1
|
Cao ZM, Fu S, Dong C, Yang TY, Liu XK, Zhang CL, Li DZ. DSCR1-1 attenuates osteoarthritis-associated chondrocyte injury by regulating the CREB1/ALDH2/Wnt/β-catenin axis: An in vitro and in vivo study. Cell Signal 2024; 121:111287. [PMID: 38969191 DOI: 10.1016/j.cellsig.2024.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The progression of osteoarthritis (OA) includes the initial inflammation, subsequent degradation of the extracellular matrix (ECM), and chondrocyte apoptosis. Down syndrome candidate region 1 (DSCR1) is a stress-responsive gene and expresses in varied types of cells, including chondrocytes. Bioinformatics analysis of GSE103416 and GSE104739 datasets showed higher DSCR1 expression in the inflamed cartilage tissues and chondrocytes of OA. DSCR1 had two major isoforms, isoform 1 (DSCR1-1) and isoform 4 (DSCR1-4). We found that DSCR1-1 had a faster (in vitro) and higher expression (in vivo) response to OA compared to DSCR1-4. IL-1β-induced apoptosis, inflammation, and ECM degradation in chondrocytes were attenuated by DSCR1-1 overexpression. DSCR1-1 triggered the phosphorylation of cAMP response element-binding 1 (CREB1) at 133 serine sites by decreasing calcineurin activity. Moreover, activated CREB1 moved into the cell nucleus and combined in the promoter regions of aldehyde dehydrogenase 2 (ALDH2), thus enhancing its gene transcription. ALDH2 could recover Wnt/β-catenin signaling transduction by enhancing phosphorylation of β-catenin at 33/37 serine sites and inhibiting the migration of β-catenin protein from the cellular matrix to the nucleus. In vivo, adenoviruses (1 × 108 PFU) overexpressing DSCR1-1 were injected into the articular cavity of C57BL/6 mice with medial meniscus surgery-induced OA, and it showed that DSCR1-1 overexpression ameliorated cartilage injury. Collectively, our study demonstrates that DSCR1-1 may be a potential therapeutic target of OA.
Collapse
Affiliation(s)
- Zheng-Ming Cao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| | - Su Fu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chao Dong
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Teng-Yue Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Xiao-Kang Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Chun-Lin Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China
| | - Dong-Zhe Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
2
|
Franke K, Bal G, Li Z, Zuberbier T, Babina M. Clorfl86/RHEX Is a Negative Regulator of SCF/KIT Signaling in Human Skin Mast Cells. Cells 2023; 12:cells12091306. [PMID: 37174705 PMCID: PMC10177086 DOI: 10.3390/cells12091306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Mast cells (MCs) are key effector cells in allergic and inflammatory diseases, and the SCF/KIT axis regulates most aspects of the cells' biology. Using terminally differentiated skin MCs, we recently reported on proteome-wide phosphorylation changes initiated by KIT dimerization. C1orf186/RHEX was revealed as one of the proteins to become heavily phosphorylated. Its function in MCs is undefined and only some information is available for erythroblasts. Using public databases and our own data, we now report that RHEX exhibits highly restricted expression with a clear dominance in MCs. While expression is most pronounced in mature MCs, RHEX is also abundant in immature/transformed MC cell lines (HMC-1, LAD2), suggesting early expression with further increase during differentiation. Using RHEX-selective RNA interference, we reveal that RHEX unexpectedly acts as a negative regulator of SCF-supported skin MC survival. This finding is substantiated by RHEX's interference with KIT signal transduction, whereby ERK1/2 and p38 both were more strongly activated when RHEX was attenuated. Comparing RHEX and capicua (a recently identified repressor) revealed that each protein preferentially suppresses other signaling modules elicited by KIT. Induction of immediate-early genes strictly requires ERK1/2 in SCF-triggered MCs; we now demonstrate that RHEX diminution translates to this downstream event, and thereby enhances NR4A2, JUNB, and EGR1 induction. Collectively, our study reveals RHEX as a repressor of KIT signaling and function in MCs. As an abundant and selective lineage marker, RHEX may have various roles in the lineage, and the provided framework will enable future work on its involvement in other crucial processes.
Collapse
Affiliation(s)
- Kristin Franke
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Zhuoran Li
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
3
|
Kim SS, Kim NK, Seo SR. Cynanchi atrati and Its Phenolic Constituent Sinapic Acid Target Regulator of Calcineurin 1 (RCAN1) to Control Skin Inflammation. Antioxidants (Basel) 2022; 11:antiox11020205. [PMID: 35204088 PMCID: PMC8868251 DOI: 10.3390/antiox11020205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder, and numerous pharmacological approaches are employed to reduce symptoms. Natural products of plant-derived materials have been accepted as complementary therapy for the treatment of a wide range of inflammatory diseases. Cynanchi atrati (CA) is an oriental medicinal herb used in the treatment of acute urinary infection, febrile diseases, and laryngopharyngitis. However, the role of CA root extract in skin inflammation such as AD has not been explored yet. In this study, we examined the possible effect of CA root extract on skin inflammation and evaluated the underlying signaling mechanism using in vitro and in vivo modeling systems. Raw264.7 macrophages were used for in vitro experiments, and an oxazolone-induced AD mouse model was used to evaluate in vivo effects. CA extract significantly inhibited the expression levels of lipopolysaccharide (LPS)-induced pro-inflammatory cytokines such as interleukin-6 (IL-6) and interleukin-1β (IL-1β) in RAW264.7 macrophages. The CA root extract mediated suppression of pro-inflammatory cytokine expression and was associated with the decreased nuclear factor kappa B (NF-κB) gene transcriptional activation. Moreover, CA root extract attenuated the in vivo expression of IL-6 and tumor necrosis factor-α (TNF-α) and ear swelling in the AD mouse models. We also observed that the inhibitory effect of CA root extract on skin inflammation was accompanied by the upregulation of calcineurin 1 (RCAN1) expression, which functions in the inflammatory pathways by suppressing NF-κB signaling. We consistently observed that the immunosuppressive effect of CA root extract in AD was significantly perturbed in the RCAN1 knockout mice. In addition, we isolated a phenolic acid compound, sinapic acid (SA), from the CA root extract and found that SA consistently exerted an immunosuppressive effect in RAW264.7 macrophages by inducing RCAN1 expression. Our results provide the first evidence that CA root extract and its phenolic acid constituent, SA, modulate NF-κB signaling pathways by inducing RCAN1 expression in the skin inflammation process. Thus, we suggest that CA root extract has a therapeutic value for the treatment of AD by targeting endogenous immune regulators.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea;
- Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
| | | | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea;
- Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-8541; Fax: +82-33-241-4627
| |
Collapse
|
4
|
Mitra S, Gobira PH, Werner CT, Martin JA, Iida M, Thomas SA, Erias K, Miracle S, Lafargue C, An C, Dietz DM. A role for the endocannabinoid enzymes monoacylglycerol and diacylglycerol lipases in cue-induced cocaine craving following prolonged abstinence. Addict Biol 2021; 26:e13007. [PMID: 33496035 PMCID: PMC11000690 DOI: 10.1111/adb.13007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 12/25/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Following exposure to drugs of abuse, long-term neuroadaptations underlie persistent risk to relapse. Endocannabinoid signaling has been associated with drug-induced neuroadaptations, but the role of lipases that mediate endocannabinoid biosynthesis and metabolism in regulating relapse behaviors following prolonged periods of drug abstinence has not been examined. Here, we investigated how pharmacological manipulation of lipases involved in regulating the expression of the endocannabinoid 2-AG in the nucleus accumbens (NAc) influence cocaine relapse via discrete neuroadaptations. At prolonged abstinence (30 days) from cocaine self-administration, there is an increase in the NAc levels of diacylglycerol lipase (DAGL), the enzyme responsible for the synthesis of the endocannabinoid 2-AG, along with decreased levels of monoacylglycerol lipase (MAGL), which hydrolyzes 2-AG. Since endocannabinoid-mediated behavioral plasticity involves phosphatase dysregulation, we examined the phosphatase calcineurin after 30 days of abstinence and found decreased expression in the NAc, which we demonstrate is regulated through the transcription factor EGR1. Intra-NAc pharmacological manipulation of DAGL and MAGL with inhibitors DO-34 and URB-602, respectively, bidirectionally regulated cue-induced cocaine seeking and altered the phosphostatus of translational initiation factor, eIF2α. Finally, we found that cocaine seeking 30 days after abstinence leads to decreased phosphorylation of eIF2α and reduced expression of its downstream target NPAS4, a protein involved in experience-dependent neuronal plasticity. Together, our findings demonstrate that lipases that regulate 2-AG expression influence transcriptional and translational changes in the NAc related to drug relapse vulnerability.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- These authors contributed equally to this work
| | - Pedro H. Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- These authors contributed equally to this work
| | - Craig T. Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Jennifer A. Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Madoka Iida
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Shruthi A. Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Kyra Erias
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sophia Miracle
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Charles Lafargue
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
| | - David M. Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, The State University of New York at Buffalo, Buffalo, NY, USA
- Department of Psychology, The State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
5
|
Papathanasiou M, Tsiftsoglou SA, Polyzos AP, Papadopoulou D, Valakos D, Klagkou E, Karagianni P, Pliatska M, Talianidis I, Agelopoulos M, Thanos D. Identification of a dynamic gene regulatory network required for pluripotency factor-induced reprogramming of mouse fibroblasts and hepatocytes. EMBO J 2021; 40:e102236. [PMID: 33034061 PMCID: PMC7780151 DOI: 10.15252/embj.2019102236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/27/2020] [Accepted: 09/07/2020] [Indexed: 01/04/2023] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from somatic cells provides an excellent model to study mechanisms of transcription factor-induced global alterations of the epigenome and genome function. Here, we have investigated the early transcriptional events of cellular reprogramming triggered by the co-expression of Oct4, Sox2, Klf4, and c-Myc (OSKM) in mouse embryonic fibroblasts (MEFs) and mouse hepatocytes (mHeps). In this analysis, we identified a gene regulatory network composed of nine transcriptional regulators (9TR; Cbfa2t3, Gli2, Irf6, Nanog, Ovol1, Rcan1, Taf1c, Tead4, and Tfap4), which are directly targeted by OSKM, in vivo. Functional studies using single and double shRNA knockdowns of any of these factors caused disruption of the network and dramatic reductions in reprogramming efficiency, indicating that this network is essential for the induction and establishment of pluripotency. We demonstrate that the stochastic co-expression of 9TR network components occurs in a remarkably small number of cells, approximating the percentage of terminally reprogrammed cells as a result of dynamic molecular events. Thus, the early DNA-binding patterns of OSKM and the subsequent probabilistic co-expression of essential 9TR components in subpopulations of cells undergoing reprogramming steer the reconstruction of a gene regulatory network marking the transition to pluripotency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Pliatska
- Biomedical Research Foundation Academy of AthensAthensGreece
| | | | | | - Dimitris Thanos
- Biomedical Research Foundation Academy of AthensAthensGreece
| |
Collapse
|
6
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
7
|
Mi J, Feng Y, Wen J, Su Y, Xu L, Zu T, Liu C, Fisher DE, Wu X. A ROCK inhibitor promotes keratinocyte survival and paracrine secretion, enhancing establishment of primary human melanocytes and melanocyte–keratinocyte co‐cultures. Pigment Cell Melanoma Res 2019; 33:16-29. [PMID: 31386789 DOI: 10.1111/pcmr.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Yang Feng
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
- Huashan Hospital, Fudan University Shanghai China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - Yiqun Su
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Department of Stomatology Liaocheng People's Hospital Liaocheng China
| | - Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - David E. Fisher
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
8
|
Rotter D, Peiris H, Grinsfelder DB, Martin AM, Burchfield J, Parra V, Hull C, Morales CR, Jessup CF, Matusica D, Parks BW, Lusis AJ, Nguyen NUN, Oh M, Iyoke I, Jakkampudi T, McMillan DR, Sadek HA, Watt MJ, Gupta RK, Pritchard MA, Keating DJ, Rothermel BA. Regulator of Calcineurin 1 helps coordinate whole-body metabolism and thermogenesis. EMBO Rep 2018; 19:embr.201744706. [PMID: 30389725 DOI: 10.15252/embr.201744706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
Increasing non-shivering thermogenesis (NST), which expends calories as heat rather than storing them as fat, is championed as an effective way to combat obesity and metabolic disease. Innate mechanisms constraining the capacity for NST present a fundamental limitation to this approach, yet are not well understood. Here, we provide evidence that Regulator of Calcineurin 1 (RCAN1), a feedback inhibitor of the calcium-activated protein phosphatase calcineurin (CN), acts to suppress two distinctly different mechanisms of non-shivering thermogenesis (NST): one involving the activation of UCP1 expression in white adipose tissue, the other mediated by sarcolipin (SLN) in skeletal muscle. UCP1 generates heat at the expense of reducing ATP production, whereas SLN increases ATP consumption to generate heat. Gene expression profiles demonstrate a high correlation between Rcan1 expression and metabolic syndrome. On an evolutionary timescale, in the context of limited food resources, systemic suppression of prolonged NST by RCAN1 might have been beneficial; however, in the face of caloric abundance, RCAN1-mediated suppression of these adaptive avenues of energy expenditure may now contribute to the growing epidemic of obesity.
Collapse
Affiliation(s)
- David Rotter
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heshan Peiris
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - D Bennett Grinsfelder
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alyce M Martin
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Jana Burchfield
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valentina Parra
- Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Advanced Center for Chronic Diseases (ACCDiS) and Center for Exercise Metabolism and Cancer (CEMC), University of Chile, Santiago, Chile
| | - Christi Hull
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cyndi R Morales
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Claire F Jessup
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Department of Anatomy and Histology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Aldons J Lusis
- Division of Cardiology, Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Misook Oh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry, Pohang University of Science and Technology, Pohang, South Korea
| | - Israel Iyoke
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tanvi Jakkampudi
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Randy McMillan
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Children's Medical Centre, Dallas, TX, USA
| | - Hesham A Sadek
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew J Watt
- The Department of Physiology and Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program, Monash University, Clayton, Vic., Australia
| | - Rana K Gupta
- Touchstone Diabetes Center and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Melanie A Pritchard
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Vic., Australia
| | - Damien J Keating
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, SA, Australia .,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Beverly A Rothermel
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA .,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
9
|
Pang Z, Junkins RD, Raudonis R, MacNeil AJ, McCormick C, Cheng Z, Lin TJ. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways. PLoS One 2018; 13:e0197491. [PMID: 29799862 PMCID: PMC5969770 DOI: 10.1371/journal.pone.0197491] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/03/2018] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88) and/or TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1), a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS)-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2), whereas TRIF-interferon-stimulated response elements (ISRE)-mediated cytokine production (IFNβ, RANTES and IP-10) was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.
Collapse
Affiliation(s)
- Zheng Pang
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert D. Junkins
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Adam J. MacNeil
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Zhenyu Cheng
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tong-Jun Lin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre, Halifax, Nova Scotia, Canada
- * E-mail:
| |
Collapse
|
10
|
Silencing Stem Cell Factor Gene in Fibroblasts to Regulate Paracrine Factor Productions and Enhance c-Kit Expression in Melanocytes on Melanogenesis. Int J Mol Sci 2018; 19:ijms19051475. [PMID: 29772675 PMCID: PMC5983634 DOI: 10.3390/ijms19051475] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/13/2023] Open
Abstract
Melanogenesis is a complex physiological mechanism involving various paracrine factors. Skin cells such as keratinocytes, fibroblasts, and melanocytes communicate with one another through secreted regulators, thereby regulating the melanocytes’ bio-functions. The stem cell factor (SCF) is a paracrine factor produced by fibroblasts, and its receptor, c-kit, is expressed on melanocytes. Binding of SCF to c-kit activates autophosphorylation and tyrosine kinase to switch on its signal transmission. SCF inhibition does not suppress fibroblast proliferation in MTT assay, and SCF silencing induced mRNA expressions of paracrine factor genes, HGF, NRG-1, and CRH in qPCR results. Following UVB stimulation, gene expressions of HGF, NRG, and CRH were higher than homeostasis; in particular, HGF exhibited the highest correlation with SCF variations. We detected fibroblasts regulated SCF in an autocrine-dependent manner, and the conditioned medium obtained from fibroblast culture was applied to treat melanocytes. Melanogenesis-related genes, tyrosinase and pmel17, were upregulated under conditioned mediums with SCF silencing and exposed to UVB treatments. Melanin quantities in the melanocytes had clearly increased in the pigment content assay. In conclusion, SCF silencing causes variations in both fibroblast paracrine factors and melanocyte melanogenesis, and the differences in gene expressions were observed following UVB exposure.
Collapse
|
11
|
García-Redondo AB, Esteban V, Briones AM, Díaz Del Campo LS, González-Amor M, Méndez-Barbero N, Campanero MR, Redondo JM, Salaices M. Regulator of calcineurin 1 modulates vascular contractility and stiffness through the upregulation of COX-2-derived prostanoids. Pharmacol Res 2018; 133:236-249. [PMID: 29309904 DOI: 10.1016/j.phrs.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022]
Abstract
Cyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1+/+) and Rcan1-deficient (Rcan1-/-) mice untreated or treated with the COX-2 inhibitor rofecoxib were used. Vascular function and structure were analysed by myography. COX-2 and phospo-p65 expression were studied by western blotting and immunohistochemistry and TXA2 production by ELISA. We found that Rcan1 deficiency increases COX-2 and IL-6 expression and NF-κB activation in arteries and vascular smooth muscle cells (VSMC). Adenoviral-mediated re-expression of Rcan1.4 in Rcan1-/- VSMC normalized COX-2 expression. Phenylephrine-induced vasoconstrictor responses were greater in aorta from Rcan1-/- compared to Rcan1+/+ mice. This increased response were diminished by etoricoxib, furegrelate, SQ 29548, cyclosporine A and parthenolide, inhibitors of COX-2, TXA2 synthase, TP receptors, calcineurin and NF-κB, respectively. Endothelial removal and NOS inhibition increased phenylephrine responses only in Rcan1+/+ mice. TXA2 levels were greater in Rcan1-/- mice. In small mesenteric arteries, vascular function and structure were similar in both groups of mice; however, vessels from Rcan1-/- mice displayed an increase in vascular stiffness that was diminished by rofecoxib. In conclusion, our results suggest that Rcan1 might act as endogenous negative modulator of COX-2 expression and activity by inhibiting calcineurin and NF-kB pathways to maintain normal contractility and vascular stiffness in aorta and small mesenteric arteries, respectively. Our results uncover a new role for Rcan1 in vascular contractility and mechanical properties.
Collapse
Affiliation(s)
- Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Vanesa Esteban
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Departamento de Inmunología, Instituto de Investigación Fundación Jiménez Díaz, Madrid, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| | - Lucía S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - María González-Amor
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Nerea Méndez-Barbero
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel R Campanero
- CIBER de Enfermedades Cardiovasculares, Spain; Departmento de Biología del Cáncer, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Juan M Redondo
- CIBER de Enfermedades Cardiovasculares, Spain; Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
12
|
Pyrrolidine dithiocarbamate (PDTC) inhibits inflammatory signaling via expression of regulator of calcineurin activity 1 (RCAN1). Biochem Pharmacol 2017; 143:107-117. [DOI: 10.1016/j.bcp.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/11/2017] [Indexed: 11/20/2022]
|
13
|
Ballesteros-Martinez C, Mendez-Barbero N, Montalvo-Yuste A, Jensen BM, Gomez-Cardenosa A, Klitfod L, Garrido-Arandia M, Alvarez-Llamas G, Pastor-Vargas C, Vivanco F, Garvey LH, Cuesta-Herranz J, Poulsen LK, Esteban V. Endothelial Regulator of Calcineurin 1 Promotes Barrier Integrity and Modulates Histamine-Induced Barrier Dysfunction in Anaphylaxis. Front Immunol 2017; 8:1323. [PMID: 29104573 PMCID: PMC5655011 DOI: 10.3389/fimmu.2017.01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Anaphylaxis, the most serious and life-threatening allergic reaction, produces the release of inflammatory mediators by mast cells and basophils. Regulator of calcineurin 1 (Rcan1) is a negative regulator of mast-cell degranulation. The action of mediators leads to vasodilation and an increase in vascular permeability, causing great loss of intravascular volume in a short time. Nevertheless, the molecular basis remains unexplored on the vascular level. We investigated Rcan1 expression induced by histamine, platelet-activating factor (PAF), and epinephrine in primary human vein (HV)-/artery (HA)-derived endothelial cells (ECs) and human dermal microvascular ECs (HMVEC-D). Vascular permeability was analyzed in vitro in human ECs with forced Rcan1 expression using Transwell migration assays and in vivo using Rcan1 knockout mice. Histamine, but neither PAF nor epinephrine, induced Rcan1-4 mRNA and protein expression in primary HV-ECs, HA-ECs, and HMVEC-D through histamine receptor 1 (H1R). These effects were prevented by pharmacological inhibition of calcineurin with cyclosporine A. Moreover, intravenous histamine administration increased Rcan1 expression in lung tissues of mice undergoing experimental anaphylaxis. Functional in vitro assays showed that overexpression of Rcan1 promotes barrier integrity, suggesting a role played by this molecule in vascular permeability. Consistent with these findings, in vivo models of subcutaneous and intravenous histamine-mediated fluid extravasation showed increased response in skin, aorta, and lungs of Rcan1-deficient mice compared with wild-type animals. These findings reveal that endothelial Rcan1 is synthesized in response to histamine through a calcineurin-sensitive pathway and may reduce barrier breakdown, thus contributing to the strengthening of the endothelium and resistance to anaphylaxis. These new insights underscore its potential role as a regulator of sensitivity to anaphylaxis in humans.
Collapse
Affiliation(s)
| | - Nerea Mendez-Barbero
- Department of Vascular Physiopathology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Alma Montalvo-Yuste
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Bettina M Jensen
- Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | | | - Lotte Klitfod
- Surgery Department, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | - María Garrido-Arandia
- Center for Plant Biotechnology and Genomics, Technical University of Madrid, Madrid, Spain
| | - Gloria Alvarez-Llamas
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Carlos Pastor-Vargas
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Fernando Vivanco
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain
| | - Lene Heise Garvey
- Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | - Javier Cuesta-Herranz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain.,Department of Allergy, Fundación Jiménez Díaz, Madrid, Spain
| | - Lars K Poulsen
- Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| | - Vanesa Esteban
- Department of Immunology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Madrid, Spain.,Allergy Clinic, Gentofte Hospital, Copenhagen University Hospital, Hellerup, Denmark
| |
Collapse
|
14
|
Drube S, Weber F, Göpfert C, Loschinski R, Rothe M, Boelke F, Diamanti MA, Löhn T, Ruth J, Schütz D, Häfner N, Greten FR, Stumm R, Hartmann K, Krämer OH, Dudeck A, Kamradt T. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Oncotarget 2016; 6:28833-50. [PMID: 26353931 PMCID: PMC4745695 DOI: 10.18632/oncotarget.5008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | | | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Boelke
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Tobias Löhn
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Julia Ruth
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Dagmar Schütz
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Jena, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Ralf Stumm
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Anne Dudeck
- Institute for Immunology, Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
15
|
Herbst S, Shah A, Mazon Moya M, Marzola V, Jensen B, Reed A, Birrell MA, Saijo S, Mostowy S, Shaunak S, Armstrong-James D. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med 2015; 7:240-58. [PMID: 25637383 PMCID: PMC4364943 DOI: 10.15252/emmm.201404556] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Transplant recipients on calcineurin inhibitors are at high risk of invasive fungal infection. Understanding how calcineurin inhibitors impair fungal immunity is a key priority for defining risk of infection. Here, we show that the calcineurin inhibitor tacrolimus impairs clearance of the major mould pathogen Aspergillus fumigatus from the airway, by inhibiting macrophage inflammatory responses. This leads to defective early neutrophil recruitment and fungal clearance. We confirm these findings in zebrafish, showing an evolutionarily conserved role for calcineurin signalling in neutrophil recruitment during inflammation. We find that calcineurin–NFAT activation is phagocytosis dependent and collaborates with NF-κB for TNF-α production. For yeast zymosan particles, activation of macrophage calcineurin–NFAT occurs via the phagocytic Dectin-1–spleen tyrosine kinase pathway, but for A. fumigatus, activation occurs via a phagosomal TLR9-dependent and Bruton's tyrosine kinase-dependent signalling pathway that is independent of MyD88. We confirm the collaboration between NFAT and NF-κB for TNF-α production in primary alveolar macrophages. These observations identify inhibition of a newly discovered macrophage TLR9–BTK–calcineurin–NFAT signalling pathway as a key immune defect that leads to organ transplant-related invasive aspergillosis.
Collapse
Affiliation(s)
- Susanne Herbst
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Anand Shah
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Maria Mazon Moya
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Vanessa Marzola
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Barbara Jensen
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Anna Reed
- Lung Transplant Unit, Royal Brompton and Harefield Hospital, London, UK
| | - Mark A Birrell
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shinobu Saijo
- Medical Mycology Research Centre, Chiba University, Chiba, Japan
| | - Serge Mostowy
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Sunil Shaunak
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Darius Armstrong-James
- Department of Infectious Diseases and Immunity, Imperial College London, London, UK National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
16
|
Kim SS, Lee EH, Lee K, Jo SH, Seo SR. PKA regulates calcineurin function through the phosphorylation of RCAN1: identification of a novel phosphorylation site. Biochem Biophys Res Commun 2015; 459:604-9. [PMID: 25753203 DOI: 10.1016/j.bbrc.2015.02.155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 11/20/2022]
Abstract
Calcineurin is a calcium/calmodulin-dependent phosphatase that has been implicated in T cell activation through the induction of nuclear factors of activated T cells (NFAT). We have previously suggested that endogenous regulator of calcineurin (RCAN1, also known as DSCR1) is targeted by protein kinase A (PKA) for the control of calcineurin activity. In the present study, we characterized the PKA-mediated phosphorylation site in RCAN1 by mass spectrometric analysis and revealed that PKA directly phosphorylated RCAN1 at the Ser 93. PKA-induced phosphorylation and the increase in the half-life of the RCAN1 protein were prevented by the substitution of Ser 93 with Ala (S93A). Furthermore, the PKA-mediated phosphorylation of RCAN1 at Ser 93 potentiated the inhibition of calcineurin-dependent pro-inflammatory cytokine gene expression by RCAN1. Our results suggest the presence of a novel phosphorylation site in RCAN1 and that its phosphorylation influences calcineurin-dependent inflammatory target gene expression.
Collapse
Affiliation(s)
- Seon Sook Kim
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Eun Hye Lee
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kooyeon Lee
- Department of Bio-Health Technology, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, BK21 Plus Graduate Program, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Su Ryeon Seo
- Department of Molecular Bioscience, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
17
|
Reemann P, Reimann E, Ilmjärv S, Porosaar O, Silm H, Jaks V, Vasar E, Kingo K, Kõks S. Melanocytes in the skin--comparative whole transcriptome analysis of main skin cell types. PLoS One 2014; 9:e115717. [PMID: 25545474 PMCID: PMC4278762 DOI: 10.1371/journal.pone.0115717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022] Open
Abstract
Melanocytes possess several functions besides a role in pigment synthesis, but detailed characteristics of the cells are still unclear. We used whole transcriptome sequencing (RNA-Seq) to assess differential gene expression of cultivated normal human melanocytes with respect to keratinocytes, fibroblasts and whole skin. The present results reveal cultivated melanocytes as highly proliferative cells with possible stem cell-like properties. The enhanced readiness to regenerate makes melanocytes the most vulnerable cells in the skin and explains their high risk of developing into malignant melanoma.
Collapse
Affiliation(s)
- Paula Reemann
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Ene Reimann
- Core Facility of Clinical Genomics, Department of Pathophysiology, Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- The Institute of Veterinary Medicine and Animal Sciences of the Estonian University of Life Sciences, Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
| | - Sten Ilmjärv
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu and Quretec Ltd (private limited company), Tartu, Estonia
| | - Orm Porosaar
- Department of Pediatric Surgery, Tallinn Children's Hospital, Tallinn, Estonia
| | - Helgi Silm
- Clinic of Dermatology, Tartu University Hospital, Department of Dermatology, University of Tartu, Tartu, Estonia
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu and Centre of Translational Medicine, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Clinic of Dermatology, Tartu University Hospital, Department of Dermatology, University of Tartu, Tartu, Estonia
| | - Sulev Kõks
- The Institute of Veterinary Medicine and Animal Sciences of the Estonian University of Life Sciences, Competence Centre on Reproductive Medicine and Biology, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu and Centre of Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|