1
|
Cremer T, Hoelen H, van de Weijer ML, Janssen GM, Costa AI, van Veelen PA, Lebbink RJ, Wiertz EJHJ. Proinsulin degradation and presentation of a proinsulin B-chain autoantigen involves ER-associated protein degradation (ERAD)-enzyme UBE2G2. PLoS One 2024; 19:e0287877. [PMID: 38787820 PMCID: PMC11125532 DOI: 10.1371/journal.pone.0287877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/14/2024] [Indexed: 05/26/2024] Open
Abstract
Type 1 diabetes (T1D) is characterized by HLA class I-mediated presentation of autoantigens on the surface of pancreatic β-cells. Recognition of these autoantigens by CD8+ T cells results in the destruction of pancreatic β-cells and, consequently, insulin deficiency. Most epitopes presented at the surface of β-cells derive from the insulin precursor molecule proinsulin. The intracellular processing pathway(s) involved in the generation of these peptides are poorly defined. In this study, we show that a proinsulin B-chain antigen (PPIB5-14) originates from proinsulin molecules that are processed by ER-associated protein degradation (ERAD) and thus originate from ER-resident proteins. Furthermore, screening genes encoding for E2 ubiquitin conjugating enzymes, we identified UBE2G2 to be involved in proinsulin degradation and subsequent presentation of the PPIB10-18 autoantigen. These insights into the pathway involved in the generation of insulin-derived peptides emphasize the importance of proinsulin processing in the ER to T1D pathogenesis and identify novel targets for future T1D therapies.
Collapse
Affiliation(s)
- Tom Cremer
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Hanneke Hoelen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - George M. Janssen
- Department of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ana I. Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter A. van Veelen
- Department of Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
2
|
Rodriguez-Calvo T, Chen YC, Verchere CB, Haataja L, Arvan P, Leete P, Richardson SJ, Morgan NG, Qian WJ, Pugliese A, Atkinson M, Evans-Molina C, Sims EK. Altered β-Cell Prohormone Processing and Secretion in Type 1 Diabetes. Diabetes 2021; 70:1038-1050. [PMID: 33947721 PMCID: PMC8173804 DOI: 10.2337/dbi20-0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Analysis of data from clinical cohorts, and more recently from human pancreatic tissue, indicates that reduced prohormone processing is an early and persistent finding in type 1 diabetes. In this article, we review the current state of knowledge regarding alterations in islet prohormone expression and processing in type 1 diabetes and consider the clinical impact of these findings. Lingering questions, including pathologic etiologies and consequences of altered prohormone expression and secretion in type 1 diabetes, and the natural history of circulating prohormone production in health and disease, are considered. Finally, key next steps required to move forward in this area are outlined, including longitudinal testing of relevant clinical populations, studies that probe the genetics of altered prohormone processing, the need for combined functional and histologic testing of human pancreatic tissues, continued interrogation of the intersection between prohormone processing and autoimmunity, and optimal approaches for analysis. Successful resolution of these questions may offer the potential to use altered prohormone processing as a biomarker to inform therapeutic strategies aimed at personalized intervention during the natural history of type 1 diabetes and as a pathogenic anchor for identification of potential disease-specific endotypes.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Yi-Chun Chen
- Department of Surgery, University of British Columbia and BC Children's Hospital Research Institute, Vancouver, Canada
| | - C Bruce Verchere
- Departments of Surgery and Pathology and Laboratory Medicine, University of British Columbia, Centre for Molecular Medicine and Therapeutics, and BC Children's Hospital Research Institute, Vancouver, Canada
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical Center, Ann Arbor, MI
| | - Pia Leete
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Sarah J Richardson
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Noel G Morgan
- Exeter Centre of Excellence for Diabetes, Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, U.K
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Alberto Pugliese
- Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL
| | - Mark Atkinson
- Departments of Pathology and Pediatrics, Diabetes Institute, University of Florida, Gainesville, FL
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
- Departments of Cellular and Integrative Physiology, Medicine, and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
3
|
Preproinsulin Designer Antigens Excluded from Endoplasmic Reticulum Suppressed Diabetes Development in NOD Mice by DNA Vaccination. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 12:123-133. [PMID: 30623001 PMCID: PMC6319196 DOI: 10.1016/j.omtm.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 11/20/2022]
Abstract
DNA vaccines against autoimmune type 1 diabetes (T1D) contain a nonpredictable risk to induce autoreactive T cell responses rather than a protective immunity. Little is known if (and how) antigen expression and processing requirements favor the induction of autoreactive or protective immune responses by DNA immunization. Here, we analyzed whether structural properties of preproinsulin (ppins) variants and/or subcellular targeting of ppins designer antigens influence the priming of effector CD8+ T cell responses by DNA immunization. Primarily, we used H-2b RIP-B7.1 tg mice, expressing the co-stimulator molecule B7.1 in beta cells, to identify antigens that induce or fail to induce autoreactive ppins-specific (Kb/A12-21 and/or Kb/B22-29) CD8+ T cell responses. Female NOD mice, expressing the diabetes-susceptible H-2g7 haplotype, were used to test ppins variants for their potential to suppress spontaneous diabetes development. We showed that ppins antigens excluded from expression in the endoplasmic reticulum (ER) did not induce CD8+ T cells or autoimmune diabetes in RIP-B7.1 tg mice, but efficiently suppressed spontaneous diabetes development in NOD mice as well as ppins-induced CD8+ T cell-mediated autoimmune diabetes in PD-L1−/− mice. The induction of a ppins-specific therapeutic immunity in mice has practical implications for the design of immune therapies against T1D in individuals expressing different major histocompatibility complex (MHC) I and II molecules.
Collapse
|
4
|
Lawand M, Evnouchidou I, Baranek T, Montealegre S, Tao S, Drexler I, Saveanu L, Si-Tahar M, van Endert P. Impact of the TAP-like transporter in antigen presentation and phagosome maturation. Mol Immunol 2018; 113:75-86. [PMID: 29941219 DOI: 10.1016/j.molimm.2018.06.268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Cross-presentation is thought to require transport of proteasome-generated peptides by the TAP transporters into MHC class I loading compartments for most antigens. However, a proteasome-dependent but TAP-independent pathway has also been described. Depletion of the pool of recycling cell surface MHC class I molecules available for loading with cross-presented peptides might partly or largely account for the critical role of TAP in cross-presentation of phagocytosed antigens. Here we examined a potential role of the homodimeric lysosomal TAP-like transporter in cross-presentation and in presentation of endogenous peptides by MHC class II molecules. We find that TAP-L is strongly recruited to dendritic cell phagosomes at a late stage, when internalized antigen and MHC class I molecules have been degraded or sorted away from phagosomes. Cross-presentation of a receptor-targeted antigen in vitro and of a phagocytosed antigen in vivo, as well as presentation of a cytosolic antigen by MHC class II molecules, is not affected by TAP-L deficiency. However, accumulation in vitro of a peptide optimally adapted to TAP-L selectivity in purified phagosomes is abolished by TAP-L deficiency. Unexpectedly, we find that TAP-L deficiency accelerates phagosome maturation, as reflected in increased Lamp2b recruitment and enhanced proteolytic degradation of phagocytosed antigen and in vitro transported peptides. Although additional experimentation will be required to definitely conclude on the role of TAP-L in transport of peptides presented by MHC class I and class II molecules, our data suggest that the principal role of TAP-L in dendritic cells may be related to regulation of phagosome maturation.
Collapse
Affiliation(s)
- Myriam Lawand
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Irini Evnouchidou
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Thomas Baranek
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Sebastian Montealegre
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Sha Tao
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Ingo Drexler
- Institut für Virologie, Universitätsklinikum Düsseldorf, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
| | - Loredana Saveanu
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | - Mustapha Si-Tahar
- Institut National de la Santé et de la Recherche Médicale, Unité 1100, Université F. Rabelais, Faculté de médecine, Centre d'études des pathologies respiratoires, 10 Boulevard Tonnellé, 37032 Tours Cedex, France
| | - Peter van Endert
- Institut National de la Sante et de la Recherche Médicale, Unité 1151; Université Paris Descartes, Faculté de médecine; Centre National de la Recherche Scientifique, UMR8253; 149 rue de Sèvres, 75743 Paris Cedex 15, France.
| |
Collapse
|
5
|
Tang Y, Zheng M, An R, Chen L, Gong L, Cai H, Liu K, Yu L, Shen J, Du J. Proteasomal degradation of T. gondii ROP18 requires Derlin2. Acta Trop 2017; 174:106-113. [PMID: 28669563 DOI: 10.1016/j.actatropica.2017.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/28/2017] [Accepted: 06/28/2017] [Indexed: 01/12/2023]
Abstract
T. gondii is an obligate intracellular parasite, belonging to the Phylum Apicomplexa, infecting all warm-blooded animals including humans. During host cell invasion, specialized cytoskeletal and secretory organelles play a pivotal role. ROP18, as a member of the ROP2 family, has been identified as a key virulence factor mediating pathogenesis in T. gondii. Here, we identify an ER-resident protein, Derlin2, a factor implicated in the removal of misfolded proteins from the ER for cytosolic degradation, as a component of the machinery required for ER-associated protein degradation (ERAD). We identified Derlin2 interacting with ROP18 by yeast two-hybrid screening system. The interaction between ROP18 and Derlin2 was further confirmed through in vitro GST pull-down and in vivo immunoprecipitation assays. By immunofluorescence assay, we found that ROP18 co-localized with Derlin2 in the endoplasmic reticulum. Using overexpression and knockdown approaches, we demonstrated that Derlin2 was required for T. gondii ROP18 degradation. Consistently, cycloheximide chase experiments showed that the degradation of ROP18 relied on the Derlin2, but not Derlin1. These results indicate that interaction between Derlin2 and ROP18 is functionally relevant and leads ultimately to degradation of ROP18. The finding provides the basis for future studies on Derlin2-dependent ERAD of T. gondii ROP18 and subsequent antigen generation.
Collapse
|
6
|
Pan XY, Zhao W, Wang CY, Lin J, Zeng XY, Ren RX, Wang K, Xun TR, Shai Y, Liu SW. Heat Shock Protein 90 Facilitates Latent HIV Reactivation through Maintaining the Function of Positive Transcriptional Elongation Factor b (p-TEFb) under Proteasome Inhibition. J Biol Chem 2016; 291:26177-26187. [PMID: 27799305 DOI: 10.1074/jbc.m116.743906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/28/2016] [Indexed: 01/08/2023] Open
Abstract
The persistence of HIV in resting memory CD4+ T cells at a latent state is considered as the major barrier on the path to achieve a cure for HIV. Proteasome inhibitors (PIs) were previously reported as latency reversing agents (LRAs) but the mechanism underlying this function is yet unclear. Here we demonstrate that PIs reactivate latent HIV ex vivo without global T cell activation, and may facilitate host innate immune responses. Mechanistically, latent HIV reactivation induced by PIs is mediated by heat shock factor 1 (HSF1) via the recruitment of the heat shock protein (HSP) 90-positive transcriptional elongation factor b (p-TEFb) complex. Specifically, HSP90 downstream HSF1 gives positive feedback to the reactivation process through binding to cyclin-dependent kinase 9 (CDK9) and preventing it from undergoing degradation by the proteasome. Overall, these findings suggest proteasome inhibitors as potential latency reversing agents. In addition, HSF1/HSP90 involved in HIV transcription elongation, may serve as therapeutic targets in HIV eradication.
Collapse
Affiliation(s)
- Xiao-Yan Pan
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Wei Zhao
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Chun-Yan Wang
- the Department of Clinical Laboratory, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jian Lin
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Xiao-Yun Zeng
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Ru-Xia Ren
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Keng Wang
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Tian-Rong Xun
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Yechiel Shai
- the Department of Biochemistry, Weizmann Science Institute, Rehovot 76100, Israel, and
| | - Shu-Wen Liu
- From the Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China, .,the State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, 510515 Guangzhou, China
| |
Collapse
|
7
|
Stifter K, Schuster C, Schlosser M, Boehm BO, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep 2016; 6:29419. [PMID: 27406624 PMCID: PMC4942695 DOI: 10.1038/srep29419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/14/2016] [Indexed: 12/26/2022] Open
Abstract
DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Schuster
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| | - Michael Schlosser
- Department of Medical Biochemistry and Molecular Biology, Research Group of Predictive Diagnostics, University Medical Centre Greifswald, Karlsburg, Germany
| | - Bernhard Otto Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, Singapore.,Imperial College London, London, UK
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Hoelen H, Zaldumbide A, van Leeuwen WF, Torfs ECW, Engelse MA, Hassan C, Lebbink RJ, de Koning EJ, Resssing ME, de Ru AH, van Veelen PA, Hoeben RC, Roep BO, Wiertz EJHJ. Proteasomal Degradation of Proinsulin Requires Derlin-2, HRD1 and p97. PLoS One 2015; 10:e0128206. [PMID: 26107514 PMCID: PMC4479611 DOI: 10.1371/journal.pone.0128206] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/24/2015] [Indexed: 01/28/2023] Open
Abstract
Patients with type 1 diabetes (T1D) suffer from beta-cell destruction by CD8+ T-cells that have preproinsulin as an important target autoantigen. It is of great importance to understand the molecular mechanism underlying the processing of preproinsulin into these CD8+ T-cell epitopes. We therefore studied a pathway that may contribute to the production of these antigenic peptides: degradation of proinsulin via ER associated protein degradation (ERAD). Analysis of the MHC class I peptide ligandome confirmed the presentation of the most relevant MHC class I-restricted diabetogenic epitopes in our cells: the signal peptide-derived sequence A15-A25 and the insulin B-chain epitopes H29-A38 and H34-V42. We demonstrate that specific silencing of Derlin-2, p97 and HRD1 by shRNAs increases steady state levels of proinsulin. This indicates that these ERAD constituents are critically involved in proinsulin degradation and may therefore also play a role in subsequent antigen generation. These ERAD proteins therefore represent interesting targets for novel therapies aiming at the reduction and possibly also prevention of beta-cell directed auto-immune reactions in T1D.
Collapse
Affiliation(s)
- Hanneke Hoelen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Arnaud Zaldumbide
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter F. van Leeuwen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen C. W. Torfs
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marten A. Engelse
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Chopie Hassan
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eelco J. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike E. Resssing
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arnoud H. de Ru
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A. van Veelen
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart O. Roep
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Abstract
Rheumatic diseases can be divided in two groups, autoinflammatory and autoimmune disorders. The clinical presentation of both types of diseases overlap, but the pathological pathways underlying rheumatic autoinflammation and autoimmunity are distinct and are the subject of ongoing research. There are a number of ways in which these groups of diseases differ in terms of disease mechanisms and therapeutic responses. First, autoinflammatory diseases are driven by endogenous danger signals, metabolic mediators and cytokines, whereas autoimmunity involves the activation of T and B cells, the latter requiring V-(D)-J recombination of receptor-chain gene segments for maturation. Second, the efficacy of biologic agents directed against proinflammatory cytokines (for example IL-1β and TNF) also highlights differences between autoinflammatory and autoimmune processes. Finally, whereas autoinflammatory diseases are mostly driven by inflammasome-induced IL-1β and IL-18 production, autoimmune diseases are associated with type I interferon (IFN) signatures in blood. In this Review, we provide an overview of the monocyte intracellular pathways that drive autoinflammation and autoimmunity. We convey recent findings on how the type I IFN pathway can modulate IL-1β signalling (and vice versa), and discuss why IL-1β-mediated autoinflammatory diseases do not perpetuate into autoimmunity. The origins of intracellular autoantigens in autoimmune disorders are also discussed. Finally, we suggest how new mechanistic knowledge of autoinflammatory and autoimmune diseases might help improve treatment strategies to benefit patient care.
Collapse
|