1
|
Piccaluga PP, Khattab SS. A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas. Int J Mol Sci 2023; 24:14170. [PMID: 37762472 PMCID: PMC10532420 DOI: 10.3390/ijms241814170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a rare subset of non-Hodgkin lymphomas that often carry significant difficulty in diagnosis and classification because of their rarity and biological complexity. Previous editions of the World Health Organization (WHO) classifications of hemopoietic neoplasms in 2001, 2008, and 2017 aimed to standardize hemopoietic neoplasm diagnosis in general. Since then, crucial clinico-pathological, immunophenotypic, and recent molecular discoveries have been made in the field of lymphomas, contributing to refining diagnostic criteria of several diseases, upgrading entities previously defined as provisional, and identifying new entities. In 2022, two different models were proposed to classify hematolymphoid neoplasms: the 5th edition of the WHO classification (WHO-HAEM5) and the International Consensus Classification (ICC). Of note, a common nosography is mandatory to ensure progress in health science and ensure the basis for a real precision medicine. In this article, the authors summarized the main differences with the previous fourth WHO edition and reviewed the main discrepancies between the two newest classifications, as far as PTCLs are concerned.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Opedaliera-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| | - Shaimaa S. Khattab
- Medical Research Institute, Hematology Department, Alexandria University, Alexandria 5310002, Egypt;
| |
Collapse
|
2
|
Capasso A, Villers E, Elliott J, Ilchyshyn N, Hopkins I, Sanchez FV, Verganti S. Retrospective Study of T Cell Leukaemia (Large Granular Lymphocyte Variant) in Dogs Associated with Suspected Immune-Mediated Cytopaenia(s) in the Absence of Peripheral Lymphocytosis. Animals (Basel) 2023; 13:ani13030357. [PMID: 36766246 PMCID: PMC9913808 DOI: 10.3390/ani13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Canine chronic large granular lymphocyte (LGL) leukaemia is commonly characterised by moderate to marked lymphocytosis but not neutropaenia. In humans, LGL leukaemia is often associated with autoimmune disorders, including immune-mediated cytopaenias (mainly neutropaenia). This presentation is rare in dogs. The aim of this retrospective study was to describe the clinical characteristics, treatments, and outcomes of dogs with chronic LGL leukaemia with suspected immune-mediated cytopaenia. Six dogs with a median age of 4.5 years (range 2-8 years) were included in the study. The most common presenting signs were pyrexia and lethargy. All dogs had severe neutropaenia (median neutrophil count 0.07 × 109/L), three had thrombocytopaenia (median platelet count 66 × 109/L), and one had anaemia (HCT 0.32 L/L). In all dogs, bone marrow cytology revealed infiltration of granular T lymphocytes; PARR analysis confirmed clonality in four, and bone marrow flow cytometry identified CD3+ CD8+ neoplastic cells in two cases. All patients received systemic chemotherapy, and the cytopaenias resolved after 1-19 weeks. Two dogs were euthanised 133 and 322 days after diagnosis, two were lost to follow-up after 224 and 357 days, and two were alive at 546 and 721 days. A subset of LGL leukaemia in dogs is associated with immune-mediated cytopaenia and has a unique clinical presentation.
Collapse
Affiliation(s)
- Angelo Capasso
- Department of Oncology, Dick White Referrals, Station Farm, London Road, Six Mile Bottom CB8 0UH, UK
- Correspondence: or ; Tel.: +44-759-6580-266
| | - Elizabeth Villers
- Department of Pathology, Dick White Referrals, Station Farm, London Road, Six Mile Bottom CB8 0UH, UK
| | - James Elliott
- Department of Oncology, Southfields, Cranes Point, Gardiners Ln S, Basildon SS14 3AP, UK
| | - Nic Ilchyshyn
- Department of Pathology, Dick White Referrals, Station Farm, London Road, Six Mile Bottom CB8 0UH, UK
| | - Ian Hopkins
- Oackwood Veterinary Referrals, Willows Veterinary Hospital, Chester Road, Hartford, Nortwich CW8 1LP, UK
| | - Ferran Valls Sanchez
- Department of Internal Medicine, Dick White Referrals, Station Farm, London Road, Six Mile Bottom CB8 0UH, UK
| | - Sara Verganti
- Department of Oncology, Dick White Referrals, Station Farm, London Road, Six Mile Bottom CB8 0UH, UK
| |
Collapse
|
3
|
Calabretto G, Attardi E, Gurnari C, Semenzato G, Voso MT, Zambello R. LGL Clonal Expansion and Unexplained Cytopenia: Two Clues Don't Make an Evidence. Cancers (Basel) 2022; 14:5236. [PMID: 36358655 PMCID: PMC9655579 DOI: 10.3390/cancers14215236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
Clonal expansions of large granular lymphocytes (LGL) have been reported in a wide spectrum of conditions, with LGL leukemia (LGLL) being the most extreme. However, the boundaries between LGLL and LGL clones are often subtle, and both conditions can be detected in several clinical scenarios, particularly in patients with cytopenias. The intricate overlap of LGL clonal expansion with other disease entities characterized by unexplained cytopenias makes their classification challenging. Indeed, precisely assigning whether cytopenias might be related to inadequate hematopoiesis (i.e., LGL as a marginal finding) rather than immune-mediated mechanisms (i.e., LGLL) is far from being an easy task. As LGL clones acquire different pathogenetic roles and relevance according to their diverse clinical settings, their detection in the landscape of bone marrow failures and myeloid neoplasms has recently raised growing clinical interest. In this regard, the current availability of different diagnostic techniques, including next generation sequencing, shed light on the relationship between LGL clones and cytopenias, paving the way towards a better disease classification for precision medicine treatments. Herein, we discuss the clinical relevance of LGL clones in the diagnostic algorithm to be followed in patients presenting with cytopenias, offering a foundation for rational management approaches.
Collapse
Affiliation(s)
- Giulia Calabretto
- Department of Medicine, Padua University School of Medicine, Hematology Division, 35129 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Enrico Attardi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Carmelo Gurnari
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
- Translational Hematology and Oncology Research Department, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Gianpietro Semenzato
- Department of Medicine, Padua University School of Medicine, Hematology Division, 35129 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Renato Zambello
- Department of Medicine, Padua University School of Medicine, Hematology Division, 35129 Padua, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| |
Collapse
|
4
|
Piedrafita A, Vergez F, Belliere J, Prades N, Colombat M, Huart A, Rieu JB, Lagarde S, Del Bello A, Kamar N, Chauveau D, Laurent C, Oberic L, Ysebaert L, Ribes D, Faguer S. Spectrum of Kidney Disorders Associated with T-Cell Immunoclones. J Clin Med 2022; 11:jcm11030604. [PMID: 35160055 PMCID: PMC8836922 DOI: 10.3390/jcm11030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Large granular T-cell leukemia is a clonal hematological condition often associated with autoimmune disorders. Whether small-sized T-cell clones that are otherwise asymptomatic can promote immune kidney disorders remains elusive. In this monocentric retrospective cohort in a tertiary referral center in France, we reviewed characteristics of 29 patients with T-cell clone proliferation and autoimmune kidney disorders. Next-generation sequencing of the T-cell receptor of circulating T-cells was performed in a subset of patients. The T-cell clones were detected owing to systematic screening (mean count 0.32 × 109/L, range 0.13–3.7). Strikingly, a common phenotype of acute interstitial nephropathy was observed in 22 patients (median estimated glomerular filtration rate at presentation of 22 mL/min/1.73 m2 (range 0–56)). Kidney biopsies showed polymorphic inflammatory cell infiltration (predominantly CD3+ T-cells, most of them demonstrating positive phospho-STAT3 staining) and non-necrotic granuloma in six cases. Immune-mediated glomerulopathy only or in combination with acute interstitial nephropathy was identified in eight patients. Next-generation sequencing (n = 13) identified a major T-cell clone representing more than 1% of the T-cell population in all but two patients. None had a mutation of STAT3. Twenty patients (69%) had two or more extra-kidney autoimmune diseases. Acute interstitial nephropathies were controlled with corticosteroids, cyclosporin A, or tofacitinib. Thus, we showed that small-sized T-cell clones (i.e., without lymphocytosis) undetectable without specific screening are associated with various immune kidney disorders, including a previously unrecognized phenotype characterized by severe inflammatory kidney fibrosis and lymphocytic JAK/STAT activation.
Collapse
Affiliation(s)
- Alexis Piedrafita
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
- UMR 1297 (Institut des Maladies Métaboliques et Cardiovasculaires-Team 12), Institut National de la Santé et de la Recherche Médicale, F-31000 Toulouse, France
| | - François Vergez
- Laboratoire d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (F.V.); (N.P.); (J.-B.R.); (S.L.)
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
| | - Julie Belliere
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
- UMR 1297 (Institut des Maladies Métaboliques et Cardiovasculaires-Team 12), Institut National de la Santé et de la Recherche Médicale, F-31000 Toulouse, France
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
| | - Nais Prades
- Laboratoire d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (F.V.); (N.P.); (J.-B.R.); (S.L.)
| | - Magali Colombat
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
- Département d’Anatomopathologie, Institut Universitaire du Cancer de Toulouse, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France;
| | - Antoine Huart
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
| | - Jean-Baptiste Rieu
- Laboratoire d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (F.V.); (N.P.); (J.-B.R.); (S.L.)
| | - Stéphanie Lagarde
- Laboratoire d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (F.V.); (N.P.); (J.-B.R.); (S.L.)
| | - Arnaud Del Bello
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
| | - Nassim Kamar
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
| | - Dominique Chauveau
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
- UMR 1297 (Institut des Maladies Métaboliques et Cardiovasculaires-Team 12), Institut National de la Santé et de la Recherche Médicale, F-31000 Toulouse, France
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
| | - Camille Laurent
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
- Département d’Anatomopathologie, Institut Universitaire du Cancer de Toulouse, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France;
| | - Lucie Oberic
- Département d’Anatomopathologie, Institut Universitaire du Cancer de Toulouse, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France;
| | - Loïc Ysebaert
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
- Service d’Hématologie, Institut Universitaire du Cancer de Toulouse-Oncopôle, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France
| | - David Ribes
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
| | - Stanislas Faguer
- Centre de Référence des Maladies Rénales Rares, Département de Néphrologie et Transplantation d’Organes, Centre Hospitalier Universitaire de Toulouse, F-31000 Toulouse, France; (A.P.); (J.B.); (A.H.); (A.D.B.); (N.K.); (D.C.); (D.R.)
- UMR 1297 (Institut des Maladies Métaboliques et Cardiovasculaires-Team 12), Institut National de la Santé et de la Recherche Médicale, F-31000 Toulouse, France
- Faculté de Médecine Rangueil, Université Paul Sabatier-Toulouse III, F-31000 Toulouse, France; (M.C.); (C.L.); (L.Y.)
- Correspondence: ; Tel.: +33-561-323-288; Fax: +33-561-322-351
| |
Collapse
|
5
|
Neutropenia and Large Granular Lymphocyte Leukemia: From Pathogenesis to Therapeutic Options. Cells 2021; 10:cells10102800. [PMID: 34685780 PMCID: PMC8534439 DOI: 10.3390/cells10102800] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a rare lymphoproliferative disorder characterized by the clonal expansion of cytotoxic T-LGL or NK cells. Chronic isolated neutropenia represents the clinical hallmark of the disease, being present in up to 80% of cases. New advances were made in the biological characterization of neutropenia in these patients, in particular STAT3 mutations and a discrete immunophenotype are now recognized as relevant features. Nevertheless, the etiology of LGLL-related neutropenia is not completely elucidated and several mechanisms, including humoral abnormalities, bone marrow infiltration/substitution and cell-mediated cytotoxicity might cooperate to its pathogenesis. As a consequence of the multifactorial nature of LGLL-related neutropenia, a targeted therapeutic approach for neutropenic patients has not been developed yet; moreover, specific guidelines based on prospective trials are still lacking, thus making the treatment of this disorder a complex and challenging task. Immunosuppressive therapy represents the current, although poorly effective, therapeutic strategy. The recent identification of a STAT3-mediated miR-146b down-regulation in neutropenic T-LGLL patients emphasized the pathogenetic role of STAT3 activation in neutropenia development. Accordingly, JAK/STAT3 axis inhibition and miR-146b restoration might represent tempting strategies and should be prospectively evaluated for the treatment of neutropenic LGLL patients.
Collapse
|
6
|
Milk Proteins-Their Biological Activities and Use in Cosmetics and Dermatology. Molecules 2021; 26:molecules26113253. [PMID: 34071375 PMCID: PMC8197926 DOI: 10.3390/molecules26113253] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Milk and colostrum have high biological potential, and due to their natural origin and non-toxicity, they have many uses in cosmetics and dermatology. Research is ongoing on their potential application in other fields of medicine, but there are still few results; most of the published ones are included in this review. These natural products are especially rich in proteins, such as casein, β-lactoglobulin, α-lactalbumin, lactoferrin, immunoglobulins, lactoperoxidase, lysozyme, and growth factors, and possess various antibacterial, antifungal, antiviral, anticancer, antioxidant, immunomodulatory properties, etc. This review describes the physico-chemical properties of milk and colostrum proteins and the natural functions they perform in the body and compares their composition between animal species (cows, goats, and sheep). The milk- and colostrum-based products can be used in dietary supplementation and for performing immunomodulatory functions; they can enhance the effects of certain drugs and can have a lethal effect on pathogenic microorganisms. Milk products are widely used in the treatment of dermatological diseases for promoting the healing of chronic wounds, hastening tissue regeneration, and the treatment of acne vulgaris or plaque psoriasis. They are also increasingly regarded as active ingredients that can improve the condition of the skin by reducing the number of acne lesions and blackheads, regulating sebum secretion, ameliorating inflammatory changes as well as bestowing a range of moisturizing, protective, toning, smoothing, anti-irritation, whitening, soothing, and antiaging effects.
Collapse
|
7
|
Sun H, Wei S, Yang L. Dysfunction of immune system in the development of large granular lymphocyte leukemia. ACTA ACUST UNITED AC 2018; 24:139-147. [PMID: 30334691 DOI: 10.1080/10245332.2018.1535294] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Large granular lymphocyte (LGL) leukemia is a rare type of lymphoproliferative disease caused by clonal antigenic stimulation of T cells and natural killer (NK) cells. METHODS In this review, we focus on the current knowledge of the immunological dysfunctions associated with LGL leukemia and the associated disorders coexistent with this disease. Novel therapeutic options targeting known molecular mechanisms are also discussed. RESULTS AND DISCUSSION The pathogenesis of LGL leukemia involves the accumulation of gene mutations, dysregulated signaling pathways and immunological dysfunction. Mounting evidence indicated that dysregulated survival signaling pathways may be responsible for the immunological dysfunction in LGL leukemia including decreased numbers of neutrophils, dysregulated signal transduction of NK cells, abnormal B-cells, aberrant CD8+ T cells, as well as autoimmune and hematological abnormalities. CONCLUSION A better understanding of the immune dysregulation triggered by LGL leukemia will be beneficial to explore the pathogenesis and potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Houfang Sun
- a Department of Immunology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , People's Republic of China.,b National Clinical Research Center of Cancer , People's Republic of China.,c Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , People's Republic of China.,d Key Laboratory of Cancer Prevention and Therapy , Tianjin , People's Republic of China.,e Tianjin's Clinical Research Center for Cancer , Tianjin , People's Republic of China
| | - Sheng Wei
- f Immunology Program , The H. Lee Moffitt Cancer Center , Tampa , FL , USA
| | - Lili Yang
- a Department of Immunology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , People's Republic of China.,b National Clinical Research Center of Cancer , People's Republic of China.,c Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , People's Republic of China.,d Key Laboratory of Cancer Prevention and Therapy , Tianjin , People's Republic of China.,e Tianjin's Clinical Research Center for Cancer , Tianjin , People's Republic of China
| |
Collapse
|
8
|
Hmga2 promotes the development of myelofibrosis in Jak2 V617F knockin mice by enhancing TGF-β1 and Cxcl12 pathways. Blood 2017. [PMID: 28637665 DOI: 10.1182/blood-2016-12-757344] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myelofibrosis (MF) is a devastating blood disorder. The JAK2V617F mutation has been detected in ∼50% cases of MF. Elevated expression of high-mobility group AT hook 2 (HMGA2) has also been frequently observed in patients with MF. Interestingly, upregulation of HMGA2 expression has been found in association with the JAK2V617F mutation in significant cases of MF. However, the contribution of HMGA2 in the pathogenesis of MF remains elusive. To determine the effects of concurrent expression of HMGA2 and JAK2V617F mutation in hematopoiesis, we transduced bone marrow cells from Jak2V617F knockin mice with lentivirus expressing Hmga2 and performed bone marrow transplantation. Expression of Hmga2 enhanced megakaryopoiesis, increased extramedullary hematopoiesis, and accelerated the development of MF in mice expressing Jak2V617F Mechanistically, the data show that expression of Hmga2 enhances the activation of transforming growth factor-β1 (TGF-β1) and Cxcl12 pathways in mice expressing Jak2V617F In addition, expression of Hmga2 causes upregulation of Fzd2, Ifi27l2a, and TGF-β receptor 2. Forced expression of Cxcl12, Fzd2, or Ifi27l2a increases megakaryocytic differentiation and proliferation in the bone marrow of Jak2V617F mice, whereas TGF-β1 or Cxcl12 stimulation induces collagen deposition in the bone marrow mesenchymal stromal cells. Together, these findings demonstrate that expression of Hmga2 cooperates with Jak2V617F in the pathogenesis of MF.
Collapse
|
9
|
Yue L, Bartenstein M, Zhao W, Ho WT, Han Y, Murdun C, Mailloux AW, Zhang L, Wang X, Budhathoki A, Pradhan K, Rapaport F, Wang H, Shao Z, Ren X, Steidl U, Levine RL, Zhao ZJ, Verma A, Epling-Burnette PK. Efficacy of ALK5 inhibition in myelofibrosis. JCI Insight 2017; 2:e90932. [PMID: 28405618 DOI: 10.1172/jci.insight.90932] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.
Collapse
Affiliation(s)
- Lanzhu Yue
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Matthias Bartenstein
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Wanke Zhao
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Wanting Tina Ho
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ying Han
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Cem Murdun
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Adam W Mailloux
- Translational Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Ling Zhang
- Department of Hematopathology and Laboratory Medicine
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Anjali Budhathoki
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Kith Pradhan
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Franck Rapaport
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Ulrich Steidl
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Ross L Levine
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Zhizhuang Joe Zhao
- Department of Pathology, Peggy and Stephenson Cancer Center, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | | |
Collapse
|
10
|
Han Y, Yue L, Wei M, Ren X, Shao Z, Zhang L, Levine RL, Epling-Burnette PK. Mesenchymal Cell Reprogramming in Experimental MPLW515L Mouse Model of Myelofibrosis. PLoS One 2017; 12:e0166014. [PMID: 28135282 PMCID: PMC5279751 DOI: 10.1371/journal.pone.0166014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
Myelofibrosis is an indicator of poor prognosis in myeloproliferative neoplasms (MPNs), but the precise mechanism(s) contributing to extracellular matrix remodeling and collagen deposition in the bone marrow (BM) niche remains unanswered. In this study, we isolated mesenchymal stromal cells (MSCs) from mice transplanted with wild-type thrombopoietin receptor (MPLWT) and MPLW515L retroviral-transduced bone marrow. Using MSCs derived from MPLW515-transplant recipients, excessive collagen deposition was maintained in the absence of the virus and neoplastic hematopoietic cells suggested that the MSCs were reprogrammed in vivo. TGFβ production by malignant megakaryocytes plays a definitive role promoting myelofibrosis in MPNs. However, TGFβ was equally expressed by MSCs derived from MPLWT and MPLW515L expressing mice and the addition of neutralizing anti-TGFβ antibody only partially reduced collagen secretion in vitro. Interestingly, profibrotic MSCs displayed increased levels of pSmad3 and pSTAT3 suggesting that inflammatory mediators cooperating with the TGFβ-receptor signaling may maintain the aberrant phenotype ex vivo. FGFb is a known suppressor of TGFβ signaling. Reduced collagen deposition by FGFb-treated MSCs derived from MPLW515L mice suggests that the activating pathway is vulnerable to this suppressive mediator. Therefore, our findings have implications for the future investigation of therapies to reverse fibrosis in MPNs.
Collapse
Affiliation(s)
- Ying Han
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, United States of America
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Lanzhu Yue
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, United States of America
- Department of Hematology, Tianjin medical University General Hospital, Tianjin, PR China
| | - Max Wei
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Key Laboratory of Cancer Prevention and Therapy, Tianjin, PR China
| | - Zonghong Shao
- Department of Hematology, Tianjin medical University General Hospital, Tianjin, PR China
| | - Ling Zhang
- Department of Hematopathology, Moffitt Cancer Center, Tampa, Florida, United States of America
| | - Ross L. Levine
- Leukemia Center, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
| | | |
Collapse
|
11
|
LGL leukemia: from pathogenesis to treatment. Blood 2017; 129:1082-1094. [PMID: 28115367 DOI: 10.1182/blood-2016-08-692590] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 11/27/2016] [Indexed: 11/20/2022] Open
Abstract
Large granular lymphocyte (LGL) leukemia has been recognized by the World Health Organization classifications amongst mature T-cell and natural killer (NK) cell neoplasms. There are 3 categories: chronic T-cell leukemia and NK-cell lymphocytosis, which are similarly indolent diseases characterized by cytopenias and autoimmune conditions as opposed to aggressive NK-cell LGL leukemia. Clonal LGL expansion arise from chronic antigenic stimulation, which promotes dysregulation of apoptosis, mainly due to constitutive activation of survival pathways including Jak/Stat, MapK, phosphatidylinositol 3-kinase-Akt, Ras-Raf-1, MEK1/extracellular signal-regulated kinase, sphingolipid, and nuclear factor-κB. Socs3 downregulation may also contribute to Stat3 activation. Interleukin 15 plays a key role in activation of leukemic LGL. Several somatic mutations including Stat3, Stat5b, and tumor necrosis factor alpha-induced protein 3 have been demonstrated recently in LGL leukemia. Because these mutations are present in less than half of the patients, they cannot completely explain LGL leukemogenesis. A better mechanistic understanding of leukemic LGL survival will allow future consideration of a more targeted therapeutic approach than the current practice of immunosuppressive therapy.
Collapse
|
12
|
Fouladiha H, Marashi SA, Shokrgozar MA. Reconstruction and validation of a constraint-based metabolic network model for bone marrow-derived mesenchymal stem cells. Cell Prolif 2015; 48:475-85. [PMID: 26132591 DOI: 10.1111/cpr.12197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/14/2015] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Over recent years, constraint-based modelling of metabolic networks has become increasingly popular; the models are suitable for system-level modelling of cell physiology. The goal of the present work was to reconstruct a constraint-based metabolic network model of bone marrow-derived mesenchymal stem cells (BMMSCs). MATERIALS AND METHODS To reconstruct a BMMSC-specific metabolic model, transcriptomic data of BMMSCs, and additionally, the human generic metabolic network model (Recon1) were used. Then, using the mCADRE algorithm, a draft metabolic network was reconstructed. Literature and proteomic data were subsequently used to refine and improve the draft. From this, iMSC1255 was derived to be the metabolic network model of BMMSCs. RESULTS iMSC1255 has 1255 genes, 1850 metabolites and 2288 reactions. After including additional constraints based on previously reported experimental results, our model successfully predicted BMMSC growth rate and metabolic phenotypes. CONCLUSIONS Here, iMSC1255 is introduced to be the metabolic network model of bone marrow-derived mesenchymal stem cells. Based on current knowledge, this is the first report on genome-scale reconstruction and validation of a stem cell metabolic network model.
Collapse
Affiliation(s)
- H Fouladiha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - S-A Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, 1417614411, Iran
| | - M A Shokrgozar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
13
|
Abstract
Hepatic stellate cells are mainly known for their contribution to fibrogenesis in chronic liver diseases, but their identity and function in normal liver remain unclear. They were recently identified as liver-resident mesenchymal stem cells (MSCs), which can differentiate not only into adipocytes and osteocytes, but also into liver epithelial cells such as hepatocytes and bile duct cells as investigated in vitro and in vivo. During hepatic differentiation, stellate cells and other MSCs transiently develop into liver progenitor cells with epithelial characteristics before hepatocytes are established. Transplanted stellate cells from the liver and pancreas are able to contribute to liver regeneration in stem cell-based liver injury models and can also home into the bone marrow, which is in line with their classification as MSCs. There is experimental evidence that bile acids support liver regeneration and are able to activate signaling pathways in hepatic stellate cells. For this reason, it is important to analyze the influence of bile acids on developmental fate decisions of hepatic stellate cells and other MSC populations.
Collapse
Affiliation(s)
- Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | |
Collapse
|