1
|
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci 2024; 25:7666. [PMID: 39062908 PMCID: PMC11277571 DOI: 10.3390/ijms25147666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Autoimmunity refers to an organism's immune response against its own healthy cells, tissues, or components, potentially leading to irreversible damage to vital organs. Central and peripheral tolerance mechanisms play crucial roles in preventing autoimmunity by eliminating self-reactive T and B cells. The disruption of immunological tolerance, characterized by the failure of these mechanisms, results in the aberrant activation of autoreactive lymphocytes that target self-tissues, culminating in the pathogenesis of autoimmune disorders. Genetic predispositions, environmental exposures, and immunoregulatory disturbances synergistically contribute to the susceptibility and initiation of autoimmune pathologies. Within the realm of immune therapies for autoimmune diseases, cytokine therapies have emerged as a specialized strategy, targeting cytokine-mediated regulatory pathways to rectify immunological imbalances. Proinflammatory cytokines are key players in inducing and propagating autoimmune inflammation, highlighting the potential of cytokine therapies in managing autoimmune conditions. This review discusses the etiology of autoimmune diseases, current therapeutic approaches, and prospects for future drug design.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bilal Ahmad
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bogeum Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
2
|
Matsumoto M, Yoshida H, Tsuneyama K, Oya T, Matsumoto M. Revisiting Aire and tissue-restricted antigens at single-cell resolution. Front Immunol 2023; 14:1176450. [PMID: 37207224 PMCID: PMC10191227 DOI: 10.3389/fimmu.2023.1176450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
The thymus is a highly specialized organ that plays an indispensable role in the establishment of self-tolerance, a process characterized by the "education" of developing T-cells. To provide competent T-cells tolerant to self-antigens, medullary thymic epithelial cells (mTECs) orchestrate negative selection by ectopically expressing a wide range of genes, including various tissue-restricted antigens (TRAs). Notably, recent advancements in the high-throughput single-cell analysis have revealed remarkable heterogeneity in mTECs, giving us important clues for dissecting the mechanisms underlying TRA expression. We overview how recent single-cell studies have furthered our understanding of mTECs, with a focus on the role of Aire in inducing mTEC heterogeneity to encompass TRAs.
Collapse
Affiliation(s)
- Minoru Matsumoto
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
- *Correspondence: Minoru Matsumoto,
| | - Hideyuki Yoshida
- YCI Laboratory for Immunological Transcriptomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Oya
- Department of Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| |
Collapse
|
3
|
Benlaribi R, Gou Q, Takaba H. Thymic self-antigen expression for immune tolerance and surveillance. Inflamm Regen 2022; 42:28. [PMID: 36056452 PMCID: PMC9440513 DOI: 10.1186/s41232-022-00211-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
T cells are a group of lymphocytes that play a central role in the immune system, notably, eliminating pathogens and attacking cancer while being tolerant of the self. Elucidating how immune tolerance is ensured has become a significant research issue for understanding the pathogenesis of autoimmune diseases as well as cancer immunity. T cell immune tolerance is established mainly in the thymic medulla by the removal of self-responsive T cells and the generation of regulatory T cells, this process depends mainly on the expression of a variety of tissue restricted antigens (TRAs) by medullary thymic epithelial cells (mTECs). The expression of TRAs is known to be regulated by at least two independent factors, Fezf2 and Aire, which play non-redundant and complementary roles by different mechanisms. In this review, we introduce the molecular logic of thymic self-antigen expression that underlies T cell selection for the prevention of autoimmunity and the establishment of immune surveillance.
Collapse
Affiliation(s)
- Rayene Benlaribi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qiao Gou
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takaba
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
4
|
Coles CA, Woodcock I, Pellicci DG, Houweling PJ. A Spotlight on T Lymphocytes in Duchenne Muscular Dystrophy-Not Just a Muscle Defect. Biomedicines 2022; 10:535. [PMID: 35327337 PMCID: PMC8945129 DOI: 10.3390/biomedicines10030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
The lack of dystrophin in Duchenne muscular dystrophy (DMD) results in membrane fragility resulting in contraction-induced muscle damage and subsequent inflammation. The impact of inflammation is profound, resulting in fibrosis of skeletal muscle, the diaphragm and heart, which contributes to muscle weakness, reduced quality of life and premature death. To date, the innate immune system has been the major focus in individuals with DMD, and our understanding of the adaptive immune system, specifically T cells, is limited. Targeting the immune system has been the focus of multiple clinical trials for DMD and is considered a vital step in the development of better treatments. However, we must first have a complete picture of the involvement of the immune systems in dystrophic muscle disease to better understand how inflammation influences disease progression and severity. This review focuses on the role of T cells in DMD, highlighting the importance of looking beyond skeletal muscle when considering how the loss of dystrophin impacts disease progression. Finally, we propose that targeting T cells is a potential novel therapeutic in the treatment of DMD.
Collapse
Affiliation(s)
- Chantal A. Coles
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, VIC 3052, Australia
| | - Ian Woodcock
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Daniel G. Pellicci
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Peter J. Houweling
- Murdoch Children’s Research Institute (MCRI), Melbourne, VIC 3052, Australia; (I.W.); (D.G.P.); (P.J.H.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
5
|
Nguyen CTK, Sawangarun W, Mandasari M, Morita KI, Harada H, Kayamori K, Yamaguchi A, Sakamoto K. AIRE is induced in oral squamous cell carcinoma and promotes cancer gene expression. PLoS One 2020; 15:e0222689. [PMID: 32012175 PMCID: PMC6996854 DOI: 10.1371/journal.pone.0222689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022] Open
Abstract
Autoimmune regulator (AIRE) is a transcriptional regulator that is primarily expressed in medullary epithelial cells, where it induces tissue-specific antigen expression. Under pathological conditions, AIRE expression is induced in epidermal cells and promotes skin tumor development. This study aimed to clarify the role of AIRE in the pathogenesis of oral squamous cell carcinoma (OSCC). AIRE expression was evaluated in six OSCC cell lines and in OSCC tissue specimens. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was elevated in 293A cells stably expressing AIRE, and conversely, was decreased in AIRE-knockout HSC3 OSCC cells when compared to the respective controls. Upregulation of STAT1, and ICAM in OSCC cells was confirmed in tissue specimens by immunohistochemistry. We provide evidence that AIRE exerts transcriptional control in cooperation with ETS1. Expression of STAT1, ICAM1, CXCL10, CXCL11, and MMP9 was increased in 293A cells upon Ets1 transfection, and coexpression of AIRE further increased the expression of these proteins. AIRE coprecipitated with ETS1 in a modified immunoprecipitation assay using formaldehyde crosslinking. Chromatin immunoprecipitation and quantitative PCR analysis revealed that promoter fragments of STAT1, ICAM1, CXCL10, and MMP9 were enriched in the AIRE precipitates. These results indicate that AIRE is induced in OSCC and supports cancer-related gene expression in cooperation with ETS1. This is a novel function of AIRE in extrathymic tissues under the pathological condition.
Collapse
Affiliation(s)
- Chi Thi Kim Nguyen
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wanlada Sawangarun
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masita Mandasari
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kei-ichi Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Yamaguchi
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Huang F, Shao W, Fujinaga K, Peterlin BM. Bromodomain-containing protein 4-independent transcriptional activation by autoimmune regulator (AIRE) and NF-κB. J Biol Chem 2018; 293:4993-5004. [PMID: 29463681 PMCID: PMC5892592 DOI: 10.1074/jbc.ra117.001518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Autoimmune regulator (AIRE) and nuclear factor-κB (NF-κB) are transcription factors (TFs) that direct the expression of individual genes and gene clusters. Bromodomain-containing protein 4 (BRD4) is an epigenetic regulator that recognizes and binds to acetylated histones. BRD4 also has been reported to promote interactions between the positive transcription elongation factor b (P-TEFb) and AIRE or P-TEFb and NF-κB subunit p65. Here, we report that AIRE and p65 bind to P-TEFb independently of BRD4. JQ1, a compound that disrupts interactions between BRD4 and acetylated proteins, does not decrease transcriptional activities of AIRE or p65. Moreover, siRNA-mediated inactivation of BRD4 alone or in combination with JQ1 had no effects on AIRE- and NF-κB-targeted genes on plasmids and in chromatin and on interactions between P-TEFb and AIRE or NF-κB. Finally, ChIP experiments revealed that recruitment of P-TEFb to AIRE or p65 to transcription complexes was independent of BRD4. We conclude that direct interactions between AIRE, NF-κB, and P-TEFb result in efficient transcription of their target genes.
Collapse
Affiliation(s)
- Fang Huang
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143
| |
Collapse
|
7
|
Peacock ME, Arce RM, Cutler CW. Periodontal and other oral manifestations of immunodeficiency diseases. Oral Dis 2017; 23:866-888. [PMID: 27630012 PMCID: PMC5352551 DOI: 10.1111/odi.12584] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 12/14/2022]
Abstract
The list of immunodeficiency diseases grows each year as novel disorders are discovered, classified, and sometimes reclassified due to our ever-increasing knowledge of immune system function. Although the number of patients with secondary immunodeficiencies (SIDs) greatly exceeds those with primary immunodeficiencies (PIDs), the prevalence of both appears to be on the rise probably because of scientific breakthroughs that facilitate earlier and more accurate diagnosis. Primary immunodeficiencies in adults are not as rare as once thought. Globally, the main causes of secondary immunodeficiency are HIV infection and nutritional insufficiencies. Persons with acquired immune disorders such as AIDS caused by the human immunodeficiency virus (HIV) are now living long and fulfilling lives as a result of highly active antiretroviral therapy (HAART). Irrespective of whether the patient's immune-deficient state is a consequence of a genetic defect or is secondary in nature, dental and medical practitioners must be aware of the constant potential for infections and/or expressions of autoimmunity in these individuals. The purpose of this review was to study the most common conditions resulting from primary and secondary immunodeficiency states, how they are classified, and the detrimental manifestations of these disorders on the periodontal and oral tissues.
Collapse
Affiliation(s)
- Mark E Peacock
- Associate Professor, Departments of Periodontics, Oral Biology
| | - Roger M. Arce
- Assistant Professor, Departments of Periodontics, Oral Biology
| | - Christopher W Cutler
- Professor, Departments of Periodontics, Oral Biology; Chair, Department of Periodontics, Associate Dean for Research, The Dental College of Georgia at Augusta University
| |
Collapse
|
8
|
Mitre TM, Pietropaolo M, Khadra A. The dual role of autoimmune regulator in maintaining normal expression level of tissue-restricted autoantigen in the thymus: A modeling investigation. Math Biosci 2017; 287:12-23. [PMID: 27765528 PMCID: PMC5392448 DOI: 10.1016/j.mbs.2016.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/07/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The expression level of tissue-restricted autoantigens (TSA) in the thymus is crucial for the negative selection of autoreactive T cells during central tolerance. The autoimmune regulator factor (AIRE) plays an important role in the positive regulation of these TSA in medullary thymic epithelial cells and, consequently, in the negative selection of high-avidity autoreactive T cells. Recent studies, however, revealed that thymic islet cell autoantigen (ICA69) expression level in non-obese diabetic (NOD) mice, prone to developing type 1 diabetes (T1D), is reduced due to an increase in the binding affinity of AIRE to the Ica1-promoter region, which regulates ICA69 protein synthesis. This seemed to suggest that AIRE acts as a transcriptional repressor of Ica1 gene in the thymus, causing down regulation in the expression level of ICA69. To investigate this hypothesis and the apparent dual role of AIRE in negative selection, we develop a series of mathematical models of increasing complexity describing the temporal dynamics of self-reactive T cells, AIRE-mRNA and AIRE-(in)dependent thymic TSA-associated genes. The goal is to understand how changing the binding affinity of AIRE to Ica1-promoter affects both T-cell tolerance and the dual role of the transcription factor. Using stability analysis and numerical computations, we show that the model possesses a bistable switch, consisting of healthy and autoimmune states, in the expression level of Ica1 gene with respect to AIRE binding affinity, and that it can capture the experimentally observed dual role of AIRE. We also show that the model must contain a positive feedback loop exerted by T cells on AIRE expression (e.g., via lymphotoxin released by T cells) to produce bistability. Our results suggest that the expression-level of AIRE-mRNA in the healthy state is lower than that of the autoimmune state, and that negative selection is very sensitive to parameter perturbations in T-cell avidity.
Collapse
Affiliation(s)
- Tina M Mitre
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal H3G 1Y6, QC, Canada
| | - Massimo Pietropaolo
- Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal H3G 1Y6, QC, Canada.
| |
Collapse
|
9
|
Calvo-Asensio I, Barthlott T, von Muenchow L, Lowndes NF, Ceredig R. Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage. Front Immunol 2017; 8:418. [PMID: 28450862 PMCID: PMC5389985 DOI: 10.3389/fimmu.2017.00418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/23/2017] [Indexed: 01/28/2023] Open
Abstract
Thymic epithelial cells (TECs) are the main components of the thymic stroma that support and control T-cell development. Preparative regimens using DNA-damaging agents, such as total body irradiation and/or chemotherapeutic drugs, that are necessary prior to bone marrow transplantation (BMT) have profound deleterious effects on the hematopoietic system, including the thymic stroma, which may be one of the main causes for the prolonged periods of T-cell deficiency and the inefficient T cell reconstitution that are common following BMT. The DNA damage response (DDR) is a complex signaling network that allows cells to respond to all sorts of genotoxic insults. Hypoxia is known to modulate the DDR and play a role affecting the survival capacity of different cell types. In this study, we have characterized in detail the DDR of cortical and medullary TEC lines and their response to ionizing radiation, as well as the effects of hypoxia on their DDR. Although both mTECs and cTECs display relatively high radio-resistance, mTEC cells have an increased survival capacity to ionizing radiation (IR)-induced DNA damage, and hypoxia specifically decreases the radio-resistance of mTECs by upregulating the expression of the pro-apoptotic factor Bim. Analysis of the expression of TEC functional factors by primary mouse TECs showed a marked decrease of highly important genes for TEC function and confirmed cTECs as the most affected cell type by IR. These findings have important implications for improving the outcomes of BMT and promoting successful T cell reconstitution.
Collapse
Affiliation(s)
- Irene Calvo-Asensio
- Regenerative Medicine Institute, School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.,Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Thomas Barthlott
- Pediatric Immunology, Department of Biomedicine, University Children's Hospital (UKBB) and University of Basel, Basel, Switzerland
| | - Lilly von Muenchow
- Developmental and Molecular Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Noel F Lowndes
- Genome Stability Laboratory, Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rhodri Ceredig
- Regenerative Medicine Institute, School of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
10
|
Soumya V, Padmanabhan RA, Titus S, Laloraya M. Murine uterine decidualization is a novel function of autoimmune regulator-beyond immune tolerance. Am J Reprod Immunol 2016; 76:224-34. [PMID: 27432359 DOI: 10.1111/aji.12538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2023] Open
Abstract
PROBLEM Autoimmune polyendocrinopathy, candidiasis, and ectodermal dystrophy (APECED, APS-1) patients characterized by Aire (autoimmune regulator) mutations and Aire homozygous knockouts (Aire(-/-) ) exhibit infertility. It is not clear as to what contributes to infertility in the above. METHOD OF STUDY This study investigates the expression of "AIRE in the uterus" and its contribution to early pregnancy of mice by using quantitative real-time PCR analysis, immunohistochemistry, Western blotting, and in vivo Aire silencing experiments. RESULTS Aire (Isoform 1a) is expressed in the uterus during the "window of implantation" and decidualization. In vivo Aire silencing interfered with formation of implantation sites and stromal cell transformation by regulating bone morphogenetic protein-2,4 (Bmp2, Bmp4), homeobox A10 (Hoxa10), and insulin-like growth factor-binding protein 1(Igfbp1) leading to pregnancy failure. CONCLUSION Our consolidated results on extrathymic uterine expression of AIRE during early pregnancy and decidualization and impaired fertility on in vivo silencing are suggestive of its importance in pregnancy via a role beyond immune tolerance.
Collapse
Affiliation(s)
- Vasanthi Soumya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Renjini A Padmanabhan
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shiny Titus
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Malini Laloraya
- Female Reproduction and Metabolic Syndromes Laboratory, Division of Molecular Reproduction, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
11
|
Shao W, Zumer K, Fujinaga K, Peterlin BM. FBXO3 Protein Promotes Ubiquitylation and Transcriptional Activity of AIRE (Autoimmune Regulator). J Biol Chem 2016; 291:17953-63. [PMID: 27365398 PMCID: PMC5016183 DOI: 10.1074/jbc.m116.724401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/20/2016] [Indexed: 12/16/2022] Open
Abstract
The autoimmune regulator (AIRE) is a transcription factor which is expressed in medullary thymic epithelial cells. It directs the expression of otherwise tissue-specific antigens, which leads to the elimination of autoreactive T cells during development. AIRE is modified post-translationally by phosphorylation and ubiquitylation. In this report we connected these modifications. AIRE, which is phosphorylated on two specific residues near its N terminus, then binds to the F-box protein 3 (FBXO3) E3 ubiquitin ligase. In turn, this SCF(FBXO3) (SKP1-CUL1-F box) complex ubiquitylates AIRE, increases its binding to the positive transcription elongation factor b (P-TEFb), and potentiates its transcriptional activity. Because P-TEFb is required for the transition from initiation to elongation of transcription, this interaction ensures proper expression of AIRE-responsive tissue-specific antigens in the thymus.
Collapse
Affiliation(s)
- Wei Shao
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| | - Kristina Zumer
- Max-Planck-Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Koh Fujinaga
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| | - B Matija Peterlin
- From the Departments of Medicine, Microbiology, and Immunology, University of California, San Francisco, California 94143-07030703 and
| |
Collapse
|
12
|
Gene Polymorphisms for Both Auto-antigen and Immune-Modulating Proteins Are Associated with the Susceptibility of Autoimmune Myasthenia Gravis. Mol Neurobiol 2016; 54:4771-4780. [DOI: 10.1007/s12035-016-0024-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/01/2016] [Indexed: 01/07/2023]
|
13
|
Colobran R, Giménez-Barcons M, Marín-Sánchez A, Porta-Pardo E, Pujol-Borrell R. AIRE genetic variants and predisposition to polygenic autoimmune disease: The case of Graves' disease and a systematic literature review. Hum Immunol 2016; 77:643-651. [PMID: 27266815 DOI: 10.1016/j.humimm.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/20/2016] [Accepted: 06/03/2016] [Indexed: 12/25/2022]
Abstract
Autoimmune Regulator (AIRE) is a transcriptional regulator that is crucial for establishing central tolerance as illustrated by the Mendelian Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED) syndrome associated with AIRE-inactivating recessive or dominant mutations. Polymorphisms in AIRE have been proposed to be implicated in genetic susceptibility to non-Mendelian organ specific autoimmune diseases. Because there is evidence that in predisposition to Graves' disease (GD) central tolerance is crucial, we investigated whether AIRE polymorphisms could modulate risk of GD. A case-control association study using 29 variants and conducted in 150 GD patients and 200 controls did not detect any significant association. This result is not exceptional: a systematic review of the literature, including GWAS, on the association of AIRE variants with organ specific autoimmune diseases did not show clear associations; similarly heterozygous recessive mutations are not associated to non-Mendelian autoimmunity. Dominant negative mutations of AIRE are associated to autoimmunity but as mild forms of APECED rather than to non-Mendelian organ specific autoimmunity. The lack of association of common AIRE polymorphisms with polygenic autoimmune diseases is counterintuitive as many other genes less relevant for immunological tolerance have been found to be associated. These findings give rise to the intriguing possibility that evolution has excluded functionally modifying polymorphisms in AIRE.
Collapse
Affiliation(s)
- Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Catalonia, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain
| | - Mireia Giménez-Barcons
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Catalonia, Spain
| | - Ana Marín-Sánchez
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Catalonia, Spain
| | - Eduard Porta-Pardo
- Bioinformatics and Systems Biology Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ricardo Pujol-Borrell
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Barcelona 08035, Catalonia, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Catalonia, Spain.
| |
Collapse
|
14
|
Affiliation(s)
- Sonia Berrih-Aknin
- INSERM U974; Paris France
- CNRS FRE3617; Paris France
- Sorbonne University; UPMC Univ Paris 06; Paris France
- AIM; Institute of Myology; Paris France
| |
Collapse
|
15
|
Abstract
More than 15 years ago, mutations in the autoimmune regulator (AIRE) gene were identified as the cause of autoimmune polyglandular syndrome type 1 (APS1). It is now clear that this transcription factor has a crucial role in promoting self-tolerance in the thymus by regulating the expression of a wide array of self-antigens that have the commonality of being tissue-restricted in their expression pattern in the periphery. In this Review, we highlight many of the recent advances in our understanding of the complex biology that is related to AIRE, with a particular focus on advances in genetics, molecular interactions and the effect of AIRE on thymic selection of regulatory T cells. Furthermore, we highlight new areas of biology that are potentially affected by this key regulator of immune tolerance.
Collapse
Affiliation(s)
- Maureen A. Su
- Department of Pediatrics, School of Medicine, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
- Department of Microbiology/Immunology, School of Medicine, and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Mark S. Anderson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
16
|
|
17
|
The Attenuated Live Yellow Fever Virus 17D Infects the Thymus and Induces Thymic Transcriptional Modifications of Immunomodulatory Genes in C57BL/6 and BALB/C Mice. Autoimmune Dis 2015; 2015:503087. [PMID: 26457200 PMCID: PMC4589579 DOI: 10.1155/2015/503087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 12/28/2022] Open
Abstract
Thymus is involved in induction of self-tolerance in T lymphocytes, particularly due to Aire activity. In peripheral tissues, Treg cells and immunomodulatory molecules, like the major histocompatibility complex (MHC) class Ib molecules, are essential for maintenance of autotolerance during immune responses. Viral infections can trigger autoimmunity and modify thymic function, and YFV17D immunization has been associated with the onset of autoimmunity, being contraindicated in patients with thymic disorders. Aiming to study the influence of YFV17D immunization on the transcriptional profiles of immunomodulatory genes in thymus, we evaluated the gene expression of AIRE, FOXP3, H2-Q7 (Qa-2/HLA-G), H2-T23 (Qa-1/HLA-E), H2-Q10, and H2-K1 following immunization with 10,000 LD50 of YFV17D in C57BL/6 and BALB/c mice. The YFV17D virus replicated in thymus and induced the expression of H2-Q7 (Qa-2/HLA-G) and H2-T23 (Qa-1/HLA-E) transcripts and repressed the expression of AIRE and FOXP3. Transcriptional expression varied according to tissue and mouse strain analyzed. Expression of H2-T23 (Qa-1/HLA-E) and FOXP3 was induced in thymus and liver of C57BL/6 mice, which exhibited defective control of viral load, suggesting a higher susceptibility to YFV17D infection. Since the immunization with YFV17D modulated thymus gene expression in genetically predisposed individuals, the vaccine may be related to the onset of autoimmunity disorders.
Collapse
|
18
|
Lopes N, Sergé A, Ferrier P, Irla M. Thymic Crosstalk Coordinates Medulla Organization and T-Cell Tolerance Induction. Front Immunol 2015; 6:365. [PMID: 26257733 PMCID: PMC4507079 DOI: 10.3389/fimmu.2015.00365] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/06/2015] [Indexed: 12/29/2022] Open
Abstract
The thymus ensures the generation of a functional and highly diverse T-cell repertoire. The thymic medulla, which is mainly composed of medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), provides a specialized microenvironment dedicated to the establishment of T-cell tolerance. mTECs play a privileged role in this pivotal process by their unique capacity to express a broad range of peripheral self-antigens that are presented to developing T cells. Reciprocally, developing T cells control mTEC differentiation and organization. These bidirectional interactions are commonly referred to as thymic crosstalk. This review focuses on the relative contributions of mTEC and DC subsets to the deletion of autoreactive T cells and the generation of natural regulatory T cells. We also summarize current knowledge regarding how hematopoietic cells conversely control the composition and complex three-dimensional organization of the thymic medulla.
Collapse
Affiliation(s)
- Noëlla Lopes
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Arnauld Sergé
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, INSERM U1068, CNRS UMR7258, Aix-Marseille Université UM105 , Marseille , France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| | - Magali Irla
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, CNRS UMR7280, Aix-Marseille Université UM2 , Marseille , France
| |
Collapse
|
19
|
Rattay K, Claude J, Rezavandy E, Matt S, Hofmann TG, Kyewski B, Derbinski J. Homeodomain-interacting protein kinase 2, a novel autoimmune regulator interaction partner, modulates promiscuous gene expression in medullary thymic epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:921-8. [PMID: 25552543 DOI: 10.4049/jimmunol.1402694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Promiscuous expression of a plethora of tissue-restricted Ags (TRAs) by medullary thymic epithelial cells (mTECs) plays an essential role in T cell tolerance. Although the cellular mechanisms by which promiscuous gene expression (pGE) imposes T cell tolerance have been well characterized, the underlying molecular mechanisms remain poorly understood. The autoimmune regulator (AIRE) is to date the only validated molecule known to regulate pGE. AIRE is part of higher-order multiprotein complexes, which promote transcription, elongation, and splicing of a wide range of target genes. How AIRE and its partners mediate these various effects at the molecular level is still largely unclear. Using a yeast two-hybrid screen, we searched for novel AIRE-interacting proteins and identified the homeodomain-interacting protein kinase 2 (HIPK2) as a novel partner. HIPK2 partially colocalized with AIRE in nuclear bodies upon cotransfection and in human mTECs in situ. Moreover, HIPK2 phosphorylated AIRE in vitro and suppressed the coactivator activity of AIRE in a kinase-dependent manner. To evaluate the role of Hipk2 in modulating the function of AIRE in vivo, we compared whole-genome gene signatures of purified mTEC subsets from TEC-specific Hipk2 knockout mice with control mice and identified a small set of differentially expressed genes. Unexpectedly, most differentially expressed genes were confined to the CD80(lo) mTEC subset and preferentially included AIRE-independent TRAs. Thus, although it modulates gene expression in mTECs and in addition affects the size of the medullary compartment, TEC-specific HIPK2 deletion only mildly affects AIRE-directed pGE in vivo.
Collapse
Affiliation(s)
- Kristin Rattay
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Janine Claude
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Esmail Rezavandy
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Sonja Matt
- Zelluläre Seneszenz-Gruppe, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie Allianz, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Thomas G Hofmann
- Zelluläre Seneszenz-Gruppe, Deutsches Krebsforschungszentrum-Zentrum für Molekulare Biologie Allianz, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Bruno Kyewski
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| | - Jens Derbinski
- Division of Developmental Immunobiology, Tumor Immunology Program, German Cancer Research Center, 69120 Heidelberg, Germany; and
| |
Collapse
|
20
|
Abstract
Hypoadrenocorticism is an uncommon disease in dogs and rare in humans, where it is known as Addison disease (ADD). The disease is characterized by a deficiency in corticosteroid production from the adrenal cortex, requiring lifelong hormone replacement therapy. When compared with humans, the pathogenesis of hypoadrenocorticism in dogs is not well established, although the evidence supports a similar autoimmune etiology of adrenocortical pathology. Several immune response genes have been implicated in determining susceptibility to Addison disease in humans, some of which are shared with other autoimmune syndromes. Indeed, other types of autoimmune disease are common (approximately 50%) in patients affected with ADD. Several lines of evidence suggest a genetic component to the etiology of canine hypoadrenocorticism. Certain dog breeds are overrepresented in epidemiologic studies, reflecting a likely genetic influence, supported by data from pedigree analysis. Molecular genetic studies have identified similar genes and signaling pathways, involved in ADD in humans, to be also associated with susceptibility to canine hypoadrenocorticism. Immune response genes such as the dog leukocyte antigen (DLA) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4) genes seem to be particularly important. It is clear that there are genetic factors involved in determining susceptibility to canine hypoadrenocorticism, although similar to the situation in humans, this is likely to represent a complex genetic disorder.
Collapse
Affiliation(s)
- Alisdair M Boag
- Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, Scotland.
| | - Brian Catchpole
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Hatfield, UK
| |
Collapse
|
21
|
Sansom SN, Shikama-Dorn N, Zhanybekova S, Nusspaumer G, Macaulay IC, Deadman ME, Heger A, Ponting CP, Holländer GA. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res 2014; 24:1918-31. [PMID: 25224068 PMCID: PMC4248310 DOI: 10.1101/gr.171645.113] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population.
Collapse
Affiliation(s)
- Stephen N Sansom
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom;
| | - Noriko Shikama-Dorn
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Saule Zhanybekova
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Gretel Nusspaumer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland
| | - Iain C Macaulay
- Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Mary E Deadman
- Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Andreas Heger
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Chris P Ponting
- MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Wellcome Trust Sanger Institute-EBI Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Georg A Holländer
- Paediatric Immunology, Department of Biomedicine, University of Basel, and The Basel University Children's Hospital, Basel, 4058, Switzerland; Developmental Immunology, Department of Paediatrics, and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| |
Collapse
|
22
|
Pachlopnik Schmid J, Güngör T, Seger R. Modern management of primary T-cell immunodeficiencies. Pediatr Allergy Immunol 2014; 25:300-13. [PMID: 24383740 DOI: 10.1111/pai.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2013] [Indexed: 02/01/2023]
Abstract
The study of human T-cell PIDs with Mendelian inheritance has enabled the molecular characterization of important key functions and pathways in T-cell biology. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Severe combined immunodeficiencies (SCIDs) are characterized by a complete lack of T-cell development and, in some cases, a developmental block in other lymphoid lineages and manifest within the first year of life. Combined immunodeficiency syndromes (CIDs) result from hypomorphic mutations in typical SCID associated genes or from partial defects of T-cell development and manifest later in childhood by increased susceptibility to infection often combined with disturbances in immune homeostasis, e.g., autoimmunity and increased incidence in lymphoproliferation. The discovery of mutations and characterization of the cellular changes that underlie lymphocyte defects and immune dysregulation have led to novel, specific, successful therapies for severe diseases which are often fatal if left untreated. Over the last few years, impressive progress has been made in understanding the disease mechanisms of T-cell immunodeficiencies and in improving the long-term outcomes of potentially curative treatments, including gene therapy.
Collapse
Affiliation(s)
- Jana Pachlopnik Schmid
- Division of Immunology, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Switzerland
| | | | | |
Collapse
|
23
|
Perniola R, Musco G. The biophysical and biochemical properties of the autoimmune regulator (AIRE) protein. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:326-37. [PMID: 24275490 DOI: 10.1016/j.bbadis.2013.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/11/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023]
Abstract
AIRE (for autoimmune regulator) is a multidomain protein that performs a fundamental function in the thymus and possibly in the secondary lymphoid organs: the regulation, especially in the sense of activation, of the process of gene transcription in cell lines deputed to the presentation of self-antigens to the maturing T lymphocytes. The apoptosis of the elements bearing T-cell receptors with critical affinity for the exhibited self-antigens prevents the escape of autoreactive clones and represents a simple and efficient mechanism of deletional self-tolerance. However, AIRE action relies on an articulated complex of biophysical and biochemical properties, in most cases attributable to single subspecialized domains. Here a thorough review of the matter is presented, with a privileged look at the pathogenic changes of AIRE that interfere with such properties and lead to the impairment in its chief function.
Collapse
Affiliation(s)
- Roberto Perniola
- Department of Pediatrics - Neonatal Intensive Care, V. Fazzi Regional Hospital, Piazza F. Muratore, I-73100, Lecce, Italy.
| | - Giovanna Musco
- Biomolecular NMR Laboratory, Center of Translational Genomics and Bioinformatics, Dulbecco Telethon Institute at San Raffaele Scientific Institute, Via Olgettina 58, I-20132, Milan, Italy.
| |
Collapse
|
24
|
Abstract
Loss-of-function mutations in the Autoimmune Regulator (AIRE) gene cause a rare inherited form of autoimmune disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy, also known as autoimmune polyglandular syndrome type 1. The patients suffer from multiple endocrine deficiencies, the most common manifestations being hypoparathyroidism, Addison’s disease, hypogonadism, and secondary amenorrhea, usually accompanied by typical autoantibodies against the target tissues. Chronic mucocutaneous candidiasis is also a prominent part of the disease. The highest expression of AIRE is found in medullary thymic epithelial cells (mTECs). Murine studies suggest that it promotes ectopic transcription of self antigens in mTECs and is thus important for negative selection. However, failed negative selection alone is not enough to explain key findings in human patients, necessitating the search for alternative or additional pathogenetic mechanisms. A striking feature of the human AIRE-deficient phenotype is that all patients develop high titers of neutralizing autoantibodies against type I interferons, which have been shown to downregulate the expression of interferon-controlled genes. These autoantibodies often precede clinical symptoms and other autoantibodies, suggesting that they are a reflection of the pathogenetic process. Other cytokines are targeted as well, notably those produced by Th17 cells; these autoantibodies have been linked to the defect in anti-candida defenses. A defect in regulatory T cells has also been reported in several studies and seems to affect already the recent thymic emigrant population. Taken together, these findings in human patients point to a widespread disruption of T cell development and regulation, which is likely to have its origins in an abnormal thymic milieu. The absence of functional AIRE in peripheral lymphoid tissues may also contribute to the pathogenesis of the disease.
Collapse
Affiliation(s)
- T Petteri Arstila
- Department of Bacteriology and Immunology, Immunobiology Research Program, Haartman Institute, University of Helsinki , Helsinki , Finland
| | | |
Collapse
|
25
|
Maturation and emigration of single-positive thymocytes. Clin Dev Immunol 2013; 2013:282870. [PMID: 24187562 PMCID: PMC3804360 DOI: 10.1155/2013/282870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/01/2013] [Indexed: 01/01/2023]
Abstract
T lymphopoiesis in the thymus was thought to be completed once it reaches the single positive (SP)
stage, a stage when T cells are “fully mature” and waiting to be exported at random or follow a “first-in-first-out” manner. Recent evidence, however, has revealed that the newly generated SP thymocytes undergo a multistage maturation program in the thymic medulla. Such maturation is followed by a tightly regulated emigration process and a further postthymic maturation of recent thymic emigrants (RTEs). This review summarizes recent progress in the late stage T cell development. The regulation of this developmental process is discussed.
Collapse
|
26
|
Akiyama T, Shinzawa M, Qin J, Akiyama N. Regulations of gene expression in medullary thymic epithelial cells required for preventing the onset of autoimmune diseases. Front Immunol 2013; 4:249. [PMID: 23986760 PMCID: PMC3752772 DOI: 10.3389/fimmu.2013.00249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/09/2013] [Indexed: 11/13/2022] Open
Abstract
Elimination of potential self-reactive T cells in the thymus is crucial for preventing the onset of autoimmune diseases. Epithelial cell subsets localized in thymic medulla [medullary thymic epithelial cells (mTECs)] contribute to this process by supplying a wide range of self-antigens that are otherwise expressed in a tissue-specific manner (TSAs). Expression of some TSAs in mTECs is controlled by the autoimmune regulator (AIRE) protein, of which dysfunctional mutations are the causative factor of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). In addition to the elimination of self-reactive T cells, recent studies indicated roles of mTECs in the development of Foxp3-positive regulatory T cells, which suppress autoimmunity and excess immune reactions in peripheral tissues. The TNF family cytokines, RANK ligand, CD40 ligand, and lymphotoxin were found to promote the differentiation of AIRE- and TSA-expressing mTECs. Furthermore, activation of NF-κB is essential for mTEC differentiation. In this mini-review, we focus on molecular mechanisms that regulate induction of AIRE and TSA expression and discuss possible contributions of these mechanisms to prevent the onset of autoimmune diseases.
Collapse
Affiliation(s)
- Taishin Akiyama
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | | | | | | |
Collapse
|
27
|
Matsumoto M, Nishikawa Y, Nishijima H, Morimoto J, Matsumoto M, Mouri Y. Which model better fits the role of aire in the establishment of self-tolerance: the transcription model or the maturation model? Front Immunol 2013; 4:210. [PMID: 23885257 PMCID: PMC3717480 DOI: 10.3389/fimmu.2013.00210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/09/2013] [Indexed: 11/13/2022] Open
Abstract
The discovery of Aire-dependent transcriptional control of many tissue-restricted self-antigen (TRA) genes in thymic epithelial cells in the medulla (medullary thymic epithelial cells, mTECs) has raised the intriguing question of how the single Aire gene can influence the transcription of such a large number of TRA genes within mTECs. From a mechanistic viewpoint, there are two possible models to explain the function of Aire in this action. In the first model, TRAs are considered to be the direct target genes of Aire’s transcriptional activity. In this scenario, the lack of Aire protein within cells would result in the defective TRA gene expression, while the maturation program of mTECs would be unaffected in principle. The second model hypothesizes that Aire is necessary for the maturation program of mTECs. In this case, we assume that the mTEC compartment does not mature normally in the absence of Aire. If acquisition of the properties of TRA gene expression depends on the maturation status of mTECs, a defect of such an Aire-dependent maturation program in Aire-deficient mTECs can also result in impaired TRA gene expression. In this brief review, we will focus on these two contrasting models for the roles of Aire in controlling the expression of TRAs within mTECs.
Collapse
Affiliation(s)
- Mitsuru Matsumoto
- Division of Molecular Immunology, Institute for Enzyme Research, University of Tokushima , Tokushima , Japan
| | | | | | | | | | | |
Collapse
|