1
|
Wang B, Bian Q. Regulation of 3D genome organization during T cell activation. FEBS J 2024. [PMID: 38944686 DOI: 10.1111/febs.17211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
Within the three-dimensional (3D) nuclear space, the genome organizes into a series of orderly structures that impose important influences on gene regulation. T lymphocytes, crucial players in adaptive immune responses, undergo intricate transcriptional remodeling upon activation, leading to differentiation into specific effector and memory T cell subsets. Recent evidence suggests that T cell activation is accompanied by dynamic changes in genome architecture at multiple levels, providing a unique biological context to explore the functional relevance and molecular mechanisms of 3D genome organization. Here, we summarize recent advances that link the reorganization of genome architecture to the remodeling of transcriptional programs and conversion of cell fates during T cell activation and differentiation. We further discuss how various chromatin architecture regulators, including CCCTC-binding factor and several transcription factors, collectively modulate the genome architecture during this process.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai lnstitute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Qian Bian
- Shanghai lnstitute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
2
|
Quon S, Yu B, Russ BE, Tsyganov K, Nguyen H, Toma C, Heeg M, Hocker JD, Milner JJ, Crotty S, Pipkin ME, Turner SJ, Goldrath AW. DNA architectural protein CTCF facilitates subset-specific chromatin interactions to limit the formation of memory CD8 + T cells. Immunity 2023; 56:959-978.e10. [PMID: 37040762 PMCID: PMC10265493 DOI: 10.1016/j.immuni.2023.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.
Collapse
Affiliation(s)
- Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bingfei Yu
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kirill Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hongtuyet Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clara Toma
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James D Hocker
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
3
|
Smits WK, Vermeulen C, Hagelaar R, Kimura S, Vroegindeweij EM, Buijs-Gladdines JGCAM, van de Geer E, Verstegen MJAM, Splinter E, van Reijmersdal SV, Buijs A, Galjart N, van Eyndhoven W, van Min M, Kuiper R, Kemmeren P, Mullighan CG, de Laat W, Meijerink JPP. Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute T cell leukemia. Cell Rep 2023; 42:112373. [PMID: 37060567 PMCID: PMC10750298 DOI: 10.1016/j.celrep.2023.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.
Collapse
Affiliation(s)
- Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carlo Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Shunsuke Kimura
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | | | | | - Ellen van de Geer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | | | | - Arjan Buijs
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Roland Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G Mullighan
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | - Wouter de Laat
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | |
Collapse
|
4
|
Aburajab R, Pospiech M, Alachkar H. Profiling the epigenetic landscape of the antigen receptor repertoire: the missing epi-immunogenomics data. Nat Methods 2023; 20:477-481. [PMID: 36522502 PMCID: PMC11058354 DOI: 10.1038/s41592-022-01723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High-resolution sequencing methods that capture the epigenetic landscape within the T cell receptor (TCR) gene loci are pivotal for a fundamental understanding of the epigenetic regulatory mechanisms of the TCR repertoire. In our opinion, filling the gaps in our understanding of the epigenetic mechanisms regulating the TCR repertoire will benefit the development of strategies that can modulate the TCR repertoire composition by leveraging the dynamic nature of epigenetic modifications.
Collapse
Affiliation(s)
- Rayyan Aburajab
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Mateusz Pospiech
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Houda Alachkar
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
A preliminary study of tracking B-cell kinetics in patients with lung transplantation by monitoring kappa-deleting recombination excision circles. TURK GOGUS KALP DAMAR CERRAHISI DERGISI 2022; 30:611-621. [PMID: 36605322 PMCID: PMC9801467 DOI: 10.5606/tgkdc.dergisi.2022.21672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022]
Abstract
Background This study aims to evaluate humoral immune system response by measuring copy numbers of kappa-deleting recombination excision circles (KREC) gene segment from B lymphocytes in patients with lung transplantation. Methods Between September 2015 and November 2016, a total of 11 patients (8 males, 3 females; mean age: 45.4±12.0 years; range, 23 to 59 years) who underwent lung transplantation with different primary indications were included. The copy numbers of KREC gene segment were quantified using real-time polymerase chain reaction method in peripheral blood samples collected pre- and post-transplantation. The samples of the patients were compared with the KREC l evels i n deoxyribonucleic acid extracted from blood samples of healthy children. Results There was no significant change in KREC levels between pre- and post-operation (p=0.594 and p=0.657), although the median values indicated that the highest increase in the KREC levels (7x105- 12x105; 85-170) was on Day 7 of transplantation. There was a positive correlation between the KREC levels (mL in blood) and lymphocytes at 24 h after transplantation (p=0.043) and between KREC copies per 106 of blood and age on Day 7. Conclusion Our preliminary results suggest that KREC l evels a s an indicator of B lymphocyte production are elevated after lung transplantation. A prognostic algorithm by tracking B cell kinetics after post-transplantation for long-term follow-up can be developed following the confirmation of these preliminary results with more patient samples.
Collapse
|
6
|
Wu GS, Yang-Iott KS, Klink MA, Hayer KE, Lee KD, Bassing CH. Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion. J Exp Med 2021; 217:151853. [PMID: 32526772 PMCID: PMC7478721 DOI: 10.1084/jem.20200412] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
The monoallelic expression of antigen receptor (AgR) genes, called allelic exclusion, is fundamental for highly specific immune responses to pathogens. This cardinal feature of adaptive immunity is achieved by the assembly of a functional AgR gene on one allele, with subsequent feedback inhibition of V(D)J recombination on the other allele. A range of epigenetic mechanisms have been implicated in sequential recombination of AgR alleles; however, we now demonstrate that a genetic mechanism controls this process for Tcrb. Replacement of V(D)J recombinase targets at two different mouse Vβ gene segments with a higher quality target elevates Vβ rearrangement frequency before feedback inhibition, dramatically increasing the frequency of T cells with TCRβ chains derived from both Tcrb alleles. Thus, TCRβ allelic exclusion is enforced genetically by the low quality of Vβ recombinase targets that stochastically restrict the production of two functional rearrangements before feedback inhibition silences one allele.
Collapse
Affiliation(s)
- Glendon S Wu
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katherine S Yang-Iott
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Morgann A Klink
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Katharina E Hayer
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyutae D Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Allyn BM, Lee KD, Bassing CH. Genome Topology Control of Antigen Receptor Gene Assembly. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2617-2626. [PMID: 32366683 PMCID: PMC7440635 DOI: 10.4049/jimmunol.1901356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/22/2020] [Indexed: 02/02/2023]
Abstract
The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Igκ, TCRα/δ, and TCRβ loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein-mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage-specific locus compaction as well as broad usage of V segments. CTCF/cohesin-dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin-dependent and -independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.
Collapse
Affiliation(s)
- Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kyutae D Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
8
|
Martinez MP, Cheng X, Joseph A, Al-Saleem J, Panfil AR, Palettas M, Dirksen WP, Ratner L, Green PL. HTLV-1 CTCF-binding site is dispensable for in vitro immortalization and persistent infection in vivo. Retrovirology 2019; 16:44. [PMID: 31864373 PMCID: PMC6925871 DOI: 10.1186/s12977-019-0507-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL) and the neurological disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The exact mechanism(s) through which latency and disease progression are regulated are not fully understood. CCCTC-binding factor (CTCF) is an 11-zinc finger, sequence-specific, DNA-binding protein with thousands of binding sites throughout mammalian genomes. CTCF has been shown to play a role in organization of higher-order chromatin structure, gene expression, genomic imprinting, and serve as a barrier to epigenetic modification. A viral CTCF-binding site (vCTCF-BS) was previously identified within the overlapping p12 (sense) and Hbz (antisense) genes of the HTLV-1 genome. Thus, upon integration, HTLV-1 randomly inserts a vCTCF-BS into the host genome. vCTCF-BS studies to date have focused primarily on HTLV-1 chronically infected or tumor-derived cell lines. In these studies, HTLV-1 was shown to alter the structure and transcription of the surrounding host chromatin through the newly inserted vCTCF-BS. However, the effects of CTCF binding in the early stages of HTLV-1 infection remains unexplored. This study examines the effects of the vCTCF-BS on HTLV-1-induced in vitro immortalization and in vivo viral persistence in infected rabbits. RESULTS HTLV-1 and HTLV-1∆CTCF LTR-transactivation, viral particle production, and immortalization capacity were comparable in vitro. The total lymphocyte count, proviral load, and Hbz gene expression were not significantly different between HTLV-1 and HTLV-1∆CTCF-infected rabbits throughout a 12 week study. However, HTLV-1∆CTCF-infected rabbits displayed a significantly decreased HTLV-1-specific antibody response compared to HTLV-1-infected rabbits. CONCLUSIONS Mutation of the HTLV-1 vCTCF-BS does not significantly alter T-lymphocyte transformation capacity or early in vivo virus persistence, but results in a decreased HTLV-1-specific antibody response during early infection in rabbits. Ultimately, understanding epigenetic regulation of HTLV-1 gene expression and pathogenesis could provide meaningful insights into mechanisms of immune evasion and novel therapeutic targets.
Collapse
Affiliation(s)
- Michael P Martinez
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Xiaogang Cheng
- Division of Oncology, Washington University, St. Louis, MO, USA
| | - Ancy Joseph
- Division of Oncology, Washington University, St. Louis, MO, USA
| | - Jacob Al-Saleem
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Amanda R Panfil
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Marilly Palettas
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Wessel P Dirksen
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Lee Ratner
- Division of Oncology, Washington University, St. Louis, MO, USA
| | - Patrick L Green
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA. .,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Lee KD, Bassing CH. Two Successive Inversional Vβ Rearrangements on a Single Tcrb Allele Can Contribute to the TCRβ Repertoire. THE JOURNAL OF IMMUNOLOGY 2019; 204:78-86. [PMID: 31740488 DOI: 10.4049/jimmunol.1901105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 11/19/2022]
Abstract
Mammalian TCRβ loci contain 30 Vβ gene segments upstream and in the same transcriptional orientation as two DJCβ clusters, and a downstream Vβ (TRBV31) in the opposite orientation. The textbook view is upstream Vβs rearrange only by deletion and TRBV31 rearranges only by inversion to create VβDJCβ genes. In this study, we show in mice that upstream Vβs recombine through inversion to the DJCβ2 cluster on alleles carrying a preassembled Trbv31-DJCβ1 gene. When this gene is in-frame, Trbv5 evades TCRβ-signaled feedback inhibition and recombines by inversion to the DJCβ2 cluster, creating αβ T cells that express assembled Trbv5-DJCβ2 genes. On alleles with an out-of-frame Trbv31-DJCβ1 gene, most upstream Vβs recombine at low levels and promote αβ T cell development, albeit with preferential expansion of Trbv1-DJβ2 rearrangements. Finally, we show wild-type Tcrb alleles produce mature αβ T cells that express upstream Vβ peptides in surface TCRs and carry Trbv31-DJβ2 rearrangements. Our study indicates two successive inversional Vβ-to-DJβ rearrangements on the same allele can contribute to the TCRβ repertoire.
Collapse
Affiliation(s)
- Kyutae D Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
10
|
Keenan CR, Allan RS. Epigenomic drivers of immune dysfunction in aging. Aging Cell 2019; 18:e12878. [PMID: 30488545 PMCID: PMC6351880 DOI: 10.1111/acel.12878] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/26/2018] [Accepted: 10/18/2018] [Indexed: 12/17/2022] Open
Abstract
Aging inevitably leads to reduced immune function, leaving the elderly more susceptible to infections, less able to respond to pathogen challenges, and less responsive to preventative vaccinations. No cell type is exempt from the ravages of age, and extensive studies have found age-related alterations in the frequencies and functions of both stem and progenitor cells, as well as effector cells of both the innate and adaptive immune systems. The intrinsic functional reduction in immune competence is also associated with low-grade chronic inflammation, termed "inflamm-aging," which further perpetuates immune dysfunction. While many of these age-related cellular changes are well characterized, understanding the molecular changes that underpin the functional decline has proven more difficult. Changes in chromatin are increasingly appreciated as a causative mechanism of cellular and organismal aging across species. These changes include increased genomic instability through loss of heterochromatin and increased DNA damage, telomere attrition, and epigenetic alterations. In this review, we discuss the connections between chromatin, immunocompetence, and the loss of function associated with mammalian immune aging. Through understanding the molecular events which underpin the phenotypic changes observed in the aged immune system, it is hoped that the aged immune system can be restored to provide youthful immunity once more.
Collapse
Affiliation(s)
- Christine R. Keenan
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| | - Rhys S. Allan
- The Walter and Eliza Hall Institute of Medical Research Parkville Victoria Australia
- Department of Medical Biology The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
11
|
Carico ZM, Roy Choudhury K, Zhang B, Zhuang Y, Krangel MS. Tcrd Rearrangement Redirects a Processive Tcra Recombination Program to Expand the Tcra Repertoire. Cell Rep 2018; 19:2157-2173. [PMID: 28591585 DOI: 10.1016/j.celrep.2017.05.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/21/2017] [Accepted: 05/13/2017] [Indexed: 01/01/2023] Open
Abstract
Adaptive immunity depends on diverse T cell receptor repertoires generated by variable, diversity, and joining (V[D]J) recombination. Here, we define the principles by which combinatorial diversity is generated in the murine Tcra repertoire. Tcra and Tcrd gene segments share the Tcra-Tcrd locus, with interspersed Vα and Vδ segments undergoing Vδ-Dδ-Jδ rearrangement in CD4-CD8- thymocytes and then multiple rounds of Vα-Jα rearrangement in CD4+CD8+ thymocytes. We document stepwise, highly coordinated proximal-to-distal progressions of Vα and Jα use on individual Tcra alleles, limiting combinatorial diversity. This behavior is supported by an extended chromatin conformation in CD4+CD8+ thymocytes, with only nearby Vα and Jα segments contacting each other. Tcrd rearrangements can use distal Vδ segments due to a contracted Tcra-Tcrd conformation in CD4-CD8- thymocytes. These rearrangements expand the Tcra repertoire by truncating the Vα array to permit otherwise disfavored Vα-Jα combinations. Therefore, recombination events at two developmental stages with distinct chromatin conformations synergize to promote Tcra repertoire diversity.
Collapse
Affiliation(s)
- Zachary M Carico
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kingshuk Roy Choudhury
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Baojun Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Chan SK, Rahumatullah A, Lai JY, Lim TS. Naïve Human Antibody Libraries for Infectious Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1053:35-59. [PMID: 29549634 PMCID: PMC7120739 DOI: 10.1007/978-3-319-72077-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many countries are facing an uphill battle in combating the spread of infectious diseases. The constant evolution of microorganisms magnifies the problem as it facilitates the re-emergence of old infectious diseases as well as promote the introduction of new and more deadly variants. Evidently, infectious diseases have contributed to an alarming rate of mortality worldwide making it a growing concern. Historically, antibodies have been used successfully to prevent and treat infectious diseases since the nineteenth century using antisera collected from immunized animals. The inherent ability of antibodies to trigger effector mechanisms aids the immune system to fight off pathogens that invades the host. Immune libraries have always been an important source of antibodies for infectious diseases due to the skewed repertoire generated post infection. Even so, the role and ability of naïve antibody libraries should not be underestimated. The naïve repertoire has its own unique advantages in generating antibodies against target antigens. This chapter will highlight the concept, advantages and application of human naïve libraries as a source to isolate antibodies against infectious disease target antigens.
Collapse
Affiliation(s)
- Soo Khim Chan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Anizah Rahumatullah
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Penang, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Minden, 11800, Penang, Malaysia.
| |
Collapse
|
13
|
Toor AA, Toor AA, Rahmani M, Manjili MH. On the organization of human T-cell receptor loci: log-periodic distribution of T-cell receptor gene segments. J R Soc Interface 2016; 13:20150911. [PMID: 26763333 DOI: 10.1098/rsif.2015.0911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The human T-cell repertoire is complex and is generated by the rearrangement of variable (V), diversity (D) and joining (J) segments on the T-cell receptor (TCR) loci. The T-cell repertoire demonstrates self-similarity in terms clonal frequencies when defined by V, D and J gene segment usage; therefore to determine whether the structural ordering of these gene segments on the TCR loci contributes to the observed clonal frequencies, the TCR loci were examined for self-similarity and periodicity in terms of gene segment organization. Logarithmic transformation of numeric sequence order demonstrated that the V and J gene segments for both T-cell receptor α (TRA) and β (TRB) loci are arranged in a self-similar manner when the spacing between the adjacent segments was considered as a function of the size of the neighbouring gene segment, with an average fractal dimension of approximately 1.5. Accounting for the gene segments occurring on helical DNA molecules with a logarithmic distribution, sine and cosine functions of the log-transformed angular coordinates of the start and stop nucleotides of successive TCR gene segments showed an ordered progression from the 5' to the 3' end of the locus, supporting a log-periodic organization. T-cell clonal frequency estimates, based on V and J segment usage, from normal stem cell donors were plotted against the V and J segment on TRB locus and demonstrated a periodic distribution. We hypothesize that this quasi-periodic variation in gene-segment representation in the T-cell clonal repertoire may be influenced by the location of the gene segments on the periodic-logarithmically scaled TCR loci. Interactions between the two strands of DNA in the double helix may influence the probability of gene segment usage by means of either constructive or destructive interference resulting from the superposition of the two helices.
Collapse
Affiliation(s)
- Amir A Toor
- Bone Marrow Transplant Program, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Abdullah A Toor
- School of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamed Rahmani
- Hematology and Oncology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Masoud H Manjili
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
14
|
Regulated large-scale nucleosome density patterns and precise nucleosome positioning correlate with V(D)J recombination. Proc Natl Acad Sci U S A 2016; 113:E6427-E6436. [PMID: 27698124 DOI: 10.1073/pnas.1605543113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We show that the physical distribution of nucleosomes at antigen receptor loci is subject to regulated cell type-specific and lineage-specific positioning and correlates with the accessibility of these gene segments to recombination. At the Ig heavy chain locus (IgH), a nucleosome in pro-B cells is generally positioned over each IgH variable (VH) coding segment, directly adjacent to the recombination signal sequence (RSS), placing the RSS in a position accessible to the recombination activating gene (RAG) recombinase. These changes result in establishment of a specific chromatin organization at the RSS that facilitates accessibility of the genomic DNA for the RAG recombinase. In contrast, in mouse embryonic fibroblasts the coding segment is depleted of nucleosomes, which instead cover the RSS, thereby rendering it inaccessible. Pro-T cells exhibit a pattern intermediate between pro-B cells and mouse embryonic fibroblasts. We also find large-scale variations of nucleosome density over hundreds of kilobases, delineating chromosomal domains within IgH, in a cell type-dependent manner. These findings suggest that developmentally regulated changes in nucleosome location and occupancy, in addition to the known chromatin modifications, play a fundamental role in regulating V(D)J recombination. Nucleosome positioning-which has previously been observed to vary locally at individual enhancers and promoters-may be a more general mechanism by which cells can regulate the accessibility of the genome during development, at scales ranging from several hundred base pairs to many kilobases.
Collapse
|
15
|
Chen L, Zhao L, Alt FW, Krangel MS. An Ectopic CTCF Binding Element Inhibits Tcrd Rearrangement by Limiting Contact between Vδ and Dδ Gene Segments. THE JOURNAL OF IMMUNOLOGY 2016; 197:3188-3197. [PMID: 27613698 DOI: 10.4049/jimmunol.1601124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022]
Abstract
Chromatin looping mediated by the CCCTC binding factor (CTCF) regulates V(D)J recombination at Ag receptor loci. CTCF-mediated looping can influence recombination signal sequence (RSS) accessibility by regulating enhancer activation of germline promoters. CTCF-mediated looping has also been shown to limit directional tracking of the RAG recombinase along chromatin, and to regulate long-distance interactions between RSSs, independent of the RAG recombinase. However, in all prior instances in which CTCF-mediated looping was shown to influence V(D)J recombination, it was not possible to fully resolve the relative contributions to the V(D)J recombination phenotype of changes in accessibility, RAG tracking, and RAG-independent long-distance interactions. In this study, to assess mechanisms by which CTCF-mediated looping can impact V(D)J recombination, we introduced an ectopic CTCF binding element (CBE) immediately downstream of Eδ in the murine Tcra-Tcrd locus. The ectopic CBE impaired inversional rearrangement of Trdv5 in the absence of measurable effects on Trdv5 transcription and chromatin accessibility. The ectopic CBE also limited directional RAG tracking from the Tcrd recombination center, demonstrating that a single CBE can impact the distribution of RAG proteins along chromatin. However, such tracking cannot account for Trdv5-to-Trdd2 inversional rearrangement. Rather, the defect in Trdv5 rearrangement could only be attributed to a reconfigured chromatin loop organization that limited RAG-independent contacts between the Trdv5 and Trdd2 RSSs. We conclude that CTCF can regulate V(D)J recombination by segregating RSSs into distinct loop domains and inhibiting RSS synapsis, independent of any effects on transcription, RSS accessibility, and RAG tracking.
Collapse
Affiliation(s)
- Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Lijuan Zhao
- Howard Hughes Medical Institute, Boston, MA 02115.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115; and.,Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Frederick W Alt
- Howard Hughes Medical Institute, Boston, MA 02115.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115; and.,Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710;
| |
Collapse
|
16
|
Interplay of Protein Binding Interactions, DNA Mechanics, and Entropy in DNA Looping Kinetics. Biophys J 2016; 109:618-29. [PMID: 26244743 DOI: 10.1016/j.bpj.2015.06.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 12/24/2022] Open
Abstract
DNA looping plays a key role in many fundamental biological processes, including gene regulation, recombination, and chromosomal organization. The looping of DNA is often mediated by proteins whose structural features and physical interactions can alter the length scale at which the looping occurs. Looping and unlooping processes are controlled by thermodynamic contributions associated with mechanical deformation of the DNA strand and entropy arising from thermal fluctuations of the conformation. To determine how these confounding effects influence DNA looping and unlooping kinetics, we present a theoretical model that incorporates the role of the protein interactions, DNA mechanics, and conformational entropy. We show that for shorter DNA strands the interaction distance affects the transition state, resulting in a complex relationship between the looped and unlooped state lifetimes and the physical properties of the looped DNA. We explore the range of behaviors that arise with varying interaction distance and DNA length. These results demonstrate how DNA deformation and entropy dictate the scaling of the looping and unlooping kinetics versus the J-factor, establishing the connection between kinetic and equilibrium behaviors. Our results show how the twist-and-bend elasticity of the DNA chain modulates the kinetics and how the influence of the interaction distance fades away at intermediate to longer chain lengths, in agreement with previous scaling predictions.
Collapse
|
17
|
Trans effects of chromosome aneuploidies on DNA methylation patterns in human Down syndrome and mouse models. Genome Biol 2015; 16:263. [PMID: 26607552 PMCID: PMC4659173 DOI: 10.1186/s13059-015-0827-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/09/2015] [Indexed: 11/18/2022] Open
Abstract
Background Trisomy 21 causes Down syndrome (DS), but the mechanisms by which the extra chromosome leads to deficient intellectual and immune function are not well understood. Results Here, we profile CpG methylation in DS and control cerebral and cerebellar cortex of adults and cerebrum of fetuses. We purify neuronal and non-neuronal nuclei and T lymphocytes and find biologically relevant genes with DS-specific methylation (DS-DM) in each of these cell types. Some genes show brain-specific DS-DM, while others show stronger DS-DM in T cells. Both 5-methyl-cytosine and 5-hydroxy-methyl-cytosine contribute to the DS-DM. Thirty percent of genes with DS-DM in adult brain cells also show DS-DM in fetal brains, indicating early onset of these epigenetic changes, and we find early maturation of methylation patterns in DS brain and lymphocytes. Some, but not all, of the DS-DM genes show differential expression. DS-DM preferentially affected CpGs in or near specific transcription factor binding sites (TFBSs), implicating a mechanism involving altered TFBS occupancy. Methyl-seq of brain DNA from mouse models with sub-chromosomal duplications mimicking DS reveals partial but significant overlaps with human DS-DM and shows that multiple chromosome 21 genes contribute to the downstream epigenetic effects. Conclusions These data point to novel biological mechanisms in DS and have general implications for trans effects of chromosomal duplications and aneuploidies on epigenetic patterning. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0827-6) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Abstract
Gerasimova et al. describe a three-step pathway that establishes the structure of the 2.8-Mb immunoglobulin heavy chain gene (IgH) locus in pro-B cells. Each step uses a different transcription factor and leads to increasing levels of structural organization. Conformation of antigen receptor gene loci spatially juxtaposes rearranging gene segments in the appropriate cell lineage and developmental stage. We describe a three-step pathway that establishes the structure of the 2.8-Mb immunoglobulin heavy chain gene (IgH) locus in pro-B cells. Each step uses a different transcription factor and leads to increasing levels of structural organization. CTCF mediates one level of compaction that folds the locus into several 250- to 400-kb subdomains, and Pax5 further compacts the 2-Mb region that encodes variable (VH) gene segments. The 5′ and 3′ domains are brought together by the transcription factor YY1 to establish the configuration within which gene recombination initiates. Such stepwise mechanisms may apply more generally to establish regulatory fine structure within megabase-sized topologically associated domains.
Collapse
|
19
|
To κ(+) B or not to κ(+) B. Nat Immunol 2015; 16:1007-9. [PMID: 26382861 DOI: 10.1038/ni.3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Majumder K, Bassing CH, Oltz EM. Regulation of Tcrb Gene Assembly by Genetic, Epigenetic, and Topological Mechanisms. Adv Immunol 2015; 128:273-306. [PMID: 26477369 DOI: 10.1016/bs.ai.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adaptive immune system endows mammals with an ability to recognize nearly any foreign invader through antigen receptors that are expressed on the surface of all lymphocytes. This defense network is generated by V(D)J recombination, a set of sequentially controlled DNA cleavage and repair events that assemble antigen receptor genes from physically separated variable (V), joining (J), and sometimes diversity (D) gene segments. The recombination process itself must be stringently regulated to minimize oncogenic translocations involving chromosomes that harbor immunoglobulin and T cell receptor loci. Indeed, V(D)J recombination is controlled at several levels, including tissue-, developmental stage-, allele-, and gene segment-specificity. These levels of control are imposed by a collection of architectural and regulatory elements that are distributed throughout each antigen receptor locus. Together, the genetic elements regulate developmental changes in chromatin, transcription, and locus topology that promote or disfavor long-range recombination. This chapter focuses on the cross talk between these mechanisms at the T cell receptor beta (Tcrb) locus, and how they sculpt a diverse TCRβ repertoire while maintaining monospecificity of this antigen receptor on each mature T lymphocyte. We also discuss how insights obtained from studies of Tcrb are more generally relevant to our understanding of gene regulation strategies employed by mammals.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
21
|
Abstract
The modular, noncontiguous architecture of the antigen receptor genes necessitates their assembly through V(D)J recombination. This program of DNA breakage and rejoining occurs during early lymphocyte development, and depends on the RAG1 and RAG2 proteins, whose collaborative endonuclease activity targets specific DNA motifs enriched in the antigen receptor loci. This essential gene shuffling reaction requires lymphocytes to traverse several developmental stages wherein DNA breakage is tolerated, while minimizing the expense to overall genome integrity. Thus, RAG activity is subject to stringent temporal and spatial regulation. The RAG proteins themselves also contribute autoregulatory properties that coordinate their DNA cleavage activity with target chromatin structure, cell cycle status, and DNA repair pathways. Even so, lapses in regulatory restriction of RAG activity are apparent in the aberrant V(D)J recombination events that underlie many lymphomas. In this review, we discuss the current understanding of the RAG endonuclease, its widespread binding in the lymphocyte genome, its noncleavage activities that restrain its enzymatic potential, and the growing evidence of its evolution from an ancient transposase.
Collapse
|
22
|
Influence of a CTCF-Dependent Insulator on Multiple Aspects of Enhancer-Mediated Chromatin Organization. Mol Cell Biol 2015; 35:3504-16. [PMID: 26240285 DOI: 10.1128/mcb.00514-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/24/2015] [Indexed: 01/07/2023] Open
Abstract
Developmental stage-specific enhancer-promoter-insulator interactions regulate the chromatin configuration necessary for transcription at various loci and additionally for VDJ recombination at antigen receptor loci that encode immunoglobulins and T-cell receptors. To investigate these regulatory interactions, we analyzed the epigenetic landscape of the murine T-cell receptor β (TCRβ) locus in the presence and absence of an ectopic CTCF-dependent enhancer-blocking insulator, H19-ICR, in genetically manipulated mice. Our analysis demonstrated the ability of the H19-ICR insulator to restrict several aspects of enhancer-based chromatin alterations that are observed during activation of the TCRβ locus for transcription and recombination. The H19-ICR insulator abrogated enhancer-promoter contact-dependent chromatin alterations and additionally prevented Eβ-mediated histone modifications that have been suggested to be independent of enhancer-promoter interaction. Observed enhancer-promoter-insulator interactions, in conjunction with the chromatin structure of the Eβ-regulated domain at the nucleosomal level, provide useful insights regarding the activity of the regulatory elements in addition to supporting the accessibility hypothesis of VDJ recombination. Analysis of H19-ICR in the heterologous context of the developmentally regulated TCRβ locus suggests that different mechanisms proposed for CTCF-dependent insulator action might be manifested simultaneously or selectively depending on the genomic context and the nature of enhancer activity being curtailed.
Collapse
|
23
|
Abstract
Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains' organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization.
Collapse
|
24
|
Majumder K, Rupp LJ, Yang-Iott KS, Koues OI, Kyle KE, Bassing CH, Oltz EM. Domain-Specific and Stage-Intrinsic Changes in Tcrb Conformation during Thymocyte Development. THE JOURNAL OF IMMUNOLOGY 2015; 195:1262-72. [PMID: 26101321 DOI: 10.4049/jimmunol.1500692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/31/2015] [Indexed: 11/19/2022]
Abstract
Considerable cross-talk exists between mechanisms controlling genome architecture and gene expression. AgR loci are excellent models for these processes because they are regulated at both conformational and transcriptional levels to facilitate their assembly by V(D)J recombination. Upon commitment to the double-negative stage of T cell development, Tcrb adopts a compact conformation that promotes long-range recombination between Vβ gene segments (Trbvs) and their DβJβ targets. Formation of a functional VβDβJβ join signals for robust proliferation of double-negative thymocytes and their differentiation into double-positive (DP) cells, where Trbv recombination is squelched (allelic exclusion). DP differentiation also is accompanied by decontraction of Tcrb, which has been thought to separate the entire Trbv cluster from DβJβ segments (spatial segregation-based model for allelic exclusion). However, DP cells also repress transcription of unrearranged Trbvs, which may contribute to allelic exclusion. We performed a more detailed study of developmental changes in Tcrb topology and found that only the most distal portion of the Trbv cluster separates from DβJβ segments in DP thymocytes, leaving most Trbvs spatially available for rearrangement. Preferential dissociation of distal Trbvs is independent of robust proliferation or changes in transcription, chromatin, or architectural factors, which are coordinately regulated across the entire Trbv cluster. Segregation of distal Trbvs also occurs on alleles harboring a functional VβDβJβ join, suggesting that this process is independent of rearrangement status and is DP intrinsic. Our finding that most Trbvs remain associated with DβJβ targets in DP cells revises allelic exclusion models from their current conformation-dominant to a transcription-dominant formulation.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Levi J Rupp
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Katherine S Yang-Iott
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Katherine E Kyle
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; and Abramson Family Cancer Research Institute, Cell and Molecular Biology Graduate Program, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
25
|
Rahman SH, Kuehle J, Reimann C, Mlambo T, Alzubi J, Maeder ML, Riedel H, Fisch P, Cantz T, Rudolph C, Mussolino C, Joung JK, Schambach A, Cathomen T. Rescue of DNA-PK Signaling and T-Cell Differentiation by Targeted Genome Editing in a prkdc Deficient iPSC Disease Model. PLoS Genet 2015; 11:e1005239. [PMID: 26000857 PMCID: PMC4441453 DOI: 10.1371/journal.pgen.1005239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/26/2015] [Indexed: 12/22/2022] Open
Abstract
In vitro disease modeling based on induced pluripotent stem cells (iPSCs) provides a powerful system to study cellular pathophysiology, especially in combination with targeted genome editing and protocols to differentiate iPSCs into affected cell types. In this study, we established zinc-finger nuclease-mediated genome editing in primary fibroblasts and iPSCs generated from a mouse model for radiosensitive severe combined immunodeficiency (RS-SCID), a rare disorder characterized by cellular sensitivity to radiation and the absence of lymphocytes due to impaired DNA-dependent protein kinase (DNA-PK) activity. Our results demonstrate that gene editing in RS-SCID fibroblasts rescued DNA-PK dependent signaling to overcome radiosensitivity. Furthermore, in vitro T-cell differentiation from iPSCs was employed to model the stage-specific T-cell maturation block induced by the disease causing mutation. Genetic correction of the RS-SCID iPSCs restored T-lymphocyte maturation, polyclonal V(D)J recombination of the T-cell receptor followed by successful beta-selection. In conclusion, we provide proof that iPSC-based in vitro T-cell differentiation is a valuable paradigm for SCID disease modeling, which can be utilized to investigate disorders of T-cell development and to validate gene therapy strategies for T-cell deficiencies. Moreover, this study emphasizes the significance of designer nucleases as a tool for generating isogenic disease models and their future role in producing autologous, genetically corrected transplants for various clinical applications. Due to the limited availability and lifespan of some primary cells, in vitro disease modeling with induced pluripotent stem cells (iPSCs) offers a valuable complementation to in vivo studies. The goal of our study was to establish an in vitro disease model for severe combined immunodeficiency (SCID), a group of inherited disorders of the immune system characterized by the lack of T-lymphocytes. To this end, we generated iPSCs from fibroblasts of a radiosensitive SCID (RS-SCID) mouse model and established a protocol to recapitulate T-lymphopoiesis from iPSCs in vitro. We used designer nucleases to edit the underlying mutation in prkdc, the gene encoding DNA-PKcs, and demonstrated that genetic correction of the disease locus rescued DNA-PK dependent signaling, restored normal radiosensitivity, and enabled T-cell maturation and polyclonal T-cell receptor recombination. We hence provide proof that the combination of two promising technology platforms, iPSCs and designer nucleases, with a protocol to generate T-cells in vitro, represents a powerful paradigm for SCID disease modeling and the evaluation of therapeutic gene editing strategies. Furthermore, our system provides a basis for further development of iPSC-derived cell products with the potential for various clinical applications, including infusions of in vitro derived autologous T-cells to stabilize patients after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Shamim H. Rahman
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Johannes Kuehle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Christian Reimann
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Tafadzwa Mlambo
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Jamal Alzubi
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Morgan L. Maeder
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heimo Riedel
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Department of Biochemistry and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, United States of America
| | - Paul Fisch
- Institute of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology, REBIRTH cluster of excellence, Hannover Medical School, Hannover, Germany
| | - Cornelia Rudolph
- Institute for Cellular and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | - Claudio Mussolino
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - J. Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| | - Toni Cathomen
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- * E-mail: (AS); (TC)
| |
Collapse
|
26
|
Hao B, Naik AK, Watanabe A, Tanaka H, Chen L, Richards HW, Kondo M, Taniuchi I, Kohwi Y, Kohwi-Shigematsu T, Krangel MS. An anti-silencer- and SATB1-dependent chromatin hub regulates Rag1 and Rag2 gene expression during thymocyte development. ACTA ACUST UNITED AC 2015; 212:809-24. [PMID: 25847946 PMCID: PMC4419350 DOI: 10.1084/jem.20142207] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/12/2015] [Indexed: 12/12/2022]
Abstract
Rag1 and Rag2 gene expression in CD4(+)CD8(+) double-positive (DP) thymocytes depends on the activity of a distant anti-silencer element (ASE) that counteracts the activity of an intergenic silencer. However, the mechanistic basis for ASE activity is unknown. Here, we show that the ASE physically interacts with the distant Rag1 and Rag2 gene promoters in DP thymocytes, bringing the two promoters together to form an active chromatin hub. Moreover, we show that the ASE functions as a classical enhancer that can potently activate these promoters in the absence of the silencer or other locus elements. In thymocytes lacking the chromatin organizer SATB1, we identified a partial defect in Tcra gene rearrangement that was associated with reduced expression of Rag1 and Rag2 at the DP stage. SATB1 binds to the ASE and Rag promoters, facilitating inclusion of Rag2 in the chromatin hub and the loading of RNA polymerase II to both the Rag1 and Rag2 promoters. Our results provide a novel framework for understanding ASE function and demonstrate a novel role for SATB1 as a regulator of Rag locus organization and gene expression in DP thymocytes.
Collapse
Affiliation(s)
- Bingtao Hao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Akiko Watanabe
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hirokazu Tanaka
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Liang Chen
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Hunter W Richards
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Motonari Kondo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Ichiro Taniuchi
- RIKEN Centre for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshinori Kohwi
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Terumi Kohwi-Shigematsu
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, Berkeley, CA 94720
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
27
|
Carico Z, Krangel MS. Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires. Adv Immunol 2015; 128:307-61. [DOI: 10.1016/bs.ai.2015.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Majumder K, Koues OI, Chan EAW, Kyle KE, Horowitz JE, Yang-Iott K, Bassing CH, Taniuchi I, Krangel MS, Oltz EM. Lineage-specific compaction of Tcrb requires a chromatin barrier to protect the function of a long-range tethering element. ACTA ACUST UNITED AC 2014; 212:107-20. [PMID: 25512470 PMCID: PMC4291525 DOI: 10.1084/jem.20141479] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Majumder et al. explore the large-scale looping architecture of the Tcrb locus early in murine thymocyte development during the generation of TCRβ diversity. They dissect novel DNA regulatory elements controlling V to D-J recombination and identify within an insulator region a distally located CTCF-containing element functioning as a tether, which facilitates looping of distal Vβ to Dβ-Jβ regions and promotes locus contraction. A second CTCF-containing element, proximal to the Dβ-Jβ region, acts as a boundary, preventing the spread of active chromatin associated with Dβ-Jβ regions. Removal of the proximal boundary element impairs the locus contraction capabilities of the tethering element. Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing conformational changes critical for diversification of the TCRβ antigen receptor locus (Tcrb). Association between distal Vβ gene segments and the highly expressed DβJβ clusters, termed the recombination center (RC), is independent of enhancer function and recruitment of V(D)J recombinase. Instead, we find that tissue-specific folding of Tcrb relies on two distinct architectural elements located upstream of the RC. The first, a CTCF-containing element, directly tethers distal portions of the Vβ array to the RC. The second element is a chromatin barrier that protects the tether from hyperactive RC chromatin. When the second element is removed, active RC chromatin spreads upstream, forcing the tether to serve as a new barrier. Acquisition of barrier function by the CTCF element disrupts contacts between distal Vβ gene segments and significantly alters Tcrb repertoires. Our findings reveal a separation of function for RC-flanking regions, in which anchors for long-range recombination must be cordoned off from hyperactive RC landscapes by chromatin barriers.
Collapse
Affiliation(s)
- Kinjal Majumder
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Olivia I Koues
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Elizabeth A W Chan
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Katherine E Kyle
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Julie E Horowitz
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Katherine Yang-Iott
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, The Children's Hospital of Philadelphia and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Eugene M Oltz
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
29
|
Galson JD, Pollard AJ, Trück J, Kelly DF. Studying the antibody repertoire after vaccination: practical applications. Trends Immunol 2014; 35:319-31. [PMID: 24856924 DOI: 10.1016/j.it.2014.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/17/2014] [Accepted: 04/28/2014] [Indexed: 12/25/2022]
Abstract
Nearly all licensed vaccines have been developed to confer protection against infectious diseases by stimulating the production of antibodies by B cells, but the nature of a successful antibody response has been difficult to capture. Recent advances in next-generation sequencing (NGS) technology have allowed high-resolution characterization of the antibody repertoire, and of the changes that occur following vaccination. These approaches have yielded important insights into the B cell response, and have raised the possibility of using specific antibody sequences as measures of vaccine immunogenicity. Here, we review recent findings based on antibody repertoire sequencing, and discuss potential applications of these new technologies and of the analyses of the increasing volume of antibody sequence data in the context of vaccine development.
Collapse
Affiliation(s)
- Jacob D Galson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
30
|
Wood AM, Garza-Gongora AG, Kosak ST. A Crowdsourced nucleus: understanding nuclear organization in terms of dynamically networked protein function. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:178-90. [PMID: 24412853 PMCID: PMC3954575 DOI: 10.1016/j.bbagrm.2014.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 01/14/2023]
Abstract
The spatial organization of the nucleus results in a compartmentalized structure that affects all aspects of nuclear function. This compartmentalization involves genome organization as well as the formation of nuclear bodies and plays a role in many functions, including gene regulation, genome stability, replication, and RNA processing. Here we review the recent findings associated with the spatial organization of the nucleus and reveal that a common theme for nuclear proteins is their ability to participate in a variety of functions and pathways. We consider this multiplicity of function in terms of Crowdsourcing, a recent phenomenon in the world of information technology, and suggest that this model provides a novel way to synthesize the many intersections between nuclear organization and function. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Ashley M Wood
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Arturo G Garza-Gongora
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven T Kosak
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|