1
|
The prophylactic and anti-fibrotic activity of phthalimido-thiazole derivatives in schistosomiasis mansoni. Parasitol Res 2022; 121:2111-2120. [DOI: 10.1007/s00436-022-07533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
|
2
|
Masamba P, Kappo AP. Immunological and Biochemical Interplay between Cytokines, Oxidative Stress and Schistosomiasis. Int J Mol Sci 2021; 22:ijms22137216. [PMID: 34281269 PMCID: PMC8268096 DOI: 10.3390/ijms22137216] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
The host–parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host’s standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.
Collapse
|
3
|
Malta KK, Silva TP, Palazzi C, Neves VH, Carmo LAS, Cardoso SJ, Melo RCN. Changing our view of the Schistosoma granuloma to an ecological standpoint. Biol Rev Camb Philos Soc 2021; 96:1404-1420. [PMID: 33754464 DOI: 10.1111/brv.12708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022]
Abstract
Schistosomiasis, a neglected parasitic tropical disease that has plagued humans for centuries, remains a major public health burden. A primary challenge to understanding schistosomiasis is deciphering the most remarkable pathological feature of this disease, the granuloma - a highly dynamic and self-organized structure formed by both host and parasite components. Granulomas are considered a remarkable example of how parasites evolved with their hosts to establish complex and intimate associations. However, much remains unclear regarding life within the granuloma, and strategies to restrain its development are still lacking. Here we explore current information on the hepatic Schistosoma mansoni granuloma in the light of Ecology and propose that this intricate structure acts as a real ecosystem. The schistosomal granuloma is formed by cells (biotic component), protein scaffolds, fibres, and chemical compounds (abiotic components) with inputs/outputs of energy and matter, as complex as in classical ecosystems. We review the distinct cell populations ('species') within the granuloma and examine how they integrate with each other and interact with their microenvironment to form a multifaceted cell community in different space-time frames. The colonization of the hepatic tissue to form granulomas is explained from the point of view of an ecological succession whereby a community is able to modify its physical environment, creating conditions and resources for ecosystem construction. Remarkably, the granuloma represents a dynamic evolutionary system that undergoes progressive changes in the 'species' that compose its community over time. In line with ecological concepts, we examine the granuloma not only as a place where a community of cells is settled (spatial niche or habitat) but also as a site in which the functional activities of these combined populations occur in an orchestrated way in response to microenvironmental gradients such as cytokines and egg antigens. Finally, we assert how the levels of organization of cellular components in a granuloma as conventionally defined by Cell Biology can fit perfectly into a hierarchical structure of biological systems as defined by Ecology. By rethinking the granuloma as an integrating and evolving ecosystem, we draw attention to the inner workings of this structure that are central to the understanding of schistosomiasis and could guide its future treatment.
Collapse
Affiliation(s)
- Kássia K Malta
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Cinthia Palazzi
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Vitor H Neves
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Lívia A S Carmo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Department of Medicine, Federal University of Alagoas, Rodovia AL-115, Bom Sucesso, Arapiraca, AL, 57309-005, Brazil
| | - Simone J Cardoso
- Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Laboratory of Plankton Ecology, Department of Zoology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Biodiversity, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, São Pedro, Juiz de Fora, MG, 36036-900, Brazil.,Graduate Program in Cell Biology, Federal University of Minas Gerais, Belo Horizonte, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
4
|
Cortes‐Selva D, Fairfax K. Schistosome and intestinal helminth modulation of macrophage immunometabolism. Immunology 2021; 162:123-134. [PMID: 32614982 PMCID: PMC7808165 DOI: 10.1111/imm.13231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are fundamental to sustain physiological equilibrium and to regulate the pathogenesis of parasitic and metabolic processes. The functional heterogeneity and immune responses of macrophages are shaped by cellular metabolism in response to the host's intrinsic factors, environmental cues and other stimuli during disease. Parasite infections induce a complex cascade of cytokines and metabolites that profoundly remodel the metabolic status of macrophages. In particular, helminths polarize macrophages to an M2 state and induce a metabolic shift towards reliance on oxidative phosphorylation, lipid oxidation and amino acid metabolism. Accumulating data indicate that helminth-induced activation and metabolic reprogramming of macrophages underlie improvement in overall whole-body metabolism, denoted by improved insulin sensitivity, body mass in response to high-fat diet and atherogenic index in mammals. This review aims to highlight the metabolic changes that occur in human and murine-derived macrophages in response to helminth infections and helminth products, with particular interest in schistosomiasis and soil-transmitted helminths.
Collapse
Affiliation(s)
- Diana Cortes‐Selva
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
- Janssen BiotherapeuticsJanssen R&DSpring HousePAUSA
| | - Keke Fairfax
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
5
|
Liu S, Lockhart JR, Fontenard S, Berlett M, Ryan TM. Mapping the Chromosomal Insertion Site of the GFP Transgene of UBC-GFP Mice to the MHC Locus. THE JOURNAL OF IMMUNOLOGY 2020; 204:1982-1987. [PMID: 32122998 DOI: 10.4049/jimmunol.1901338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/01/2020] [Indexed: 12/16/2022]
Abstract
GFP is frequently used as a marker for tracking donor cells adoptively transplanted into recipient animals. The human ubiquitin C promoter (UBC)-driven-GFP transgenic mouse is a commonly used source of donor cells for this purpose. This mouse was initially generated in the C57BL/6 inbred strain and has been backcrossed into the BALB/cBy strain for over 11 generations. Both the C57BL/6 inbred and BALB/cBy congenic UBC-GFP lines are commercially available and have been widely distributed. These UBC-GFP lines can be a convenient resource for tracking donor cells in both syngenic MHC-matched and in allogenic MHC-mismatched studies as C57BL/6 (H-2b) and BALB/cBy (H-2d) have disparate MHC haplotypes. In this report, we surprisingly discover that the UBC-GFP BALB/cBy congenic mice still retain the H-2b MHC haplotype of their original C57BL/6 founder, suggesting that the UBC-GFP transgene integration site is closely linked to the MHC locus on chromosome 17. Using linear amplification-mediated PCR, we successfully map the UBC-GFP transgene to the MHC locus. This study highlights the importance and urgency of mapping the transgene integration site of transgenic mouse strains used in biomedical research. Furthermore, this study raises the possibility of alternative interpretations of previous studies using congenic UBC-GFP mice and focuses attention on the necessity for rigor and reproducibility in scientific research.
Collapse
Affiliation(s)
- Shanrun Liu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jonathan R Lockhart
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Suean Fontenard
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Mike Berlett
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Thomas M Ryan
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
6
|
Cortes-Selva D, Ready A, Gibbs L, Rajwa B, Fairfax KC. IL-4 promotes stromal cell expansion and is critical for development of a type-2, but not a type 1 immune response. Eur J Immunol 2019; 49:428-442. [PMID: 30575951 PMCID: PMC6953475 DOI: 10.1002/eji.201847789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/12/2018] [Accepted: 12/19/2018] [Indexed: 11/07/2022]
Abstract
IL-4 is critical for differentiation of Th2 cells and antibody isotype switching, but our work demonstrated that it is produced in the peripheral LN under both Type 2, and Type 1 conditions, raising the possibility of other functions. We found that IL-4 is vital for proper positioning of hematopoietic and stromal cells in steady state, and the lack of IL-4 or IL-4Rα correlates with disarrangement of both follicular dendritic cells and CD31+ endothelial cells. We observed a marked disorganization of B cells in these mice, suggesting that the lymphocyte-stromal cell axis is maintained by the IL-4 signaling pathway. This study showed that absence of IL-4 correlates with significant downregulation of Lymphotoxin alpha (LTα) and Lymphotoxin beta (LTβ), critical lymphokines for the development and maintenance of lymphoid organs. Moreover, immunization of IL-4 deficient mice with Type 2 antigens failed to induce lymphotoxin production, LN reorganization, or germinal center formation, while this process is IL-4 independent following Type 1 immunization. Additionally, we found that Type 1 antigen mediated LN reorganization is dependent on IFN-γ in the absence of IL-4. Our findings reveal a role of IL-4 in the maintenance of peripheral lymphoid organ microenvironments during homeostasis and antigenic challenge.
Collapse
Affiliation(s)
- Diana Cortes-Selva
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Andrew Ready
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Lisa Gibbs
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bartek Rajwa
- Department of Basic Medical Sciences College of Veterinary Medicine, and Bindley Biosciences Center, Purdue University, West Lafayette, IN, USA
| | - Keke C Fairfax
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Cortes-Selva D, Elvington AF, Ready A, Rajwa B, Pearce EJ, Randolph GJ, Fairfax KC. Schistosoma mansoni Infection-Induced Transcriptional Changes in Hepatic Macrophage Metabolism Correlate With an Athero-Protective Phenotype. Front Immunol 2018; 9:2580. [PMID: 30483256 PMCID: PMC6240656 DOI: 10.3389/fimmu.2018.02580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023] Open
Abstract
Hepatic macrophages play an essential role in the granulomatous response to infection with the parasitic helminth Schistosoma mansoni, but the transcriptional changes that underlie this effect are poorly understood. To explore this, we sorted the two previously recognized hepatic macrophage populations (perivascular and Kupffer cells) from naïve and S. mansoni-infected male mice and performed microarray analysis as part of the Immunological Genome Project. The two hepatic macrophage populations exhibited remarkably different genomic profiles. However, this diversity was substantially reduced following infection with S. mansoni, and in fact, both populations demonstrated increases in transcripts of the monocyte lineage, suggesting that both populations may be replenished by monocytes following infection. Pathway analysis showed a profound alteration in global metabolic pathways, including changes to phospholipid and cholesterol metabolism, as well as amino acid biosynthesis and glucagon signaling. These changes suggest a possible mechanism for the previously reported athero-protective effects of S. mansoni infection. Indeed, we find that male ApoE null mice fed a high-fat diet in combination with S. mansoni infection have reduced plaque area and increased glucose tolerance as compared to control mice. Transcript analysis of infected and control high-fat diet fed ApoE−/− mice confirm that ApoC1, Psat1, and Gys1 are all altered by infection, suggesting that altered hepatic macrophage metabolism is associated with S. mansoni- induced protection from hyperlipidemia, atherosclerosis, and glucose intolerance. These results suggest a previously unknown and unreported role of hepatic macrophages in the modulation of whole body lipid and glucose metabolism during infection and provide a template for examining the role of immunomodulation on the long-term metabolism of the host.
Collapse
Affiliation(s)
- Diana Cortes-Selva
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Andrew F Elvington
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.,Division of Health and Sport Sciences, Missouri Baptist University, St. Louis, MO, United States
| | - Andrew Ready
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Bartek Rajwa
- Department of Basic Medical Sciences, Bindley Bioscience Center, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Edward J Pearce
- Department of Immunometabolism, Faculty of Biology, Max Planck Institute of Immunobiology and Epigenetics, University of Freiburg, Freiburg, Germany
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keke C Fairfax
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States.,Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Zhou S, Jin X, Li Y, Li W, Chen X, Xu L, Zhu J, Xu Z, Zhang Y, Liu F, Su C. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica. PLoS Negl Trop Dis 2016; 10:e0005094. [PMID: 27792733 PMCID: PMC5085144 DOI: 10.1371/journal.pntd.0005094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. Schistosomiasis is a parasitic disease that affects approximately 220 million people and causes serious morbidity and economic problems mainly in (sub)tropical regions. After Schistosoma japonicum or Schistosoma mansoni infection, parasite eggs are trapped in host liver and induce liver inflammation and fibrosis, leading to irreversible impairment of the liver, and even death of the host. Meanwhile, schistosomes also induce strong regulatory mechanisms to suppress inflammation and prevent excessive immunopathology. Considering it is well known that PD-1 plays a critical role in suppressing T cell function, understanding the role of PD-1 in modulating immune responses during schistosome infection is necessary for the development of PD-1-based control of liver damage in schistosomiasis. Here, increased PD-1 expression in CD4+ T cells from both humans and mice with schistosome infection was shown. We further showed that PD-1 blockade preferentially augmented Th2 cell responses and ultimately resulted in more severe liver immunopathology in mice with Schistosomiasis japonica, suggesting that PD-1 signaling is beneficial to further explore therapeutic possibilities for preventing the excessive liver immunopathology.
Collapse
Affiliation(s)
- Sha Zhou
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Jin
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yalin Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Li
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaojun Chen
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jifeng Zhu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhipeng Xu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Zhang
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Liu
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chuan Su
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
9
|
The Roles of CXCL16 and CXCR6 in Liver Inflammation and Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Chen X, Yang X, Li Y, Zhu J, Zhou S, Xu Z, He L, Xue X, Zhang W, Dong X, Wu H, Li CJ, Hsu HT, Kong W, Liu F, Tripathi PB, Yu MS, Chang J, Zhou L, Su C. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog 2014; 10:e1004097. [PMID: 24788758 PMCID: PMC4006917 DOI: 10.1371/journal.ppat.1004097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 03/13/2014] [Indexed: 12/31/2022] Open
Abstract
Following Schistosoma japonicum (S. japonicum) infection, granulomatous responses are induced by parasite eggs trapped in host organs, particular in the liver, during the acute stage of disease. While excessive liver granulomatous responses can lead to more severe fibrosis and circulatory impairment in chronically infected host. However, the exact mechanism of hepatic granuloma formation has remained obscure. In this study, we for the first time showed that follicular helper T (Tfh) cells are recruited to the liver to upregulate hepatic granuloma formation and liver injury in S. japonicum-infected mice, and identified a novel function of macrophages in Tfh cell induction. In addition, our results showed that the generation of Tfh cells driven by macrophages is dependent on cell–cell contact and the level of inducible costimulator ligand (ICOSL) on macrophages which is regulated by CD40–CD40L signaling. Our findings uncovered a previously unappreciated role for Tfh cells in liver pathology caused by S. japonicum infection in mice. Schistosomiasis is a chronic helminthic disease that affects approximately 200 million people. After S. japonicum infection, parasite eggs are trapped in host liver and granulomas are induced to form around eggs. Severe granuloma subsequently results in serious liver fibrosis and circulatory impairment chronically. It is important to fully elucidate the mechanism of the granuloma formation. Here, we show that Tfh cells play a novel role of promoting the hepatic granuloma formation and liver injury, and identified a novel function of macrophages in Tfh cells induction in S. japonicum-infected mouse model. In addition, we show that the generation of Tfh cells driven by macrophages is cell–cell contact dependent and regulated by CD40-CD40L signaling. Our findings revealed a novel role and mechanism of macrophages in Tfh cell generation and the liver pathogenesis in S. japonicum-infected mouse model.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiaowei Yang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Yong Li
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jifeng Zhu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Sha Zhou
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhipeng Xu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Lei He
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Department of Pathology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Xue Xue
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Weiwei Zhang
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xiaoxiao Dong
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Henry Wu
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California, United States of America
| | - Carrie J. Li
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Hsiang-Ting Hsu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Wenjun Kong
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Feng Liu
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Prem B. Tripathi
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Michelle S. Yu
- Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Jason Chang
- Department of General Surgery, Kaiser LAMC, Los Angeles, California, United States of America
| | - Liang Zhou
- Department of Pathology, Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Chuan Su
- Department of Pathogen Biology & Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- * E-mail:
| |
Collapse
|
11
|
McGovern KE, Wilson EH. Role of Chemokines and Trafficking of Immune Cells in Parasitic Infections. ACTA ACUST UNITED AC 2014; 9:157-168. [PMID: 25383073 DOI: 10.2174/1573395509666131217000000] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Parasites are diverse eukaryotic pathogens that can have complex life cycles. Their clearance, or control within a mammalian host requires the coordinated effort of the immune system. The cell types recruited to areas of infection can combat the disease, promote parasite replication and survival, or contribute to disease pathology. Location and timing of cell recruitment can be crucial. In this review, we explore the role chemokines play in orchestrating and balancing the immune response to achieve optimal control of parasite replication without promoting pathology.
Collapse
Affiliation(s)
- Kathryn E McGovern
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| | - Emma H Wilson
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, CA, 92521-0129, USA
| |
Collapse
|