1
|
Bräunlein E, Lupoli G, Füchsl F, Abualrous ET, de Andrade Krätzig N, Gosmann D, Wietbrock L, Lange S, Engleitner T, Lan H, Audehm S, Effenberger M, Boxberg M, Steiger K, Chang Y, Yu K, Atay C, Bassermann F, Weichert W, Busch DH, Rad R, Freund C, Antes I, Krackhardt AM. Functional analysis of peripheral and intratumoral neoantigen-specific TCRs identified in a patient with melanoma. J Immunother Cancer 2021; 9:jitc-2021-002754. [PMID: 34518289 PMCID: PMC8438848 DOI: 10.1136/jitc-2021-002754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neoantigens derived from somatic mutations correlate with therapeutic responses mediated by treatment with immune checkpoint inhibitors. Neoantigens are therefore highly attractive targets for the development of therapeutic approaches in personalized medicine, although many aspects of their quality and associated immune responses are not yet well understood. In a case study of metastatic malignant melanoma, we aimed to perform an in-depth characterization of neoantigens and respective T-cell responses in the context of immune checkpoint modulation. Methods Three neoantigens, which we identified either by immunopeptidomics or in silico prediction, were investigated using binding affinity analyses and structural simulations. We isolated seven T-cell receptors (TCRs) from the patient’s immune repertoire recognizing these antigens. TCRs were compared in vitro by multiparametric analyses including functional avidity, multicytokine secretion, and cross-reactivity screenings. A xenograft mouse model served to study in vivo functionality of selected TCRs. We investigated the patient’s TCR repertoire in blood and different tumor-related tissues over 3 years using TCR beta deep sequencing. Results Selected mutated peptide ligands with proven immunogenicity showed similar binding affinities to the human leukocyte antigen complex and comparable disparity to their wild-type counterparts in molecular dynamic simulations. Nevertheless, isolated TCRs recognizing these antigens demonstrated distinct patterns in functionality and frequency. TCRs with lower functional avidity showed at least equal antitumor immune responses in vivo. Moreover, they occurred at high frequencies and particularly demonstrated long-term persistence within tumor tissues, lymph nodes and various blood samples associated with a reduced activation pattern on primary in vitro stimulation. Conclusions We performed a so far unique fine characterization of neoantigen-specific T-cell responses revealing defined reactivity patterns of neoantigen-specific TCRs. Our data highlight qualitative differences of these TCRs associated with function and longevity of respective T cells. Such features need to be considered for further optimization of neoantigen targeting including adoptive T-cell therapies using TCR-transgenic T cells.
Collapse
Affiliation(s)
- Eva Bräunlein
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Gaia Lupoli
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Franziska Füchsl
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Esam T Abualrous
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Dario Gosmann
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Lukas Wietbrock
- TUM School of Life Sciences and Center for Integrated Protein Science Munich, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Sebastian Lange
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Department of Medicine II, Klinikum rechts der Isar, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Huan Lan
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stefan Audehm
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Manuel Effenberger
- Institute for Medical Microbiology Immunology and Hygiene, Technische Universität München, München, Germany
| | - Melanie Boxberg
- Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,MRI-TUM-Biobank at the Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Core Facility Experimental Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Yinshui Chang
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Kai Yu
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Cigdem Atay
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Florian Bassermann
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,MRI-TUM-Biobank at the Institute of Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Core Facility Experimental Pathology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology Immunology and Hygiene, Technische Universität München, München, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,Department of Medicine II, Klinikum rechts der Isar, TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Iris Antes
- TUM School of Life Sciences and Center for Integrated Protein Science Munich, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der Technischen Universität München, München, Germany .,Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Klinikum rechts der Isar der Technischen Universität München, München, Germany.,German Cancer Consortium (DKTK), partner-site Munich, and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Tedeschi V, Vitulano C, Cauli A, Paladini F, Piga M, Mathieu A, Sorrentino R, Fiorillo MT. The Ankylosing Spondylitis-associated HLA-B*2705 presents a B*0702-restricted EBV epitope and sustains the clonal amplification of cytotoxic T cells in patients. Mol Med 2016; 22:215-223. [PMID: 27254288 DOI: 10.2119/molmed.2016.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/11/2016] [Indexed: 12/16/2022] Open
Abstract
HLA-B*27 is strongly associated with an inflammatory autoimmune disorder, the Ankylosing Spondylitis (AS) and plays a protective role in viral infections. The two aspects might be linked. In this work, we compared in B*2705/B*07 positive patients with AS, the CD8+ T cell responses to two immunodominant EBV-derived epitopes restricted for either the HLA-B*27 (pEBNA3C) or the HLA-B*07 (pEBNA3A). We have unexpectedly found that the HLA-B*07-restricted EBNA3A peptide is presented by both the B*0702 and the B*2705 but not by the non AS-associated B*2709, that differs from the AS-associated B*2705 for a single amino acid in the peptide-binding groove (His116Asp). We then analysed 38 B*2705-positive/B*07-negative (31 AS-patients and 7 healthy donors) and 8 B*2709-positive/B*07-negative subjects. EBNA3A-specific CD8+ T lymphocytes were present in 55.3% of the HLA-B*2705 but in none of the B*2709 donors (p=0.0049). TCR β-chain analysis identified common TCRBV and TCRBJ gene segments and shared CDR3β sequences in pEBNA3A-responsive CTLs of B*2705 carriers, suggesting the existence of a shared TCR repertoire for recognition of the uncanonical B*2705/pEBNA3A complex. These data highlight the plasticity of the AS-associated HLA-B*2705, which presents peptides with suboptimal binding motifs, possibly contributing both to its enhanced capacity to protect against pathogens and to predispose to autoimmunity.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University, Rome, Italy
| | - Carolina Vitulano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University, Rome, Italy
| | - Alberto Cauli
- 2nd Chair of Rheumatology, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Fabiana Paladini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University, Rome, Italy
| | - Matteo Piga
- 2nd Chair of Rheumatology, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandro Mathieu
- 2nd Chair of Rheumatology, Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Rosa Sorrentino
- Department of Biology and Biotechnology "C. Darwin", Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Merlo A, Dalla Santa S, Dolcetti R, Zanovello P, Rosato A. Reverse immunoediting: When immunity is edited by antigen. Immunol Lett 2016; 175:16-20. [PMID: 27131431 DOI: 10.1016/j.imlet.2016.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/22/2016] [Indexed: 12/30/2022]
Abstract
Immune selective pressure occurring during cancer immunoediting shapes tumor features revealed at clinical presentation. However, in the "Escape" phase, the tumor itself has the chance to influence the immunological response. Therefore, the capacity of the immune response to sculpt the tumor characteristics is only one side of the coin and even the opposite is likely true, i.e. that an antigen can shape the immune response in a sort of "reverse immunoediting". This reciprocal modeling probably occurs continuously, whenever the immune system encounters a tumor/foreign antigen, and can be operative in the pathogen/immune system interplay, thus possibly permeating the protective immunity as a whole. In line with this view, the characterization of a T cell response as well as the design of both active and passive immunotherapy strategies should also take into account all Ag features (type, load and presentation). Overall, we suggest that the "reverse immunoediting" hypothesis could help to dissect the complex interplay between antigens and the immune repertoire, and to improve the outcome of immunotherapeutic approaches, where T cell responses are manipulated and reprogrammed.
Collapse
Affiliation(s)
- Anna Merlo
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy
| | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, Via Gattamelata, 64, University of Padua, 35128 Padua, Italy
| | - Riccardo Dolcetti
- CRO-IRCCS, National Cancer Institute, Via F. Gallini, 2, 33081 Aviano, PN, Italy; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland 4102, Australia
| | - Paola Zanovello
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy; Department of Surgery, Oncology and Gastroenterology, Via Gattamelata, 64, University of Padua, 35128 Padua, Italy
| | - Antonio Rosato
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata, 64, 35128 Padua, Italy; Department of Surgery, Oncology and Gastroenterology, Via Gattamelata, 64, University of Padua, 35128 Padua, Italy.
| |
Collapse
|
6
|
Mazzocco M, Martini M, Rosato A, Stefani E, Matucci A, Dalla Santa S, De Sanctis F, Ugel S, Sandri S, Ferrarini G, Cestari T, Ferrari S, Zanovello P, Bronte V, Sartoris S. Autologous cellular vaccine overcomes cancer immunoediting in a mouse model of myeloma. Immunology 2015; 146:33-49. [PMID: 25959091 PMCID: PMC4552499 DOI: 10.1111/imm.12477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 12/16/2022] Open
Abstract
In the Sp6 mouse plasmacytoma model, a whole-cell vaccination with Sp6 cells expressing de novo B7-1 (Sp6/B7) induced anatomically localized and cytotoxic T cell (CTL)-mediated protection against wild-type (WT) Sp6. Both WT Sp6 and Sp6/B7 showed down-regulated expression of MHC H-2 L(d). Increase of H-2 L(d) expression by cDNA transfection (Sp6/B7/L(d)) raised tumour immune protection and shifted most CTL responses towards H-2 L(d)-restricted antigenic epitopes. The tumour-protective responses were not specific for the H-2 L(d)-restricted immunodominant AH1 epitope of the gp70 common mouse tumour antigen, although WT Sp6 and transfectants were able to present it to specific T cells in vitro. Gp70 transcripts, absent in secondary lymphoid organs of naive mice, were detected in immunized mice as well as in splenocytes from naive mice incubated in vitro with supernatants of CTL-lysed Sp6 cell cultures, containing damage-associated molecular patterns (DAMPs). It has been shown that Toll-like receptor triggering induces gp70 expression. Damage-associated molecular patterns are released by CTL-mediated killing of Sp6/B7-Sp6/B7/L(d) cells migrated to draining lymph nodes during immunization and may activate gp70 expression and presentation in most resident antigen-presenting cells. The same could also apply for Mus musculus endogenous ecotropic murine leukaemia virus 1 particles present in Sp6-cytosol, discharged by dying cells and superinfecting antigen-presenting cells. The outcome of such a massive gp70 cross-presentation would probably be tolerogenic for the high-affinity AH1-gp70-specific CTL clones. In this scenario, autologous whole-tumour-cell vaccines rescue tumour-specific immunoprotection by amplification of subdominant tumour antigen responses when those against the immune dominant antigens are lost.
Collapse
Affiliation(s)
- Marta Mazzocco
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Matteo Martini
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Elisabetta Stefani
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Andrea Matucci
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | | | | | - Stefano Ugel
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Sara Sandri
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Giovanna Ferrarini
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Tiziana Cestari
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Zanovello
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Vincenzo Bronte
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Department of Pathology and Diagnostics, University of Verona, Verona, Italy
| |
Collapse
|