1
|
Wang X, Shi K, Zhao L, Cheng S, Chen L, Li Z. Hepatitis B core virus-like particles bearing Pgp3 antigen enhance immune response against genital chlamydial infection in mice. Int Immunopharmacol 2025; 146:113663. [PMID: 39706045 DOI: 10.1016/j.intimp.2024.113663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/23/2024]
Abstract
Chlamydia trachomatis Pgp3 protein-induced immunoprotection is effective but incomplete, which requires the suitable adjuvants to enhance its immune response. Within this context, Hepatitis B core virus-like particles (HBc-VLP) emerge as nanoscale protein particles capable of incorporating either endogenous or exogenous antigens or epitopes. In this study, HBc-Pgp3 chimeric protein was accomplished by integrating the identified dominant epitope of the Pgp3 protein into the major immunodominant region of a truncated HBc-VLP, which was realized in the pET28a (+) vector and expressed via the E. coli BL21 expression system. The efficacious expression and purification of the recombinant HBc-Pgp3 facilitated a tripartite immunization regimen in mice. The immunological assessment encompassed the measurement of IgG antibody and cytokine levels through ELISA, alongside flow cytometric analysis of the CD4+ Th1 cell-mediated immune responses within the murine spleen. Comparative analysis revealed that the HBc-Pgp3-vaccinated mice demonstrated superior IgG antibody titers and subtypes relative to the controls. Moreover, the HBc-Pgp3 formulation was instrumental in augmenting IFN-γ production, enhancing the efficiency of Chlamydia muridarum clearance post-challenge, and severity of hydrosalpinx within the lower genital tract. Collectively, these findings illuminate the potential of the novel HBc-Pgp3 chimeric construct as an innovative vaccine candidate, offering augmented immunoprotection against chlamydial infection.
Collapse
Affiliation(s)
- Xinglv Wang
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Keliang Shi
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Lanhua Zhao
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Shan Cheng
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Lili Chen
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China
| | - Zhongyu Li
- Institute of Pathogenic Biology, School of Nursing, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province, University of South China, Hengyang 421001, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Al-Zeer MA, Lubad MA. Loss in Pluripotency Markers in Mesenchymal Stem Cells upon Infection with Chlamydia trachomatis. J Microbiol Biotechnol 2024; 34:2465-2473. [PMID: 39467689 PMCID: PMC11733544 DOI: 10.4014/jmb.2406.06023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
The intracellular pathogen Chlamydia trachomatis can inflict substantial damage on the host. Notably, Chlamydia infection is acknowledged for its precise modulation of diverse host signaling pathways to ensure cell survival, a phenomenon intricately connected to genetic regulatory changes in host cells. To monitor shifts in gene regulation within Chlamydia-infected cells, we employed mesenchymal stem cells (MSCs) as a naïve, primary cell model. Utilizing biochemical methods and imaging, our study discloses that acute Chlamydia infection in human MSCs leads to the downregulation of transcription factors Oct4, Sox2, and Nanog, suggesting a loss of pluripotency markers. Conversely, pluripotency markers in MSCs were sustained through treatment with conditioned medium from infected MSCs. Additionally, there is an augmentation in alkaline phosphatase activity, along with elevated Sox9 and CD44 mRNA expression levels observed during acute infection. A comprehensive screening for specific cell markers using touchdown PCR indicates an upregulation of mRNA for the early chondrogenesis gene Sox9 and a decrease in mRNA for the MSC marker vimentin. Real-time PCR quantification further corroborates alterations in gene expression, encompassing increased Sox9 and CD44 mRNA levels, alongside heightened alkaline phosphatase activity. In summary, the infection of MSCs with C. trachomatis induces numerous genetic deregulations, implying a potential trend towards differentiation into chondrocytes. These findings collectively underscore a targeted impact of Chlamydia on the gene regulations of host cells, carrying significant implications for the final fate and differentiation of these cells.
Collapse
Affiliation(s)
- Munir A. Al-Zeer
- Department of Biological Sciences, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Abu Lubad
- Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
3
|
Klose SM, De Souza DP, Devlin JM, Bushell R, Browning GF, Vaz PK. A "plus one" strategy impacts replication of felid alphaherpesvirus 1, Mycoplasma and Chlamydia, and the metabolism of coinfected feline cells. mSystems 2024; 9:e0085224. [PMID: 39315777 PMCID: PMC11495031 DOI: 10.1128/msystems.00852-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Coinfections are known to play an important role in disease progression and severity. Coinfections are common in cats, but no coinfection studies have investigated the in vitro dynamics between feline viral and bacterial pathogens. In this study, we performed co-culture and invasion assays to investigate the ability of common feline bacterial respiratory pathogens, Chlamydia felis and Mycoplasma felis, to replicate in and invade into Crandell-Rees feline kidney cells. We subsequently investigated how coinfection of these feline cells with each bacterium (C. felis or M. felis) and the common feline viral pathogen, felid alphaherpesvirus 1 (FHV-1), affects replication of each agent in this cell culture system. We also investigated the metabolic impact of each co-pathogen using metabolomic analysis of infected and coinfected cells. C. felis was able to invade and replicate in CRFKs, while M. felis had little capacity to invade. During coinfection, FHV-1 replication was minimally affected by the presence of either bacterial pathogen, but bacterial replication kinetics were more affected, particularly in M. felis. Both C. felis and M. felis replicated to higher levels in the presence of a secondary pathogen. Coinfections resulted in reprogramming of the glycolysis pathway, the pentose phosphate pathway, and the tricarboxylic acid cycle. The distinct metabolic profiles of coinfected cells compared to those of cells infected with just one of these three pathogens, as well as the impact of coinfections on viral or bacterial load, suggest strong interactions between these three pathogens and possible synergistic mechanisms enhancing virulence that need further investigation.IMPORTANCEIn the natural world, respiratory pathogens coexist within their hosts, but their dynamics and interactions remain largely unexplored. Herpesviruses, mycoplasmas, and chlamydias are common and significant causes of acute and chronic respiratory and system disease in animals and people, and these diseases are increasingly found to be polymicrobial. This study investigates how coinfection of feline cells between three respiratory pathogens of cats impact each other as well as the host innate metabolic response to infection. Each of these pathogens have been implicated in the induction of feline upper respiratory tract disease in cats, which is the leading cause of euthanasia in shelters. Understanding how coinfection impacts co-pathogenesis and host responses is critical for improving disease management.
Collapse
Affiliation(s)
- Sara M. Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Rhys Bushell
- Department of Veterinary Clinical Sciences, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Reitano JR, Coers J. Restriction and evasion: a review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog Dis 2024; 82:ftae019. [PMID: 39210512 PMCID: PMC11407441 DOI: 10.1093/femspd/ftae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.
Collapse
Affiliation(s)
- Jeffrey R Reitano
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical School, 213 Research Dr. Box 3054, Durham, NC 27710, United States
| |
Collapse
|
5
|
Santacroce L, Palmirotta R, Bottalico L, Charitos IA, Colella M, Topi S, Jirillo E. Crosstalk between the Resident Microbiota and the Immune Cells Regulates Female Genital Tract Health. Life (Basel) 2023; 13:1531. [PMID: 37511906 PMCID: PMC10381428 DOI: 10.3390/life13071531] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The female genital tract (FGT) performs several functions related to reproduction, but due to its direct exposure to the external environment, it may suffer microbial infections. Both the upper (uterus and cervix) and lower (vagina) FGT are covered by an epithelium, and contain immune cells (macrophages, dendritic cells, T and B lymphocytes) that afford a robust protection to the host. Its upper and the lower part differ in terms of Lactobacillus spp., which are dominant in the vagina. An alteration of the physiological equilibrium between the local microbiota and immune cells leads to a condition of dysbiosis which, in turn, may account for the outcome of FGT infection. Aerobic vaginitis, bacterial vaginosis, and Chlamydia trachomatis are the most frequent infections, and can lead to severe complications in reproduction and pregnancy. The use of natural products, such as probiotics, polyphenols, and lactoferrin in the course of FGT infections is an issue of current investigation. In spite of positive results, more research is needed to define the most appropriate administration, according to the type of patient.
Collapse
Affiliation(s)
- Luigi Santacroce
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Palmirotta
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | | | - Marica Colella
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Microbiology and Virology Section, Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
6
|
Abu-Lubad MA, Al-Zereini W, Al-Zeer MA. Deregulation of the cyclin-dependent kinase inhibitor p27 as a putative candidate for transformation in Chlamydia trachomatis infected mesenchymal stem cells. AIMS Microbiol 2023; 9:131-150. [PMID: 36891539 PMCID: PMC9988407 DOI: 10.3934/microbiol.2023009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/05/2023] [Accepted: 02/19/2023] [Indexed: 03/04/2023] Open
Abstract
Purpose Several pathological conditions might cause the degradation of the cyclin-dependent kinase inhibitor (CKI) p27 and cell cycle arrest at the G1 phase, including cancers and infections. Chlamydia trachomatis (Ctr), as an obligatory intracellular pathogen, has been found to alter the fate of the cell from different aspects. In this study, we aimed to investigate the effect of Ctr infection on the expression of the important cell cycle regularity protein p27 in mesenchymal stem cells (MSCs). Methods Isolation of MSCs from healthy human fallopian tube was confirmed by detection of the stemness markers Sox2, Nanog and Oct4 and the surface markers CD44, CD73 and CD90 by Western blotting and fluorescence-activated cell sorting analysis. The expression of p27 was downregulated at the protein level upon Ctr D infection measured by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), IF and Western blotting. Recovery of p27 in Ctr D-infected MSCs was achieved by treatment with difluoromethylornithine (DFMO). Ctr D infected MSCs were able to produce colonies in anchorage-independent soft agar assay. Conclusion Ctr D infection was able to downregulate the expression of the important cell cycle regulator protein p27, which will be considered a putative candidate for transformation in Ctr D infected MSCs.
Collapse
Affiliation(s)
- Mohammad A Abu-Lubad
- Department of Medical Microbiology and Pathology, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Wael Al-Zereini
- Biological Sciences Department, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - Munir A Al-Zeer
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany.,Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
7
|
In Vitro Antibacterial Activity of Selected Palestinian Medicinal Plants against Chlamydia trachomatis. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chlamydia spp. are intracellular pathogens of humans and animals that cause a wide range of diseases such as blinding trachoma and sexually transmitted infections. According to the World Health Organization (WHO), there are more than 127 million new infections each year worldwide. Chlamydial urogenital infections can cause cervicitis, urethritis, pelvic inflammatory disease and infertility. From within an intracellular niche, termed an inclusion, the Chlamydiae complete their life cycle shielded from host defenses. The host cell defense response used to eliminate the pathogen must subvert this protective shield and is thought to involve the gamma interferon-inducible family of immunity related GTPase proteins and nitric oxide. Typically, azithromycin and doxycycline are the first line drugs for the treatment of chlamydial infections. Although C. trachomatis is sensitive to these antibiotics in vitro, currently, there is increasing bacterial resistance to antibiotics including multidrug-resistant C. trachomatis, which have been described in many instances. Therefore, alternative drug candidates against Chlamydia should be assessed in vitro. In this study, we tested and quantified the activity of plant extracts against Chlamydia-infected HeLa cells with C. trachomatis inclusions. The in vitro results show that post-treatment with Artemisia inculta Delile extract significantly inhibits Chlamydia infection compared to DMSO-treated samples. In conclusion, plant extracts may contain active ingredients with antichlamydial activity potential and can be used as alternative drug candidates for treatment of Chlamydia infection which has significant socio-economic and medical impact.
Collapse
|
8
|
Murray SM, McKay PF. Chlamydia trachomatis: Cell biology, immunology and vaccination. Vaccine 2021; 39:2965-2975. [PMID: 33771390 DOI: 10.1016/j.vaccine.2021.03.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and is associated with a number of severe disease complications. Current therapy options are successful at treating disease, but patients are left without protective immunity and do not benefit the majority asymptomatic patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that can prevent transmission and protect against symptomatic disease presentation. There are three key elements that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations, 2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of chlamydial immunity in animal models and in humans and characterise the key immune correlates of protection against infection. We discuss in detail the specific immune interactions involved in protection, with relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance. Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and failures in development so far. With insight from these three key elements of research, we suggest potential solutions for chlamydial vaccine development and promising avenues for further exploration.
Collapse
Affiliation(s)
- Sam M Murray
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
9
|
Li H, Zang Y, Wang C, Li H, Fan A, Han C, Xue F. The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol 2020; 10:609488. [PMID: 33425785 PMCID: PMC7785791 DOI: 10.3389/fcimb.2020.609488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
The female reproductive tract microenvironment includes microorganisms, metabolites, and immune components, and the balance of the interactions among them plays an important role in maintaining female reproductive tract homeostasis and health. When any one of the reproductive tract microorganisms, metabolites, or immunity is out of balance, it will affect the other two, leading to the occurrence and development of diseases and the appearance of corresponding symptoms and signs, such as infertility, miscarriage, premature delivery, and gynecological tumors caused by infectious diseases of the reproductive tract. Nutrients in the female reproductive tract provide symbiotic and pathogenic microorganisms with a source of nutrients for their own reproduction and utilization. At the same time, this interaction with the host forms a variety of metabolites. Changes in metabolites in the host reproductive tract are related not only to the interaction between the host and microbiota under dysbiosis but also to changes in host immunity or the environment, all of which will participate in the pathogenesis of diseases and lead to disease-related phenotypes. Microorganisms and their metabolites can also interact with host immunity, activate host immunity, and change the host immune status and are closely related to persistent genital pathogen infections, aggravation of infectious diseases, severe pregnancy outcomes, and even gynecological cancers. Therefore, studying the interaction between microorganisms, metabolites, and immunity in the reproductive tract cannot only reveal the pathogenic mechanisms that lead to inflammation of the reproductive tract, adverse pregnancy outcomes and tumorigenesis but also provide a basis for further research on the diagnosis and treatment of targets.
Collapse
Affiliation(s)
- Huanrong Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
10
|
Abu-Lubad MA, Jarajreh DA, Helaly GF, Alzoubi HM, Haddadin WJ, Dabobash MD, Albataineh EM, Aqel AA, Alnawaiseh NA. Human papillomavirus as an independent risk factor of invasive cervical and endometrial carcinomas in Jordan. J Infect Public Health 2019; 13:613-618. [PMID: 31519382 DOI: 10.1016/j.jiph.2019.08.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/23/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Endometrial and cervical carcinomas are the most common gynecologic malignancies in Western world and many countries. The human papillomavirus (HPV) high-risk genotypes are associated with cervical carcinoma (CC). Chlamydia trachomatis (C. trachomatis), the most common sexually transmitted bacterial infection worldwide, considered a cofactor for HPV infection and CC. Information on HPV infection rate and type distribution among Jordanian women having CC is currently limited and unavailable among those with endometrial carcinoma. Therefore, the present study aimed to provide an updated estimate on HPV infection rate and its high-risk genotypes' distribution among Jordanian women by comparing data from invasive cervical carcinoma (ICC) to normal cervical tissues. Similarly, assessment of HPV infection rate was extended to the endometrial tissues. C. trachomatis infection was investigated as well to explore its possibility as HPV cofactor for induction of such carcinomas. METHODS Total DNA was extracted from 144 formaldehyde-fixed paraffin-embedded cervical and endometrial tissue, equally divided between age-matched control and carcinoma cases. Polymerase chain reaction (PCR) was used for general detection of HPV-DNA, high risk HPV-16 and 18 genotypes and C. trachomatis DNA using specific primers. RESULTS HPV infection was detected in 91.7% and 61.1% of cervical cancer patients and controls, respectively. Likewise, it was higher among cases (47.2%) than controls (13.8%) in endometrial biopsies. Significantly higher HPV infection rates were found among ICC and endometrial control biopsies of women >50 years. Out of 33 HPV positive ICC cases, single HPV-16 infections were detected in 69.7% compared to HPV-18 (15.2%), while HPV-16/18 co-infections were only found in three (9%) samples. C. trachomatis was not detected in all studied groups. CONCLUSION The present study has successfully provided an updated estimate on HPV infection rate among Jordanian women with and without ICC and endometrial carcinoma. In addition, a lack of co-infection was observed between HPV and C. trachomatis in both cancer types.
Collapse
Affiliation(s)
- Mohammad A Abu-Lubad
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan.
| | - Dua'a A Jarajreh
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Ghada F Helaly
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan; Microbiology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hamed M Alzoubi
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | | | | | - Eman M Albataineh
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Amin A Aqel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| | - Nedal A Alnawaiseh
- Community Medicine and Public Health Department, Faculty of Medicine, Mutah University, Al-Karak, Jordan
| |
Collapse
|
11
|
Chen H, Wen Y, Li Z. Clear Victory for Chlamydia: The Subversion of Host Innate Immunity. Front Microbiol 2019; 10:1412. [PMID: 31333596 PMCID: PMC6619438 DOI: 10.3389/fmicb.2019.01412] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
As obligate intracellular bacterial pathogens, members of the Chlamydia genera are the pivotal triggers for a wide range of infections, which can lead to blinding trachoma, pelvic inflammation, and respiratory diseases. Because of their restricted parasitism inside eukaryotic cells, the pathogens have to develop multiple strategies for adaptation with the hostile intracellular environment—intrinsically present in all host cells—to survive. The strategies that are brought into play at different stages of chlamydial development mainly involve interfering with diverse innate immune responses, such as innate immune recognition, inflammation, apoptosis, autophagy, as well as the manipulation of innate immune cells to serve as potential niches for chlamydial replication. This review will focus on the innate immune responses against chlamydial infection, highlighting the underlying molecular mechanisms used by the Chlamydia spp. to counteract host innate immune defenses. Insights into these subtle pathogenic mechanisms not only provide a rationale for the augmentation of immune responses against chlamydial infection but also open avenues for further investigation of the molecular mechanisms driving the survival of these clinically important pathogens in host innate immunity.
Collapse
Affiliation(s)
- Hongliang Chen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Department of Clinical Microbiology Laboratory, Chenzhou No. 1 People's Hospital, Chenzhou, China
| | - Yating Wen
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
12
|
O'Rourke F, Kempf VAJ. Interaction of bacteria and stem cells in health and disease. FEMS Microbiol Rev 2019; 43:162-180. [DOI: 10.1093/femsre/fuz003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Fiona O'Rourke
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, University Hospital, Goethe University, Paul-Ehrlich-Str. 40, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
13
|
Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:868-877. [PMID: 28847505 PMCID: PMC5807212 DOI: 10.1016/j.bbamem.2017.08.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Kari J Tanaka
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital and The Ohio State University, College of Medicine, Department of Pediatrics, Center for Microbial Pathogenesis, Columbus, OH, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
14
|
McCully KS. Homocysteine, Infections, Polyamines, Oxidative Metabolism, and the Pathogenesis of Dementia and Atherosclerosis. J Alzheimers Dis 2018; 54:1283-1290. [PMID: 27567876 DOI: 10.3233/jad-160549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperhomocysteinemia is a risk factor for development of dementia and Alzheimer's disease (AD), and low blood levels of folate and cobalamin are associated with hyperhomocysteinemia and AD. In elderly subjects with cognitive decline, supplementation with folate, cobalamin, and pyridoxal demonstrated reduction of cerebral atrophy in gray matter regions vulnerable to the AD process. Multiple pathogenic microbes are implicated as pathogenic factors in AD and atherosclerosis, and the deposition of amyloid-β (Aβ), phosphorylation of tau protein, neuronal injury, and apoptosis in AD are secondary to microbial infection. Glucose utilization and blood flow are reduced in AD, and these changes are accompanied by downregulation of glucose transport, Na, K-ATPase, oxidative phosphorylation, and energy consumption. Thioretinaco ozonide, the complex formed from thioretinamide, cobalamin, ozone, and oxygen is proposed to constitute the active site of oxidative phosphorylation, catalyzing synthesis of adenosine triphosphate (ATP) from nicotinamide adenine dinucleotide (NAD+) and phosphate. Pathogenic microbes cause synthesis of polyamines in host cells by increasing the transfer of aminopropyl groups from adenosyl methionine to putrescine, resulting in depletion of intracellular adenosyl methionine concentrations in host cells. Depletion of adenosyl methionine causes dysregulation of methionine metabolism, hyperhomocysteinemia, reduced biosynthesis of thioretinamide and thioretinaco ozonide, decreased oxidative phosphorylation, decreased production of nitric oxide and peroxynitrite, and impaired host response to infectious microbes, contributing to the pathogenesis of dementia and atherosclerosis.
Collapse
|
15
|
McCully KS. Hyperhomocysteinemia, Suppressed Immunity, and Altered Oxidative Metabolism Caused by Pathogenic Microbes in Atherosclerosis and Dementia. Front Aging Neurosci 2017; 9:324. [PMID: 29056905 PMCID: PMC5635055 DOI: 10.3389/fnagi.2017.00324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Many pathogenic microorganisms have been demonstrated in atherosclerotic plaques and in cerebral plaques in dementia. Hyperhomocysteinemia, which is a risk factor for atherosclerosis and dementia, is caused by dysregulation of methionine metabolism secondary to deficiency of the allosteric regulator, adenosyl methionine. Deficiency of adenosyl methionine results from increased polyamine biosynthesis by infected host cells, causing increased activity of ornithine decarboxylase, decreased nitric oxide and peroxynitrate formation and impaired immune reactions. The down-regulation of oxidative phosphorylation that is observed in aging and dementia is attributed to deficiency of thioretinaco ozonide oxygen complexed with nicotinamide adenine dinucleotide and phosphate, which catalyzes oxidative phosphorylation. Adenosyl methionine biosynthesis is dependent upon thioretinaco ozonide and adenosine triphosphate (ATP), and the deficiency of adenosyl methionine and impaired immune function in aging are attributed to depletion of thioretinaco ozonide from mitochondrial membranes. Allyl sulfides and furanonaphthoquinones protect against oxidative stress and apoptosis by increasing the endogenous production of hydrogen sulfide and by inhibiting electron transfer to the active site of oxidative phosphorylation. Diallyl trisulfide and napabucasin inhibit the signaling by the signal transducer and activator of transcription 3 (Stat3), potentially enhancing immune function by effects on T helper lymphocytes and promotion of apoptosis. Homocysteine promotes endothelial dysfunction and apoptosis by the unfolded protein response and endoplasmic reticulum stress through activation of the N-methyl D-aspartate (NMDA) receptor, causing oxidative stress, calcium influx, apoptosis and endothelial dysfunction. The prevention of atherosclerosis and dementia may be accomplished by a proposed nutritional metabolic homocysteine-lowering protocol which enhances immunity and corrects the altered oxidative metabolism in atherosclerosis and dementia.
Collapse
Affiliation(s)
- Kilmer S. McCully
- Pathology, VA Boston Healthcare System (VHA), Boston, MA, United States
- Pathology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Chen GY, Pensinger DA, Sauer JD. Listeria monocytogenes cytosolic metabolism promotes replication, survival, and evasion of innate immunity. Cell Microbiol 2017; 19:10.1111/cmi.12762. [PMID: 28656691 PMCID: PMC5587384 DOI: 10.1111/cmi.12762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/18/2017] [Accepted: 06/22/2017] [Indexed: 12/28/2022]
Abstract
Listeria monocytogenes, the causative agent of listeriosis, is an intracellular pathogen that is exquisitely evolved to survive and replicate in the cytosol of eukaryotic cells. Eukaryotic cells typically restrict bacteria from colonising the cytosol, likely through a combination of cell autonomous defences, nutritional immunity, and innate immune responses including induction of programmed cell death. This suggests that L. monocytogenes and other professional cytosolic pathogens possess unique metabolic adaptations, not only to support replication but also to facilitate resistance to host-derived stresses/defences and avoidance of innate immune activation. In this review, we outline our current understanding of L. monocytogenes metabolism in the host cytosol and highlight major metabolic processes which promote intracellular replication and survival.
Collapse
Affiliation(s)
- Grischa Y. Chen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - Daniel A. Pensinger
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
17
|
Al-Zeer MA, Xavier A, Abu Lubad M, Sigulla J, Kessler M, Hurwitz R, Meyer TF. Chlamydia trachomatis Prevents Apoptosis Via Activation of PDPK1-MYC and Enhanced Mitochondrial Binding of Hexokinase II. EBioMedicine 2017; 23:100-110. [PMID: 28803120 PMCID: PMC5605330 DOI: 10.1016/j.ebiom.2017.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
The intracellular human bacterial pathogen Chlamydia trachomatis pursues effective strategies to protect infected cells against death-inducing stimuli. Here, we show that Chlamydia trachomatis infection evokes 3-phosphoinositide-dependent protein kinase-1 (PDPK1) signaling to ensure the completion of its developmental cycle, further leading to the phosphorylation and stabilization of MYC. Using biochemical approaches and imaging we demonstrate that Chlamydia-induced PDPK1-MYC signaling induces host hexokinase II (HKII), which becomes enriched and translocated to the mitochondria. Strikingly, preventing the HKII interaction with mitochondria using exogenous peptides triggers apoptosis of infected cells as does inhibiting either PDPK1 or MYC, which also disrupts intracellular development of Chlamydia trachomatis. These findings identify a previously unknown pathway activated by Chlamydia infection, which exhibits pro-carcinogenic features. Targeting the PDPK1-MYC-HKII-axis may provide a strategy to overcome therapeutic resistance of infection.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Audrey Xavier
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; The Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mohammad Abu Lubad
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Mu'tah University, Faculty of Medicine, Al-Karak, Jordan
| | - Janine Sigulla
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mirjana Kessler
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
18
|
Finethy R, Coers J. Sensing the enemy, containing the threat: cell-autonomous immunity to Chlamydia trachomatis. FEMS Microbiol Rev 2016; 40:875-893. [PMID: 28201690 PMCID: PMC5975928 DOI: 10.1093/femsre/fuw027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/01/2016] [Indexed: 01/01/2023] Open
Abstract
The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.
Collapse
Affiliation(s)
- Ryan Finethy
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
19
|
Angleró-Rodríguez YI, Blumberg BJ, Dong Y, Sandiford SL, Pike A, Clayton AM, Dimopoulos G. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Sci Rep 2016; 6:34084. [PMID: 27678168 PMCID: PMC5039729 DOI: 10.1038/srep34084] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission.
Collapse
Affiliation(s)
- Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Benjamin J Blumberg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Simone L Sandiford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - Andrew Pike
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - April M Clayton
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Abstract
Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.
Collapse
|
21
|
Kim JS, Cha SH, Kim WS, Han SJ, Cha SB, Kim HM, Kwon KW, Kim SJ, Choi HH, Lee J, Cho SN, Koh WJ, Park YM, Shin SJ. A Novel Therapeutic Approach Using Mesenchymal Stem Cells to Protect Against Mycobacterium abscessus. Stem Cells 2016; 34:1957-70. [PMID: 26946350 DOI: 10.1002/stem.2353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 01/22/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Recent studies have demonstrated the therapeutic potential of mesenchymal stem cells (MSCs) for the treatment of acute inflammatory injury and bacterial pneumonia, but their therapeutic applications in mycobacterial infections have not been investigated. In this study, we demonstrated the use of MSCs as a novel therapeutic strategy against Mycobacterium abscessus (M. abscessus), which is the most drug-resistant and difficult-to-treat mycobacterial pathogen. The systemic intravenous injection of MSCs not only improved mouse survival but also enhanced bacterial clearance in the lungs and spleen. Additionally, MSCs enhanced IFN-γ, TNF-α, IL-6, MCP-1, nitric oxide (NO) and PGE2 production and facilitated CD4(+) /CD8(+) T cell, CD11b(high) macrophage, and monocyte recruitment in the lungs of M. abscessus-infected mice. To precisely elucidate the functions of MSCs in M. abscessus infection, an in vitro macrophage infection system was used. MSCs caused markedly increased NO production via NF-κB activation in M. abscessus-infected macrophages cultured in the presence of IFN-γ. Inhibiting NO or NF-κB signaling using specific inhibitors reduced the antimycobacterial activity of MSCs. Furthermore, the cellular crosstalk between TNF-α released from IFN-γ-stimulated M. abscessus-infected macrophages and PGE2 produced by MSCs was necessary for the mycobacterial-killing activity of the macrophages. Finally, the importance of increased NO production in response to MSC administration was confirmed in the mouse M. abscessus infection model. Our results suggest that MSCs may offer a novel therapeutic strategy for treating this drug-resistant mycobacterial infection by enhancing the bacterial-killing power of macrophages. Stem Cells 2016;34:1957-1970.
Collapse
Affiliation(s)
- Jong-Seok Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Ho Cha
- Animal Stem Cells Research Lab, Animal and Plant Quarantine Agency, Anyang-si, Gyeonggi-do, South Korea
| | - Woo Sik Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong Min Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Hee Choi
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jienny Lee
- Animal Stem Cells Research Lab, Animal and Plant Quarantine Agency, Anyang-si, Gyeonggi-do, South Korea
| | - Sang-Nae Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yeong-Min Park
- Department of Immunology, Lab of Dendritic Cell Differentiation & Regulation, School of Medicine, Konkuk University, Chungju, South Korea
| | - Sung Jae Shin
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Olive AJ, Sassetti CM. Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat Rev Microbiol 2016; 14:221-34. [PMID: 26949049 DOI: 10.1038/nrmicro.2016.12] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our understanding of bacterial pathogenesis is dominated by the cell biology of the host-pathogen interaction. However, the majority of metabolites that are used in prokaryotic and eukaryotic physiology and signalling are chemically similar or identical. Therefore, the metabolic crosstalk between pathogens and host cells may be as important as the interactions between bacterial effector proteins and their host targets. In this Review we focus on host-pathogen interactions at the metabolic level: chemical signalling events that enable pathogens to sense anatomical location and the local physiology of the host; microbial metabolic pathways that are dedicated to circumvent host immune mechanisms; and a few metabolites as central points of competition between the host and bacterial pathogens.
Collapse
Affiliation(s)
- Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
23
|
Mezey É, Nemeth K. Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunol Lett 2015; 168:208-14. [DOI: 10.1016/j.imlet.2015.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
|