1
|
Parta M, Cuellar-Rodriguez J, Gea-Banacloche J, Qin J, Kelly C, Zerbe CS, Holland SM, Malech HL, Kang EM. Febrile neutropenia management and outcomes in hematopoietic cell transplantation for chronic granulomatous disease. Transpl Infect Dis 2022; 24:e13815. [PMID: 35191140 PMCID: PMC11024981 DOI: 10.1111/tid.13815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE We analyzed events and therapies related to febrile neutropenia in patients receiving hematopoietic cell transplantation (HCT) for chronic granulomatous disease (CGD). METHODS Three protocols for HCT were used to extract the relation between conditioning and infectious complications during transplantation for CGD, especially the relation of fever and neutropenia to microbiological events and antibiotic therapy. RESULTS Sixty-nine recipients received either reduced intensity conditioning with matched related or unrelated donors or conditioning specific to haploidentical-related donors utilizing posttransplant cyclophosphamide. Fever prior to neutropenia was common (52) and in eight recipients, Gram negative bacterial infection occurred prior to neutropenia, and in nine during neutropenia. Alemtuzumab as conditioning was associated with preneutropenic infection. Empiric therapy (noncarbapenem) by institutional guideline was given in 40. Carbapenems were given before neutropenia (8) or as empiric therapy in neutropenia (18), or a switch to a carbapenem (n = 22) occurred in 48 cases. No deaths related to infection associated with neutropenia occurred. CONCLUSION The management of febrile neutropenia in HCT for CGD led to no deaths related to infection associated with neutropenia. Bacteremias occurred both prior to neutropenia and during neutropenia. Bacteria isolated may have represented the recrudescence of prior infection, representing the population transplanted and the platform for HCT. The treatment of prior infections may have had an influence on the necessity of carbapenem use as either empiric or directed therapy for bacterial infections.
Collapse
Affiliation(s)
- Mark Parta
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Bethesda, Maryland, USA
| | - Jennifer Cuellar-Rodriguez
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Gea-Banacloche
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Qin
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| | - Corin Kelly
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| | - Christa S. Zerbe
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| | - Steven M. Holland
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| | - Harry L. Malech
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth M. Kang
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Muszyński A, Zarember KA, Heiss C, Shiloach J, Berg LJ, Audley J, Kozyr A, Greenberg DE, Holland SM, Malech HL, Azadi P, Carlson RW, Gallin JI. Granulibacter bethesdensis, a Pathogen from Patients with Chronic Granulomatous Disease, Produces a Penta-Acylated Hypostimulatory Glycero-D-talo-oct-2-ulosonic Acid-Lipid A Glycolipid (Ko-Lipid A). Int J Mol Sci 2021; 22:3303. [PMID: 33804872 PMCID: PMC8036547 DOI: 10.3390/ijms22073303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10-100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-β-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3' 14:0(3-OH), N-2' 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo-lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko-lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.
Collapse
Affiliation(s)
- Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Joseph Shiloach
- Biotechnology Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Lars J. Berg
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - John Audley
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Arina Kozyr
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - David E. Greenberg
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.H.); (P.A.); (R.W.C.)
| | - John I. Gallin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (K.A.Z.); (L.J.B.); (J.A.); (A.K.); (D.E.G.); (S.M.H.); (H.L.M.)
| |
Collapse
|
3
|
Riazanski V, Sui Z, Nelson DJ. Kinetic Separation of Oxidative and Non-oxidative Metabolism in Single Phagosomes from Alveolar Macrophages: Impact on Bacterial Killing. iScience 2020; 23:101759. [PMID: 33251491 PMCID: PMC7677711 DOI: 10.1016/j.isci.2020.101759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
The relative contribution of the two phagosomal catabolic processes, oxidative and metabolic, was assessed in the killing of Pseudomonas aeruginosa in phagosomes of alveolar macrophages (AMs) from wild-type (p47-phox+/+) or NOX-defective (p47-phox−/−) mice. Free radical release and degradative acidification within AM phagosomes is sequential and separable. The initial NOX activity, identifiable as a transient alkalinization, leads to fast bacterial wall permeabilization by ROS. This is followed by V-ATPase-induced acidification and enzymatic bacterial degradation contributed through phagosomal-lysosomal fusion. The alkalinization/acidification ratio was variable among phagosomes within single cells of a given genotype and not as a function of macrophage M1 or M2 classification, possibly owing to uneven distribution of phagosomal transporter proteins. Irregular, excessive NOX activity prevents phago-lysosomal fusion, and the lack of V-ATPase-induced acidification leads to bacterial stasis in the phagosome. Thus, efficient phagosomal bacterial killing is a result of tightly balanced activity between two processes. Phagosomal NOX and V-ATPase activation is sequential and separable in macrophages Superoxide (O2-) inhibits lysosomal fusion thereby inhibiting phagosomal acidification Phagosomes in single cells are heterogeneous in NOX activity and thereby acidification NOX activity is the dominant factor in bactericidal efficacy in macrophage phagosomes
Collapse
Affiliation(s)
- Vladimir Riazanski
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
- Corresponding author
| | - Zihao Sui
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
| | - Deborah J. Nelson
- The University of Chicago, Department of Pharmacological and Physiological Sciences, 947 E. 58th Street, MC 0926, Chicago, IL 60637, USA
- Corresponding author
| |
Collapse
|
4
|
Rebelo M, Ding L, Cordeiro AI, Neves C, Simões MJ, Zelazny AM, Holland SM, Neves JF. Fatal Meningitis in Patient with X-Linked Chronic Granulomatous Disease Caused by Virulent Granulibacter bethesdensis. Emerg Infect Dis 2019. [DOI: 10.3201/eid2405.181505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Rebelo M, Ding L, Cordeiro AI, Neves C, Simões MJ, Zelazny AM, Holland SM, Neves JF. Fatal Meningitis in Patient with X-Linked Chronic Granulomatous Disease Caused by Virulent Granulibacter bethesdensis. Emerg Infect Dis 2019; 25:976-979. [PMID: 31002074 PMCID: PMC6478198 DOI: 10.3201/eid2505.181505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Granulibacter bethesdensis is a pathogen reported to cause recurrent lymphadenitis exclusively in persons with chronic granulomatous disease. We report a case of fatal meningitis caused by a highly virulent G. bethesdensis strain in an adolescent in Europe who had chronic granulomatous disease.
Collapse
|
6
|
Foote JR, Patel AA, Yona S, Segal AW. Variations in the Phagosomal Environment of Human Neutrophils and Mononuclear Phagocyte Subsets. Front Immunol 2019; 10:188. [PMID: 30881356 PMCID: PMC6405516 DOI: 10.3389/fimmu.2019.00188] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/22/2019] [Indexed: 12/11/2022] Open
Abstract
The phagosome microenvironment maintains enzyme activity and function. Here we compared the phagosomal pH of human neutrophils, monocytes, dendritic cells (DC), and monocyte-derived cells. An unexpected observation was the striking difference in phagosomal environment between the three monocytes subsets. Classical monocytes and neutrophils exhibited alkaline phagosomes, yet non-classical monocytes had more acidic phagosomes, while intermediate monocytes had a phenotype in-between. We next investigated the differences between primary naïve DC vs. in vitro monocyte-derived DC (MoDC) and established that both these cells had acidic phagosomal environments. Across all phagocytes, alkalinization was dependent upon the activity of the NADPH oxidase activity, demonstrated by the absence of NADPH oxidase from a patient with chronic granulomatous disease (CGD) or the use of a pharmacological inhibitor, diphenylene iodonium (DPI). Interestingly, MoDC stimulated with bacterial lipopolysaccharide had increased phagosomal pH. Overall, the increase in alkalinity within the phagosome was associated with increased oxidase activity. These data highlight the heterogeneous nature and potential function of phagocytic vacuoles within the family of mononuclear phagocytes.
Collapse
Affiliation(s)
- Juliet R Foote
- Division of Medicine, University College London, London, United Kingdom
| | - Amit A Patel
- Division of Medicine, University College London, London, United Kingdom
| | - Simon Yona
- Division of Medicine, University College London, London, United Kingdom
| | - Anthony W Segal
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
7
|
Chu J, Smelkinson MG, Dorward DW, Zarember KA, Gallin JI. Early Intracellular Trafficking of Granulibacter bethesdensis in Human Macrophages. Infect Immun 2017; 85:e00847-16. [PMID: 28320834 PMCID: PMC5442635 DOI: 10.1128/iai.00847-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/12/2017] [Indexed: 01/30/2023] Open
Abstract
Granulibacter bethesdensis is a Gram-negative bacterium that infects patients with chronic granulomatous disease (CGD), a primary immunodeficiency marked by a defect in NOX2, the phagocyte NADPH oxidase. Previous studies have shown that NOX2 is essential for killing of G. bethesdensis by neutrophils and monocytes and that the bacteriostatic activity of monocyte-derived macrophages (MDM) requires NOX2 and gamma interferon (IFN-γ) pretreatment. To determine whether G. bethesdensis evades phagolysosomal killing, a host defense pathway intact in both normal and CGD MDM, or whether it occupies a distinct intracellular niche in CGD MDM, we assessed the trafficking patterns of this organism. We observed colocalization of G. bethesdensis with an early endosome antigen 1 (EEA1)-positive compartment, followed by colocalization with lysosome-associated membrane protein 1 (LAMP1)-positive and LysoTracker-positive late phagosomes; these characteristics were similar in both normal and CGD MDM. Despite localization to acidified late phagosomes, viable G. bethesdensis cells were recovered from viable MDM in numbers greater than in the initial input up to 6 days after infection. G. bethesdensis remains, and in some cases appears to divide, within a membrane-bound compartment for the entire 6-day time course. These findings indicate that this organism resists both oxygen-dependent and oxygen-independent phagolysosomal antimicrobial systems of human macrophages.
Collapse
Affiliation(s)
- Jessica Chu
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Margery G Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David W Dorward
- Electron Microscopy Unit, Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Kol A Zarember
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John I Gallin
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Falcone EL, Petts JR, Fasano MB, Ford B, Nauseef WM, Neves JF, Simões MJ, Tierce ML, de la Morena MT, Greenberg DE, Zerbe CS, Zelazny AM, Holland SM. Methylotroph Infections and Chronic Granulomatous Disease. Emerg Infect Dis 2016; 22:404-9. [PMID: 26886412 PMCID: PMC4766906 DOI: 10.3201/eid2203.151265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Disease caused by these environmental bacteria is almost exclusively limited to patients with this condition. Chronic granulomatous disease (CGD) is a primary immunodeficiency caused by a defect in production of phagocyte-derived reactive oxygen species, which leads to recurrent infections with a characteristic group of pathogens not previously known to include methylotrophs. Methylotrophs are versatile environmental bacteria that can use single-carbon organic compounds as their sole source of energy; they rarely cause disease in immunocompetent persons. We have identified 12 infections with methylotrophs (5 reported here, 7 previously reported) in patients with CGD. Methylotrophs identified were Granulibacter bethesdensis (9 cases), Acidomonas methanolica (2 cases), and Methylobacterium lusitanum (1 case). Two patients in Europe died; the other 10, from North and Central America, recovered after prolonged courses of antimicrobial drug therapy and, for some, surgery. Methylotrophs are emerging as disease-causing organisms in patients with CGD. For all patients, sequencing of the 16S rRNA gene was required for correct diagnosis. Geographic origin of the methylotroph strain may affect clinical management and prognosis.
Collapse
|
9
|
Simultaneous Host-Pathogen Transcriptome Analysis during Granulibacter bethesdensis Infection of Neutrophils from Healthy Subjects and Patients with Chronic Granulomatous Disease. Infect Immun 2015; 83:4277-92. [PMID: 26283340 DOI: 10.1128/iai.00778-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear leukocytes (PMN) from patients with chronic granulomatous disease (CGD) fail to produce microbicidal concentrations of reactive oxygen species (ROS) due to mutations in NOX2. Patients with CGD suffer from severe, life-threatening infections and inflammatory complications. Granulibacter bethesdensis is an emerging Gram-negative pathogen in CGD that resists killing by PMN of CGD patients (CGD PMN) and inhibits PMN apoptosis through unknown mechanisms. Microarray analysis was used to study mRNA expression in PMN from healthy subjects (normal PMN) and CGD PMN during incubation with G. bethesdensis and, simultaneously, in G. bethesdensis with normal and CGD PMN. We detected upregulation of antiapoptotic genes (e.g., XIAP and GADD45B) and downregulation of proapoptotic genes (e.g., CASP8 and APAF1) in infected PMN. Transcript and protein levels of inflammation- and immunity-related genes were also altered. Upon interaction with PMN, G. bethesdensis altered the expression of ROS resistance genes in the presence of normal but not CGD PMN. Levels of bacterial stress response genes, including the ClpB gene, increased during phagocytosis by both normal and CGD PMN demonstrating responses to oxygen-independent PMN antimicrobial systems. Antisense knockdown demonstrated that ClpB is dispensable for extracellular growth but is essential for bacterial resistance to both normal and CGD PMN. Metabolic adaptation of Granulibacter growth in PMN included the upregulation of pyruvate dehydrogenase. Pharmacological inhibition of pyruvate dehydrogenase by triphenylbismuthdichloride was lethal to Granulibacter. This study expands knowledge of microbial pathogenesis of Granulibacter in cells from permissive (CGD) and nonpermissive (normal) hosts and identifies potentially druggable microbial factors, such as pyruvate dehydrogenase and ClpB, to help combat this antibiotic-resistant pathogen.
Collapse
|
10
|
An AAVS1-targeted minigene platform for correction of iPSCs from all five types of chronic granulomatous disease. Mol Ther 2014; 23:147-57. [PMID: 25288370 DOI: 10.1038/mt.2014.195] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/29/2014] [Indexed: 11/08/2022] Open
Abstract
There are five genetic forms of chronic granulomatous disease (CGD), resulting from mutations in any of five subunits of phagocyte oxidase, an enzyme complex in neutrophils, monocytes, and macrophages that produces microbicidal reactive oxygen species. We generated induced pluripotent stem cells (iPSCs) from peripheral blood CD34(+) hematopoietic stem cells of patients with each of five CGD genotypes. We used zinc finger nuclease (ZFN) targeting the AAVS1 safe harbor site together with CGD genotype-specific minigene plasmids with flanking AAVS1 sequence to target correction of iPSC representing each form of CGD. We achieved targeted insertion with constitutive expression of desired oxidase subunit in 70-80% of selected iPSC clones. Neutrophils and macrophages differentiated from corrected CGD iPSCs demonstrated restored oxidase activity and antimicrobial function against CGD bacterial pathogens Staphylococcus aureus and Granulibacter bethesdensis. Using a standard platform that combines iPSC generation from peripheral blood CD34(+) cells and ZFN mediated AAVS1 safe harbor minigene targeting, we demonstrate efficient generation of genetically corrected iPSCs using an identical approach for all five genetic forms of CGD. This safe harbor minigene targeting platform is broadly applicable to a wide range of inherited single gene metabolic disorders.
Collapse
|
11
|
Săndulescu O. Bacterial prints in human infectious diseases. Germs 2014; 4:73. [PMID: 25276667 DOI: 10.11599/germs.2014.1059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/20/2014] [Indexed: 11/23/2022]
|