thymocytes that are reactive to FV antigens. Owing to the resultant lack of virus-specific recent thymic emigrants, along with the above exhaustion of antigen-experienced peripheral CD8+ T cells, mice chronically infected with FV fail to establish a functional virus-specific CD8+ T cell pool, and are highly susceptible to challenge with tumor cells expressing FV-encoded antigen. However, FV-specific naïve CD8+ T cells generated in uninfected mice can be primed and differentiate into functional memory CD8+ T cells upon their transfer into chronically infected animals. These findings indicate that virus-induced central tolerance that develops during the chronic phase of infection accelerates the accumulation of dysfunctional memory CD8+ T cells.
Collapse
Affiliation(s)
- Shiki Takamura
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
- * E-mail: (ST); (MM)
| | - Eiji Kajiwara
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
| | | | - Tomoko Masumoto
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Makoto Fujisawa
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Maiko Kato
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Tomomi Chikaishi
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Yuri Kawasaki
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Saori Kinoshita
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
| | - Manami Itoi
- Department of Immunology and Microbiology, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Nobuo Sakaguchi
- Department of Immunology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Masaaki Miyazawa
- Department of Immunology, Kinki University Faculty of Medicine, Osaka, Japan
- * E-mail: (ST); (MM)
| |
Collapse
|
31
|
The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin 2014; 29:48-60. [PMID: 24452537 DOI: 10.1007/s12250-014-3396-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023] Open
Abstract
The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.
Collapse
|
32
|
Dietze KK, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U. Combining regulatory T cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific CD8+ T cells and efficiently reduces chronic retroviral loads. PLoS Pathog 2013; 9:e1003798. [PMID: 24339778 PMCID: PMC3855586 DOI: 10.1371/journal.ppat.1003798] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 10/14/2013] [Indexed: 01/03/2023] Open
Abstract
Chronic infections with human viruses, such as HIV and HCV, or mouse viruses, such as LCMV or Friend Virus (FV), result in functional exhaustion of CD8+ T cells. Two main mechanisms have been described that mediate this exhaustion: expression of inhibitory receptors on CD8+ T cells and expansion of regulatory T cells (Tregs) that suppress CD8+ T cell activity. Several studies show that blockage of one of these pathways results in reactivation of CD8+ T cells and partial reduction in chronic viral loads. Using blocking antibodies against PD-1 ligand and Tim-3 and transgenic mice in which Tregs can be selectively ablated, we compared these two treatment strategies and combined them for the first time in a model of chronic retrovirus infection. Blocking inhibitory receptors was more efficient than transient depletion of Tregs in reactivating exhausted CD8+ T cells and reducing viral set points. However, a combination therapy was superior to any single treatment and further augmented CD8+ T cell responses and resulted in a sustained reduction in chronic viral loads. These results demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising strategy to treat chronic infectious diseases. A loss of function, the so-called ‘exhaustion’ of CD8+ T cells, is a hallmark of many chronic infections. The T cell exhaustion is mediated by two main mechanisms, the expression of inhibitory receptors on CD8+ T cells and virus-induced expansion of regulatory T cells (Tregs), which suppress CD8+ T cell activity. Several mouse studies revealed a reactivation of CD8+ T cells and reduction in chronic viral loads after blockage of one of these pathways. These results initiated a number of clinical studies mainly with cancer patients, in which blocking antibodies were used to interfere with inhibitory receptor signaling or drugs that deplete Tregs. For the first time we combined the two therapeutic approaches by using transgenic mice in which Tregs can be selectively ablated and injection of blocking antibodies in a chronic retroviral infection. The results indicate that the combination therapy was superior to any single treatment in further augmenting CD8+ T cell responses and reducing chronic viral loads. Our findings demonstrate that Tregs and inhibitory receptors are non-overlapping factors in the maintenance of chronic viral infections and that immunotherapies targeting both pathways may be a promising new strategy to treat chronic infectious diseases.
Collapse
Affiliation(s)
- Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Freya Kretzmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Simone Schimmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|