1
|
Zhang Y, Wang P, Neng L, Sharma K, Kachelmeier A, Shi X. Monocyte-derived macrophage recruitment mediated by TRPV1 is required for eardrum wound healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.635565. [PMID: 39975094 PMCID: PMC11838451 DOI: 10.1101/2025.02.03.635565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The tympanic membrane (TM), or eardrum, is a thin, sensitive tissue critical for hearing by vibrating and transmitting sound waves to the inner ear. TM perforation and development of otitis media and conductive hearing loss are commonly seen in the clinic. In this study, we demonstrate the role of TRPV1 signaling mediated macrophage recruitment and angiogenesis in TM repair. By creating a wounded TM mouse model with a perforation in the anteroinferior region of the pars tensa - a region in humans often damaged in traumatic injury, we observed a massive accumulation of macrophages in the vicinity of the acutely wounded TM. Using 5-Ethynyl-2'-deoxyuridine pause labeling and a chimeric bone marrow transplant model, we found that most of the recruited macrophages did not originate from local tissue-resident macrophages but rather from blood-circulating monocytes. Parallel to macrophage recruitment, angiogenesis was observed near the wound on day 3 after perforation and further progressed by day 7. The angiogenic process was strongly associated with the recruited macrophages, as macrophage depletion resulted in a notable reduction in angiogenesis. At the transcriptional level, we found that macrophages facilitate angiogenesis through several signaling pathways. Additionally, we identified direct intercellular communication between macrophages and endothelial cells mediated by phosphoprotein 1 signaling. Furthermore, Gene Ontology analysis of bulk RNA sequencing data from TMs revealed that the macrophage recruitment is associated with neuroinflammatory responses. Using a fluorescence reporter mouse driven by TRPV1, we discovered that the TM contains rich sensory nerve fibers expressing TRPV1. A genetic mutation in the Trpv1 gene resulted in a marked decrease in the expression of neuroinflammatory genes, such as Tac1 . This decrease subsequently resulted in reduced macrophage recruitment, impaired angiogenesis, and delayed wound healing. Together, these findings highlight the crucial role of TRPV1 signaling in monocyte migration and macrophage-related angiogenesis, both of which are crucial for facilitating healing of the TM. These results also open new opportunities for clinical interventions. Targeting TRPV1 signaling could enhance TM immunity, improve blood circulation, promote the repair of damaged TM, and ultimately prevent middle ear infections.
Collapse
|
2
|
Liao X, Liu J, Guo X, Meng R, Zhang W, Zhou J, Xie X, Zhou H. Origin and Function of Monocytes in Inflammatory Bowel Disease. J Inflamm Res 2024; 17:2897-2914. [PMID: 38764499 PMCID: PMC11100499 DOI: 10.2147/jir.s450801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/23/2024] [Indexed: 05/21/2024] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is a chronic disease resulting from the interaction of various factors such as social elements, autoimmunity, genetics, and gut microbiota. Alarmingly, recent epidemiological data points to a surging incidence of IBD, underscoring an urgent imperative: to delineate the intricate mechanisms driving its onset. Such insights are paramount, not only for enhancing our comprehension of IBD pathogenesis but also for refining diagnostic and therapeutic paradigms. Monocytes, significant immune cells derived from the bone marrow, serve as precursors to macrophages (Mφs) and dendritic cells (DCs) in the inflammatory response of IBD. Within the IBD milieu, their role is twofold. On the one hand, monocytes are instrumental in precipitating the disease's progression. On the other hand, their differentiated offsprings, namely moMφs and moDCs, are conspicuously mobilized at inflammatory foci, manifesting either pro-inflammatory or anti-inflammatory actions. The phenotypic spectrum of these effector cells, intriguingly, is modulated by variables such as host genetics and the subtleties of the prevailing inflammatory microenvironment. Notwithstanding their significance, a palpable dearth exists in the literature concerning the roles and mechanisms of monocytes in IBD pathogenesis. This review endeavors to bridge this knowledge gap. It offers an exhaustive exploration of monocytes' origin, their developmental trajectory, and their differentiation dynamics during IBD. Furthermore, it delves into the functional ramifications of monocytes and their differentiated progenies throughout IBD's course. Through this lens, we aspire to furnish novel perspectives into IBD's etiology and potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiping Liao
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, People’s Republic of China
| | - Xiaolong Guo
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ruiping Meng
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Wei Zhang
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Jianyun Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xia Xie
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
- Department of Gastroenterology, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Hongli Zhou
- Clinical Medical Research Center, the Second Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Leal AS, Hung PY, Chowdhury AS, Liby KT. Retinoid X Receptor agonists as selective modulators of the immune system for the treatment of cancer. Pharmacol Ther 2023; 252:108561. [PMID: 37952906 PMCID: PMC10704405 DOI: 10.1016/j.pharmthera.2023.108561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Upon heterodimerizing with other nuclear receptors, retinoid X receptors (RXR) act as ligand-dependent transcription factors, regulating transcription of critical signaling pathways that impact numerous hallmarks of cancer. By controlling both inflammation and immune responses, ligands that activate RXR can modulate the tumor microenvironment. Several small molecule agonists of these essential receptors have been synthesized. Historically, RXR agonists were tested for inhibition of growth in cancer cells, but more recent drug discovery programs screen new molecules for inhibition of inflammation or activation of immune cells. Bexarotene is the first successful example of an effective therapeutic that molecularly targets RXR; this drug was approved to treat cutaneous T cell lymphoma and is still used as a standard of care treatment for this disease. No additional RXR agonists have yet achieved FDA approval, but several promising novel compounds are being developed. In this review, we provide an overview of the multiple mechanisms by which RXR signaling regulates inflammation and tumor immunity. We also discuss the potential of RXR-dependent immune cell modulation for the treatment or prevention of cancer and concomitant challenges and opportunities.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Pei-Yu Hung
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Afrin Sultana Chowdhury
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States of America; Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States of America.
| |
Collapse
|
4
|
Zaini A, Dalit L, Sheikh AA, Zhang Y, Thiele D, Runting J, Rodrigues G, Ng J, Bramhall M, Scheer S, Hailes L, Groom JR, Good-Jacobson KL, Zaph C. Heterogeneous Tfh cell populations that develop during enteric helminth infection predict the quality of type 2 protective response. Mucosal Immunol 2023; 16:642-657. [PMID: 37392971 DOI: 10.1016/j.mucimm.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
T follicular helper (Tfh) cells are an important component of germinal center (GC)-mediated humoral immunity. Yet, how a chronic type 1 versus protective type 2 helminth infection modulates Tfh-GC responses remains poorly understood. Here, we employ the helminth Trichuris muris model and demonstrate that Tfh cell phenotypes and GC are differentially regulated in acute versus chronic infection. The latter failed to induce Tfh-GC B cell responses, with Tfh cells expressing Τ-bet and interferon-γ. In contrast, interleukin-4-producing Tfh cells dominate responses to an acute, resolving infection. Heightened expression and increased chromatin accessibility of T helper (Th)1- and Th2 cell-associated genes are observed in chronic and acute induced Tfh cells, respectively. Blockade of the Th1 cell response by T-cell-intrinsic T-bet deletion promoted Tfh cell expansion during chronic infection, pointing to a correlation between a robust Tfh cell response and protective immunity to parasites. Finally, blockade of Tfh-GC interactions impaired type 2 immunity, revealing the critical protective role of GC-dependent Th2-like Tfh cell responses during acute infection. Collectively, these results provide new insights into the protective roles of Tfh-GC responses and identify distinct transcriptional and epigenetic features of Tfh cells that emerge during resolving or chronic T. muris infection.
Collapse
Affiliation(s)
- Aidil Zaini
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, The Alfred Centre, Melbourne, Australia
| | - Lennard Dalit
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Amania A Sheikh
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Yan Zhang
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Daniel Thiele
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Microbiology, Monash University, Clayton, Australia
| | - Jessica Runting
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Grace Rodrigues
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Judy Ng
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Michael Bramhall
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Sebastian Scheer
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Lauren Hailes
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Kim L Good-Jacobson
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia.
| | - Colby Zaph
- Immunity Program, Monash Biomedicine Discovery Institute, Clayton, Australia; Department of Biochemistry and Molecular Biology, Clayton, Australia.
| |
Collapse
|
5
|
Tang H, Sun W, Liu X, Gao Q, Chen Y, Xie C, Lin W, Chen J, Wang L, Fan Z, Zhang L, Ren Y, She Y, He Y, Chen C. A bioengineered trachea-like structure improves survival in a rabbit tracheal defect model. Sci Transl Med 2023; 15:eabo4272. [PMID: 37729433 DOI: 10.1126/scitranslmed.abo4272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
A practical strategy for engineering a trachea-like structure that could be used to repair or replace a damaged or injured trachea is an unmet need. Here, we fabricated bioengineered cartilage (BC) rings from three-dimensionally printed fibers of poly(ɛ-caprolactone) (PCL) and rabbit chondrocytes. The extracellular matrix (ECM) secreted by the chondrocytes combined with the PCL fibers formed a "concrete-rebar structure," with ECM deposited along the PCL fibers, forming a grid similar to that of native cartilage. PCL fiber-hydrogel rings were then fabricated and alternately stacked with BC rings on silicone tubes. This trachea-like structure underwent vascularization after heterotopic transplantation into rabbits for 4 weeks. The vascularized bioengineered trachea-like structure was then orthotopically transplanted by end-to-end anastomosis to native rabbit trachea after a segment of trachea had been resected. The bioengineered trachea-like structure displayed mechanical properties similar to native rabbit trachea and transmural angiogenesis between the rings. The 8-week survival rate in transplanted rabbits was 83.3%, and the respiratory rate of these animals was similar to preoperative levels. This bioengineered trachea-like structure may have potential for treating tracheal stenosis and other tracheal injuries.
Collapse
Affiliation(s)
- Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Chaoqi Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai 200433, China
| |
Collapse
|
6
|
Hubbard IC, Thompson JS, Else KJ, Shears RK. Another decade of Trichuris muris research: An update and application of key discoveries. ADVANCES IN PARASITOLOGY 2023; 121:1-63. [PMID: 37474238 DOI: 10.1016/bs.apar.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The mouse whipworm, Trichuris muris, has been used for over 60 years as a tractable model for human trichuriasis, caused by the related whipworm species, T. trichiura. The history of T. muris research, from the discovery of the parasite in 1761 to understanding the lifecycle and outcome of infection with different doses (high versus low dose infection), as well as the immune mechanisms associated with parasite expulsion and chronic infection have been detailed in an earlier review published in 2013. Here, we review recent advances in our understanding of whipworm biology, host-parasite interactions and basic immunology brought about using the T. muris mouse model, focussing on developments from the last decade. In addition to the traditional high/low dose infection models that have formed the mainstay of T. muris research to date, novel models involving trickle (repeated low dose) infection in laboratory mice or infection in wild or semi-wild mice have led to important insights into how immunity develops in situ in a multivariate environment, while the use of novel techniques such as the development of caecal organoids (enabling the study of larval development ex vivo) promise to deliver important insights into host-parasite interactions. In addition, the genome and transcriptome analyses of T. muris and T. trichiura have proven to be invaluable tools, particularly in the context of vaccine development and identification of secreted products including proteins, extracellular vesicles and micro-RNAs, shedding further light on how these parasites communicate with their host and modulate the immune response to promote their own survival.
Collapse
Affiliation(s)
- Isabella C Hubbard
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Jacob S Thompson
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kathryn J Else
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Rebecca K Shears
- Centre for Bioscience, Manchester Metropolitan University, Manchester, United Kingdom; Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.
| |
Collapse
|
7
|
Xu Z, Dong M, Yin S, Dong J, Zhang M, Tian R, Min W, Zeng L, Qiao H, Chen J. Why traditional herbal medicine promotes wound healing: Research from immune response, wound microbiome to controlled delivery. Adv Drug Deliv Rev 2023; 195:114764. [PMID: 36841332 DOI: 10.1016/j.addr.2023.114764] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/16/2022] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Impaired wound healing in chronic wounds has been a significant challenge for clinicians and researchers for decades. Traditional herbal medicine (THM) has a long history of promoting wound healing, making them culturally accepted and trusted by a great number of people in the world. However, for a long time, the understanding of herbal medicine has been limited and incomplete, particularly in the allopathic medicine-dominated research system. The therapeutic effects of individual components isolated from THM are found less pronounced compared to synthetic chemical medicine, and the clinical efficacy is always inferior to herbs. In the present article, we review and discuss underlying mechanisms of the skin microbiome involved in the wound healing process; THM in regulating immune responses and commensal microbiome. We additionally propose few pioneer ideas and studies in the development of therapeutic strategies for controlled delivery of herbal medicine. This review aims to promote wound care with a focus on wound microbiome, immune response, and topical drug delivery systems. Finally, future development trends, challenges, and research directions are discussed.
Collapse
Affiliation(s)
- Zeyu Xu
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mei Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ming Zhang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Rong Tian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Wen Min
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Department of Bone Injury of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, PR China
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Al Sadoun H. Macrophage Phenotypes in Normal and Diabetic Wound Healing and Therapeutic Interventions. Cells 2022; 11:2430. [PMID: 35954275 PMCID: PMC9367932 DOI: 10.3390/cells11152430] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophage differentiation and polarization are essential players in the success of the wound-healing process. Acute simple wounds progress from inflammation to proliferation/regeneration and, finally, to remodeling. In injured skin, macrophages either reside in the epithelium or are recruited from monocytes. Their main role is supported by their plasticity, which allows them to adopt different phenotypic states, such as the M1-inflammatory state, in which they produce TNF and NO, and the M2-reparative state, in which they resolve inflammation and exhibit a reparative function. Reparative macrophages are an essential source of growth factors such as TGF-β and VEGF and are not found in nonhealing wounds. This review discusses the differences between macrophage phenotypes in vitro and in vivo, how macrophages originate, and how they cross-communicate with other cellular components in a wound. This review also highlights the dysregulation of macrophages that occurs in nonhealing versus overhealing wounds and fibrosis. Then, the therapeutic manipulation of macrophages is presented as an attractive strategy for promoting healing through the secretion of growth factors for angiogenesis, keratinocyte migration, and collagen production. Finally, Hoxa3 overexpression is discussed as an example of the therapeutic repolarization of macrophages to the normal maturation state and phenotype with better healing outcomes.
Collapse
Affiliation(s)
- Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(12)-6400000 (ext. 24277)
- Stem Cell Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, Allen JE, Muller W, Pennock JL, Else KJ. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog 2021; 17:e1009768. [PMID: 34329367 PMCID: PMC8357096 DOI: 10.1371/journal.ppat.1009768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/11/2021] [Accepted: 06/29/2021] [Indexed: 01/24/2023] Open
Abstract
The intestinal nematode parasite Trichuris muris dwells in the caecum and proximal colon driving an acute resolving intestinal inflammation dominated by the presence of macrophages. Notably, these macrophages are characterised by their expression of RELMα during the resolution phase of the infection. The RELMα+ macrophage phenotype associates with the presence of alternatively activated macrophages and work in other model systems has demonstrated that the balance of classically and alternatively activated macrophages is critically important in enabling the resolution of inflammation. Moreover, in the context of type 2 immunity, RELMα+ alternatively activated macrophages are associated with the activation of macrophages via the IL4Rα. Despite a breadth of inflammatory pathologies associated with the large intestine, including those that accompany parasitic infection, it is not known how colonic macrophages are activated towards an alternatively activated phenotype. Here, we address this important knowledge gap by using Trichuris muris infection, in combination with transgenic mice (IL4Rαfl/fl.CX3CR1Cre) and IL4Rα-deficient/wild-type mixed bone marrow chimaeras. We make the unexpected finding that education of colonic macrophages towards a RELMα+, alternatively activated macrophage phenotype during T. muris infection does not require IL4Rα expression on macrophages. Further, this independence is maintained even when the mice are treated with an anti-IFNγ antibody during infection to create a strongly polarised Th2 environment. In contrast to RELMα, PD-L2 expression on macrophages post infection was dependent on IL4Rα signalling in the macrophages. These novel data sets are important, revealing a surprising cell-intrinsic IL4R alpha independence of the colonic RELMα+ alternatively activated macrophage during Trichuris muris infection. Infection of mice with Trichuris muris, a whipworm parasite results in inflammation of the large intestine. Inflammation is temporary; once the parasite has been cleared, damage to the intestinal tissue heals. During inflammation white blood cells move in to the gut tissue. These cells are dominated by a cell type called the macrophage. Macrophages which accumulate in the intestine post-infection express a protein called RELMα. These RELMα-expressing macrophages are thought to help resolve inflammation and have traditionally been associated with IL-4 and IL-13-driven activation. We set out to determine whether the macrophages which emerge during T. muris infection need to respond to IL-4 and/or IL-13 in order to express RELMα. We did this by creating a transgenic mouse where the common IL4Rα chain of the IL-4 and IL-13 receptor was absent from macrophages. To our surprise, macrophages were able to express RELMα regardless of whether the macrophage could or could not respond to IL-14/IL-13. This new knowledge is important as in some inflammatory conditions, treatments seeking to encourage alternatively activated macrophages have been proposed. Such treatments require an understanding of both the important and the redundant signals as well as recognition that activating signals may be disparate in different tissue environments.
Collapse
Affiliation(s)
- Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| | - Larisa Logunova
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kelly Wemyss
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Louis Boon
- Polpharma Biologics, Utrecht, The Netherlands
| | - Judith E. Allen
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Werner Muller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joanne L. Pennock
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (RF); (KJE)
| |
Collapse
|
10
|
Yousefi Y, Haq S, Banskota S, Kwon YH, Khan WI. Trichuris muris Model: Role in Understanding Intestinal Immune Response, Inflammation and Host Defense. Pathogens 2021; 10:pathogens10080925. [PMID: 34451389 PMCID: PMC8399713 DOI: 10.3390/pathogens10080925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Several parasites have evolved to survive in the human intestinal tract and over 1 billion people around the world, specifically in developing countries, are infected with enteric helminths. Trichuris trichiura is one of the world’s most common intestinal parasites that causes human parasitic infections. Trichuris muris, as an immunologically well-defined mouse model of T. trichiura, is extensively used to study different aspects of the innate and adaptive components of the immune system. Studies on T. muris model offer insights into understanding host immunity, since this parasite generates two distinct immune responses in resistant and susceptible strains of mouse. Apart from the immune cells, T. muris infection also influences various components of the intestinal tract, especially the gut microbiota, mucus layer, epithelial cells and smooth muscle cells. Here, we reviewed the different immune responses generated by innate and adaptive immune components during acute and chronic T. muris infections. Furthermore, we discussed the importance of studying T. muris model in understanding host–parasite interaction in the context of alteration in the host’s microbiota, intestinal barrier, inflammation, and host defense, and in parasite infection-mediated modulation of other immune and inflammatory diseases.
Collapse
Affiliation(s)
- Yeganeh Yousefi
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University Health Sciences Centre Room 3N7, 1280 Main St. W, Hamilton, ON L8N 3Z5, Canada; (Y.Y.); (S.H.); (S.B.); (Y.H.K.)
- Department of Pathology and Molecular Medicine, McMaster University, 1200 Main St. W, Hamilton, ON L8N 3Z5, Canada
- Correspondence: ; Tel.: +1-905-521-2100 (ext. 22846)
| |
Collapse
|
11
|
Inhibition of inflammatory cytokine production and proliferation in macrophages by Kunitz-type inhibitors from Echinococcus granulosus. Mol Biochem Parasitol 2021; 242:111351. [PMID: 33428949 DOI: 10.1016/j.molbiopara.2021.111351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
The genus Echinococcus of cestode parasites includes important pathogens of humans and livestock animals. Transcriptomic and genomic studies on E. granulosus and E. multilocularis uncovered striking expansion of monodomain Kunitz proteins. This expansion is accompanied by the specialization of some family members away from the ancestral protease inhibition function to fulfill cation channel blockade functions. Since cation channels are involved in immune processes, we tested the effects on macrophage physiology of two E. granulosus Kunitz-type inhibitors of voltage-activated cation channels (Kv) that are close paralogs. Both inhibitors, EgKU-1 and EgKU-4, inhibited production of the Th1/Th17 cytokine subunit IL-12/23p40 by macrophages stimulated with the TLR4 agonist LPS. In addition, EgKU-4 but not EgKU-1 inhibited production of the inflammatory cytokine IL-6. These activities were not displayed by EgKU-3, a family member that is a protease inhibitor without known activity on cation channels. EgKU-4 potently inhibited macrophage proliferation in response to M-CSF, whereas EgKU-1 displayed similar activity but with much lower potency, similar to EgKU-3. We discuss structural differences, including a heavily cationic C-terminal extension present in EgKU-4 but not in EgKU-1, that may explain the differential activities of the two close paralogs.
Collapse
|
12
|
Early Antiretroviral Therapy Prevents Viral Infection of Monocytes and Inflammation in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Virol 2020; 94:JVI.01478-20. [PMID: 32907978 DOI: 10.1128/jvi.01478-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Despite early antiretroviral therapy (ART), treatment interruption is associated with viral rebound, indicating early viral reservoir (VR) seeding and absence of full eradication of human immunodeficiency virus type 1 (HIV-1) that may persist in tissues. Herein, we address the contributing role of monocytes in maintaining VRs under ART, since these cells may represent a source of viral dissemination due to their ability to replenish mucosal tissues in response to injury. To this aim, monocytes with classical (CD14+), intermediate (CD14+ CD16+), and nonclassical (CD16+) phenotypes and CD4+ T cells were sorted from the blood, spleen, and intestines of untreated and early-ART-treated simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) before and after ART interruption. Cell-associated SIV DNA and RNA were quantified. We demonstrated that in the absence of ART, monocytes were productively infected with replication-competent SIV, especially in the spleen. Reciprocally, early ART efficiently (i) prevented the establishment of monocyte VRs in the blood, spleen, and intestines and (ii) reduced systemic inflammation, as indicated by changes in interleukin-18 (IL-18) and IL-1 receptor antagonist (IL-1Ra) plasma levels. ART interruption was associated with a rebound in viremia that led to the rapid productive infection of both CD4+ T cells and monocytes. Altogether, our results reveal the benefits of early ART initiation in limiting the contribution of monocytes to VRs and SIV-associated inflammation.IMPORTANCE Despite the administration of antiretroviral therapy (ART), HIV persists in treated individuals and ART interruption is associated with viral rebound. Persistent chronic immune activation and inflammation contribute to disease morbidity. Whereas monocytes are infected by HIV/SIV, their role as viral reservoirs (VRs) in visceral tissues has been poorly explored. Our work demonstrates that monocyte cell subsets in the blood, spleen, and intestines do not significantly contribute to the establishment of early VRs in SIV-infected rhesus macaques treated with ART. By preventing the infection of these cells, early ART reduces systemic inflammation. However, following ART interruption, monocytes are rapidly reinfected. Altogether, our findings shed new light on the benefits of early ART initiation in limiting VR and inflammation.
Collapse
|
13
|
Hayashi K, Sugisawa R, Saito T, Matsui T, Taniguchi Y, Batanova T, Yanai T, Matsumoto J, Kitoh K, Takashima Y. Suppression of inflammatory genes expression in the injured host intestinal wall during Mesocestoides vogae tetrathyridium larvae migration. PLoS Negl Trop Dis 2020; 14:e0008685. [PMID: 33048942 PMCID: PMC7598923 DOI: 10.1371/journal.pntd.0008685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2020] [Accepted: 08/07/2020] [Indexed: 11/30/2022] Open
Abstract
Mesocestoides vogae is a cestode parasite of the family Mesocestoididae (order Cyclophyllidea). Its larvae, tetrathyridium, are approximately 1 mm long and 300 μm wide and infect a wide range of host species including humans. Tetrathyridium migrate through the intestinal wall to invade the peritoneal cavity. Despite intestinal penetration by such a large-sized parasite, symptomatic intestinal disorders are not common during the migration period. In this study, the dynamics of tetrathyridia migration and their pathogenicity towards intestinal tissues were examined in mice infected orally with these parasites. Most tetrathyridia were found to migrate through the intestinal wall, moving into the peritoneal cavity or liver 24 to 48 hours after the oral infections. Next, the pathogenicity of tetrathyridium in the intestinal wall was histopathologically evaluated, and tissue injury from tetrathyridium migration was confirmed. Inflammatory foci were observed as tetrathyridium migration tracks from 48 hours after oral infection; however, the number of inflammatory foci had decreased by half more than 48 hours later. Therefore, we examined the gene expression levels of the macrophage driving cytokine, IL-1β, and the eosinophil recruiting chemokine, CCL11, by quantitative reverse-transcriptase PCR. The expression levels of these genes in the infected group were significantly lower than those of the non-infected group at 48 hours post-infection. Although the immunomodulating ability of the excretory-secretory products released from tetrathyridium has been previously shown by in vitro assays, the significance of this ability in their lifecycle has remained unclear. In this study, we discovered that tetrathyridium causes temporal inflammation in the intestinal wall during penetration and large-scale migration in this organ, but tetrathyridium simultaneously suppresses the host’s inflammatory gene expression, might to be a strategy that reduces inflammatory responses and increases survival of the parasite. Excretory-secretory (ES) products are released by parasitic helminths into their migration sites and/or the intestinal regions they inhabit where parasite and host immune responses interact. ES products are release by a wide range of parasitic helminths, some of which are known to modulate the host’s immune system. Some ES products from some cestode parasites are known to reduce the production of pro-inflammatory cytokines from artificially stimulated cells under in vitro conditions. However, the immunomodulatory properties of the ES products have only been observed with in vitro experimental models and the biological consequences of their potential ability to suppress the host’s immune system during the parasite’s lifecycle and how they affect host–parasite interactions await discovery. Our results show that tetrathyridium, the larval stage of the Mesocestoides vogae cestode, strongly inhibits the host’s inflammatory gene expression in the injured intestinal wall, and that the inflammatory hot-spots caused by larval migration disappear almost immediately after mice are orally infected with these parasites. The ability to suppress the host’s inflammatory gene expression when larvae migrate through and damage the host’s tissues is an effective survival strategy for M. vogae intestinal parasites.
Collapse
Affiliation(s)
- Kei Hayashi
- Laboratory of Veterinary Parasitology, Faculty of Veterinary medicine, Okayama University of Science, Ikoinooka, Imabari, Japan
- Department of Veterinary Parasitology, Gifu University, Yanagido, Gifu, Japan
| | - Rinako Sugisawa
- Department of Veterinary Parasitology, Gifu University, Yanagido, Gifu, Japan
| | - Taizo Saito
- The United Graduate School of Veterinary Science, Gifu University, Yanagido, Gifu, Japan
| | - Toshiyasu Matsui
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Yuji Taniguchi
- The United Graduate School of Veterinary Science, Gifu University, Yanagido, Gifu, Japan
| | - Tatiana Batanova
- Department of Veterinary Parasitology, Gifu University, Yanagido, Gifu, Japan
| | - Tokuma Yanai
- The United Graduate School of Veterinary Science, Gifu University, Yanagido, Gifu, Japan
- Laboratory of Veterinary Pathology, Gifu University, Yanagido, Gifu, Japan
| | - Jun Matsumoto
- Laboratory of Medical Zoology, Department of Veterinary Medicine, Faculty of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Japan
| | - Katsuya Kitoh
- Department of Veterinary Parasitology, Gifu University, Yanagido, Gifu, Japan
- The United Graduate School of Veterinary Science, Gifu University, Yanagido, Gifu, Japan
| | - Yasuhiro Takashima
- Department of Veterinary Parasitology, Gifu University, Yanagido, Gifu, Japan
- The United Graduate School of Veterinary Science, Gifu University, Yanagido, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Yanagido, Gifu, Japan
- * E-mail:
| |
Collapse
|
14
|
Viola MF, Boeckxstaens G. Intestinal resident macrophages: Multitaskers of the gut. Neurogastroenterol Motil 2020; 32:e13843. [PMID: 32222060 PMCID: PMC7757264 DOI: 10.1111/nmo.13843] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intestinal resident macrophages play a crucial role in homeostasis and have been implicated in numerous gastrointestinal diseases. While historically believed to be largely of hematopoietic origin, recent advances in fate-mapping technology have unveiled the existence of long-lived, self-maintaining populations located in specific niches throughout the gut wall. Furthermore, the advent of single-cell technology has enabled an unprecedented characterization of the functional specialization of tissue-resident macrophages throughout the gastrointestinal tract. PURPOSE The purpose of this review was to provide a panorama on intestinal resident macrophages, with particular focus to the recent advances in the field. Here, we discuss the functions and phenotype of intestinal resident macrophages and, where possible, the functional specialization of these cells in response to the niche they occupy. Furthermore, we will discuss their role in gastrointestinal diseases.
Collapse
Affiliation(s)
- Maria Francesca Viola
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Laboratory for Neuro Immune InteractionTranslational Research in GastroIntestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| | - Guy Boeckxstaens
- Department of Chronic Diseases, Metabolism and Ageing (CHROMETA)Laboratory for Neuro Immune InteractionTranslational Research in GastroIntestinal Disorders (TARGID)KU LeuvenLeuvenBelgium
| |
Collapse
|
15
|
Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. Int J Mol Sci 2020; 21:ijms21144825. [PMID: 32650452 PMCID: PMC7404402 DOI: 10.3390/ijms21144825] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal macrophages are key players in the regulation of the oral tolerance, controlling gut homeostasis by discriminating innocuous antigens from harmful pathogens. Diet exerts a significant impact on human health, influencing the composition of gut microbiota and the developing of several non-communicable diseases, including cancer. Nutrients and microbiota are able to modify the profile of intestinal macrophages, shaping their key function in the maintenance of the gut homeostasis. Intestinal disease often occurs as a breakdown of this balance: defects in monocyte-macrophage differentiation, wrong dietary habits, alteration of microbiota composition, and impairment in the resolution of inflammation may contribute to the development of intestinal chronic inflammation and colorectal cancer. Accordingly, dietary interventions and macrophage-targeted therapies are emerging as innovative tools for the treatment of several intestinal pathologies. In this review, we will describe the delicate balance between diet, microbiota and intestinal macrophages in homeostasis and how the perturbation of this equilibrium may lead to the occurrence of inflammatory conditions in the gut. The understanding of the molecular pathways and dietary factors regulating the activity of intestinal macrophages might result in the identification of innovative targets for the treatments of intestinal pathologies.
Collapse
|
16
|
Coakley G, Harris NL. Interactions between macrophages and helminths. Parasite Immunol 2020; 42:e12717. [PMID: 32249432 DOI: 10.1111/pim.12717] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Macrophages, the major population of tissue-resident mononuclear phagocytes, contribute significantly to the immune response during helminth infection. Alternatively activated macrophages (AAM) are induced early in the anti-helminth response following tissue insult and parasite recognition, amplifying the early type 2 immune cascade initiated by epithelial cells and ILC2s, and subsequently driving parasite expulsion. AAM also contribute to functional alterations in tissues infiltrated with helminth larvae, mediating both tissue repair and inflammation. Their activation is amplified and occurs more rapidly following reinfection, where they can play a dual role in trapping tissue migratory larvae and preventing or resolving the associated inflammation and damage. In this review, we will address both the known and emerging roles of tissue macrophages during helminth infection, in addition to considering both outstanding research questions and new therapeutic strategies.
Collapse
Affiliation(s)
- Gillian Coakley
- Department of Immunology and Pathology, Central Clinical School, The Alfred Centre The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Nicola Laraine Harris
- Department of Immunology and Pathology, Central Clinical School, The Alfred Centre The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Sahputra R, Ruckerl D, Couper KN, Muller W, Else KJ. The Essential Role Played by B Cells in Supporting Protective Immunity Against Trichuris muris Infection Is by Controlling the Th1/Th2 Balance in the Mesenteric Lymph Nodes and Depends on Host Genetic Background. Front Immunol 2019; 10:2842. [PMID: 31921120 PMCID: PMC6915098 DOI: 10.3389/fimmu.2019.02842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
How B cells contribute to protective immunity against parasitic nematodes remains unclear, with their importance as accessory cells underexplored. In this study, anti-CD20 monoclonal antibody (α-CD20 mAb)-mediated depletion of B cells from C57BL/6 mice revealed an important role for B cells in supporting Th2 immune responses and thus expulsion of Trichuris muris (T. muris). C57BL/6 mice normally mount mixed Th1/Th2 immune responses to T. muris and expel the parasite by the third week post infection. However, B cell-depleted C57BL/6 had significantly reduced Th2-type cytokines post infection and failed to expel the parasite. IFN-γ production in the MLN of C57BL/6 mice receiving α-CD20 mAb treatment was not affected, collectively resulting in an overall change in Th1/Th2 balance in favor of Th1. Further, the expression of IFN-γ and IFN-γ-induced genes at the effector site, the gut, was significantly increased in the absence of B cells. Interestingly, and in complete contrast, BALB/c mice, which mount strongly polarized Th2 immune responses, rather than mixed Th1/Th2 immune responses, were still able to expel T. muris in the absence of B cells. We thus hypothesized that the B cell plays a critical role in enabling strong Th2 responses in the context of mixed Th1/Th2 settings, with the role becoming redundant in highly Th2 polarized environments. In support of this, neutralization of IFN-γ in B cell depleted C57BL/6 restored resistance against T. muris infection. Thus, our data suggest an important role of B cells in supporting Th2-type immune responses in mixed IFN-γ-rich Th1/Th2 settings.
Collapse
Affiliation(s)
- Rinal Sahputra
- Division of Infection, Immunity and Respiratory Medicine, Lydia Becker Institute for Immunology, The University of Manchester, Manchester, United Kingdom
| | | | | | | | - Kathryn J. Else
- Division of Infection, Immunity and Respiratory Medicine, Lydia Becker Institute for Immunology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Bain CC, Schridde A. Origin, Differentiation, and Function of Intestinal Macrophages. Front Immunol 2018; 9:2733. [PMID: 30538701 PMCID: PMC6277706 DOI: 10.3389/fimmu.2018.02733] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages are increasingly recognized as essential players in the maintenance of intestinal homeostasis and as key sentinels of the intestinal immune system. However, somewhat paradoxically, they are also implicated in chronic pathologies of the gastrointestinal tract, such as inflammatory bowel disease (IBD) and are therefore considered potential targets for novel therapies. In this review, we will discuss recent advances in our understanding of intestinal macrophage heterogeneity, their ontogeny and the potential factors that regulate their origin. We will describe how the local environment of the intestine imprints the phenotypic and functional identity of the macrophage compartment, and how this changes during intestinal inflammation and infection. Finally, we highlight key outstanding questions that should be the focus of future research.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Anika Schridde
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
19
|
Sutherland TE, Rückerl D, Logan N, Duncan S, Wynn TA, Allen JE. Ym1 induces RELMα and rescues IL-4Rα deficiency in lung repair during nematode infection. PLoS Pathog 2018; 14:e1007423. [PMID: 30500858 PMCID: PMC6291165 DOI: 10.1371/journal.ppat.1007423] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/12/2018] [Accepted: 10/21/2018] [Indexed: 01/21/2023] Open
Abstract
Ym1 and RELMα are established effector molecules closely synonymous with Th2-type inflammation and associated pathology. Here, we show that whilst largely dependent on IL-4Rα signaling during a type 2 response, Ym1 and RELMα also have IL-4Rα-independent expression patterns in the lung. Notably, we found that Ym1 has opposing effects on type 2 immunity during nematode infection depending on whether it is expressed at the time of innate or adaptive responses. During the lung migratory stage of Nippostrongylus brasiliensis, Ym1 promoted the subsequent reparative type 2 response but once that response was established, IL-4Rα-dependent Ym1 was important for limiting the magnitude of type 2 cytokine production from both CD4+ T cells and innate lymphoid cells in the lung. Importantly, our study demonstrates that delivery of Ym1 to IL-4Rα deficient animals drives RELMα production and overcomes lung repair deficits in mice deficient in type 2 immunity. Together, Ym1 and RELMα, exhibit time and dose-dependent interactions that determines the outcome of lung repair during nematode infection.
Collapse
Affiliation(s)
- Tara E. Sutherland
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nicola Logan
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheelagh Duncan
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas A. Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Smith H, Forman R, Mair I, Else KJ. Interactions of helminths with macrophages: therapeutic potential for inflammatory intestinal disease. Expert Rev Gastroenterol Hepatol 2018; 12:997-1006. [PMID: 30113218 DOI: 10.1080/17474124.2018.1505498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophages represent a highly heterogeneous and plastic cell type found in most tissues of the body; the intestine is home to enormous numbers of these cells. Considerable interest surrounds the 'M2 macrophage,' as it is able to control and regulate inflammation, while promoting tissue repair. Areas covered: As potent inducers of M2 macrophages, intestinal helminths and helminth-derived products are ideal candidates for small molecule drug design to drive M2 macrophage polarization. Several gastrointestinal helminths have been found to cause M2 macrophage-inducing infections. This review covers current knowledge of helminth products and their impact on macrophage polarization, which may in the future lead to new therapeutic strategies. A literature search was performed using the following search terms in PubMed: M2 macrophage, alternative activation, helminth products, helminth ES, helminth therapy, nanoparticle, intestinal macrophages. Other studies were selected by using references from articles identified through our original literature search. Expert commentary: While the immunomodulatory potential of helminth products is well established, we have yet to fully characterize many components of the intestinal helminth product library. Current work aims to identify the protein motifs responsible for modulation of macrophages and other components of the immune system.
Collapse
Affiliation(s)
- Hannah Smith
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Ruth Forman
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Iris Mair
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Kathryn J Else
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| |
Collapse
|
21
|
Liu YH, Ding Y, Gao CC, Li LS, Wang YX, Xu JD. Functional macrophages and gastrointestinal disorders. World J Gastroenterol 2018; 24:1181-1195. [PMID: 29568199 PMCID: PMC5859221 DOI: 10.3748/wjg.v24.i11.1181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 02/12/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023] Open
Abstract
Macrophages (MΦ) differentiate from blood monocytes and participate in innate and adaptive immunity. Because of their abilities to recognize pathogens and activate bactericidal activities, MΦ are always discovered at the site of immune defense. MΦ in the intestine are unique, such that in the healthy intestine, they possess complex mechanisms to protect the gut from inflammation. In these complex mechanisms, they produce anti-inflammatory cytokines, such as interleukin-10 and transforming growth factor-β, and inhibit the inflammatory pathways mediated by Toll-like receptors. It has been demonstrated that resident MΦ play a crucial role in maintaining intestinal homeostasis, and they can be recognized by their unique markers. Nonetheless, in the inflamed intestine, the function of MΦ will change because of environmental variation, which may be one of the mechanisms of inflammatory bowel disease (IBD). We provide further explanation about these mechanisms in our review. In addition, we review recent discoveries that MΦ may be involved in the development of gastrointestinal tumors. We will highlight the possible therapeutic targets for the management of IBD and gastrointestinal tumors, and we also discuss why more details are needed to fully understand all other effects of intestinal MΦ.
Collapse
Affiliation(s)
- Yue-Hong Liu
- School of Basic Medical Science, Beijing Capital Medical University, Beijing 100069, China
| | - Yue Ding
- School of Basic Medical Science, Beijing Capital Medical University, Beijing 100069, China
| | - Chen-Chen Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Li-Sheng Li
- Function Platform Center, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Yue-Xiu Wang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| |
Collapse
|
22
|
Turner JD, Pionnier N, Furlong-Silva J, Sjoberg H, Cross S, Halliday A, Guimaraes AF, Cook DAN, Steven A, Van Rooijen N, Allen JE, Jenkins SJ, Taylor MJ. Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia. PLoS Pathog 2018; 14:e1006949. [PMID: 29547639 PMCID: PMC5874077 DOI: 10.1371/journal.ppat.1006949] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/28/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Eosinophils are effectors in immunity to tissue helminths but also induce allergic immunopathology. Mechanisms of eosinophilia in non-mucosal tissues during infection remain unresolved. Here we identify a pivotal function of tissue macrophages (Mϕ) in eosinophil anti-helminth immunity using a BALB/c mouse intra-peritoneal Brugia malayi filarial infection model. Eosinophilia, via C-C motif chemokine receptor (CCR)3, was necessary for immunity as CCR3 and eosinophil impairments rendered mice susceptible to chronic filarial infection. Post-infection, peritoneal Mϕ populations proliferated and became alternatively-activated (AAMϕ). Filarial AAMϕ development required adaptive immunity and interleukin-4 receptor-alpha. Depletion of Mϕ prior to infection suppressed eosinophilia and facilitated worm survival. Add back of filarial AAMϕ in Mϕ-depleted mice recapitulated a vigorous eosinophilia. Transfer of filarial AAMϕ into Severe-Combined Immune Deficient mice mediated immunological resistance in an eosinophil-dependent manner. Exogenous IL-4 delivery recapitulated tissue AAMϕ expansions, sustained eosinophilia and mediated immunological resistance in Mϕ-intact SCID mice. Co-culturing Brugia with filarial AAMϕ and/or filarial-recruited eosinophils confirmed eosinophils as the larvicidal cell type. Our data demonstrates that IL-4/IL-4Rα activated AAMϕ orchestrate eosinophil immunity to filarial tissue helminth infection. Helminths parasitize approximately one quarter of the global population. Medically-important helminths, including filariae responsible for elephantiasis and river blindness, are targeted for elimination as a public health problem. Currently there are no vaccines or immunotherapeutics available for filarial worms or other human helminth pathogens. Here we define a cellular mechanism whereby the interlukin-4 dependent activation of tissue macrophages are essential to sustain the recruitment of larvicidal eosinophil granulocytes, leading to immunity against filarial infection at a sterile tissue site of parasitism. This work delineates the relative non-redundant functional roles of both myeloid cell types in ‘type-2’ immunity to helminth infection. The study represents a mechanistic advance in our understanding of how immunity operates against metazoan macroparasites invading sterile tissues and may be used in the rational design of new therapeutics to limit helminth disease.
Collapse
Affiliation(s)
- Joseph D. Turner
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| | - Nicolas Pionnier
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julio Furlong-Silva
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hanna Sjoberg
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen Cross
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alice Halliday
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ana F. Guimaraes
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Darren A. N. Cook
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nico Van Rooijen
- VU University Medical Center, Department of Molecular Cell Biology and Immunology, Amsterdam, Netherlands
| | - Judith E. Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Stephen J. Jenkins
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Taylor
- Research Centre for Drugs & Diagnostics, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
23
|
Immunity to gastrointestinal nematode infections. Mucosal Immunol 2018; 11:304-315. [PMID: 29297502 DOI: 10.1038/mi.2017.113] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
Numerous species of nematodes have evolved to inhabit the gastrointestinal tract of animals and humans, with over a billion of the world's population infected with at least one species. These large multicellular pathogens present a considerable and complex challenge to the host immune system given that individuals are continually exposed to infective stages, as well as the high prevalence in endemic areas. This review summarizes our current understanding of host-parasite interactions, detailing induction of protective immunity, mechanisms of resistance, and resolution of the response. It is clear from studies of well-defined laboratory model systems that these responses are dominated by innate and adaptive type 2 cytokine responses, regulating cellular and soluble effectors that serve to disrupt the niche in which the parasites live by strengthening the physical mucosal barrier and ultimately promoting tissue repair.
Collapse
|
24
|
Farro G, Stakenborg M, Gomez-Pinilla PJ, Labeeuw E, Goverse G, Di Giovangiulio M, Stakenborg N, Meroni E, D'Errico F, Elkrim Y, Laoui D, Lisowski ZM, Sauter KA, Hume DA, Van Ginderachter JA, Boeckxstaens GE, Matteoli G. CCR2-dependent monocyte-derived macrophages resolve inflammation and restore gut motility in postoperative ileus. Gut 2017; 66:2098-2109. [PMID: 28615302 DOI: 10.1136/gutjnl-2016-313144] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Postoperative ileus (POI) is assumed to result from myeloid cells infiltrating the intestinal muscularis externa (ME) in patients undergoing abdominal surgery. In the current study, we investigated the role of infiltrating monocytes in a murine model of intestinal manipulation (IM)-induced POI in order to clarify whether monocytes mediate tissue damage and intestinal dysfunction or they are rather involved in the recovery of gastrointestinal (GI) motility. DESIGN IM was performed in mice with defective monocyte migration to tissues (C-C motif chemokine receptor 2, Ccr2-/ - mice) and wild-type (WT) mice to study the role of monocytes and monocyte-derived macrophages (MΦs) during onset and resolution of ME inflammation. RESULTS At early time points, IM-induced GI transit delay and inflammation were equal in WT and Ccr2 -/- mice. However, GI transit recovery after IM was significantly delayed in Ccr2 -/- mice compared with WT mice, associated with increased neutrophil-mediated immunopathology and persistent impaired neuromuscular function. During recovery, monocyte-derived MΦs acquire pro-resolving features that aided in the resolution of inflammation. In line, bone marrow reconstitution and treatment with MΦ colony-stimulating factor 1 enhanced monocyte recruitment and MΦ differentiation and ameliorated GI transit in Ccr2 -/- mice. CONCLUSION Our study reveals a critical role for monocyte-derived MΦs in restoring intestinal homeostasis after surgical trauma. From a therapeutic point of view, our data indicate that inappropriate targeting of monocytes may increase neutrophil-mediated immunopathology and prolong the clinical outcome of POI, while future therapies should be aimed at enhancing MΦ physiological repair functions.
Collapse
Affiliation(s)
- Giovanna Farro
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Michelle Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Pedro J Gomez-Pinilla
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Evelien Labeeuw
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Gera Goverse
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Martina Di Giovangiulio
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Elisa Meroni
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Francesca D'Errico
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Yvon Elkrim
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
| | - Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Kristin A Sauter
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jo A Van Ginderachter
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Mowat AM, Scott CL, Bain CC. Barrier-tissue macrophages: functional adaptation to environmental challenges. Nat Med 2017; 23:1258-1270. [PMID: 29117177 DOI: 10.1038/nm.4430] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022]
Abstract
Macrophages are found throughout the body, where they have crucial roles in tissue development, homeostasis and remodeling, as well as being sentinels of the innate immune system that can contribute to protective immunity and inflammation. Barrier tissues, such as the intestine, lung, skin and liver, are exposed constantly to the outside world, which places special demands on resident cell populations such as macrophages. Here we review the mounting evidence that although macrophages in different barrier tissues may be derived from distinct progenitors, their highly specific properties are shaped by the local environment, which allows them to adapt precisely to the needs of their anatomical niche. We discuss the properties of macrophages in steady-state barrier tissues, outline the factors that shape their differentiation and behavior and describe how macrophages change during protective immunity and inflammation.
Collapse
Affiliation(s)
- Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Charlotte L Scott
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
- Laboratory of Myeloid Cell Ontogeny and Functional Specialization, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Calum C Bain
- The University of Edinburgh/MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol 2017; 10:845-864. [PMID: 28378807 DOI: 10.1038/mi.2017.22] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023]
Abstract
The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt to deal with the challenges specific to their environment. Understanding these processes should help target individual subsets for 'fine tuning' immunological responses within the intestine, a process that may be of relevance both for the treatment of inflammatory bowel disease (IBD) and for optimized vaccine design.
Collapse
|
27
|
de Kouchkovsky DA, Ghosh S, Rothlin CV. Negative Regulation of Type 2 Immunity. Trends Immunol 2017; 38:154-167. [PMID: 28082101 PMCID: PMC5510550 DOI: 10.1016/j.it.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 01/01/2023]
Abstract
Type 2 immunity encompasses the mechanisms through which the immune system responds to helminths and an array of environmental substances such as allergens. In the developing world, billions of individuals are chronically infected with endemic parasitic helminths. In comparison, in the industrialized world, millions of individuals suffer from dysregulated type 2 immunity, referred to clinically as atopic diseases including asthma, allergic rhinitis, and atopic dermatitis. Thus, type 2 immunity must be carefully regulated to mount protective host responses yet avoid inappropriate activation and immunopathology. In this review, we describe the key players and connections at play in type 2 responses and focus on the emerging mechanisms involved in the negative regulation of type 2 immunity.
Collapse
Affiliation(s)
| | - Sourav Ghosh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
28
|
Paynich ML, Jones-Burrage SE, Knight KL. Exopolysaccharide from Bacillus subtilis Induces Anti-Inflammatory M2 Macrophages That Prevent T Cell-Mediated Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:2689-2698. [PMID: 28202619 DOI: 10.4049/jimmunol.1601641] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023]
Abstract
Commensal bacteria contribute to immune homeostasis in the gastrointestinal tract; however, the underlying mechanisms for this are not well understood. A single dose of exopolysaccharide (EPS) from the probiotic spore-forming bacterium Bacillus subtilis protects mice from acute colitis induced by the enteric pathogen Citrobacter rodentium Adoptive transfer of macrophage-rich peritoneal cells from EPS-treated mice confers protection from disease to recipient mice. In vivo, EPS induces development of anti-inflammatory M2 macrophages in a TLR4-dependent manner, and these cells inhibit T cell activation in vitro and in C. rodentium-infected mice. In vitro, M2 macrophages inhibit CD4+ and CD8+ T cells. The inhibition of CD4+ T cells is dependent on TGF-β, whereas inhibition of CD8+ T cells is dependent on TGF-β and PD-L1. We suggest that administration of B. subtilis EPS can be used to broadly inhibit T cell activation and, thus, control T cell-mediated immune responses in numerous inflammatory diseases.
Collapse
Affiliation(s)
- Mallory L Paynich
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153
| | - Sara E Jones-Burrage
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153
| | - Katherine L Knight
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153
| |
Collapse
|
29
|
|
30
|
Lauvau G, Loke P, Hohl TM. Monocyte-mediated defense against bacteria, fungi, and parasites. Semin Immunol 2016; 27:397-409. [PMID: 27021645 DOI: 10.1016/j.smim.2016.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 02/07/2023]
Abstract
Circulating blood monocytes are a heterogeneous leukocyte population that contributes critical antimicrobial and regulatory functions during systemic and tissue-specific infections. These include patrolling vascular tissue for evidence of microbial invasion, infiltrating peripheral tissues and directly killing microbial invaders, conditioning the inflammatory milieu at sites of microbial tissue invasion, and orchestrating the activation of innate and adaptive immune effector cells. The central focus of this review is the in vivo mechanisms by which monocytes and their derivative cells promote microbial clearance and immune regulation. We include an overview of murine models to examine monocyte functions during microbial challenges and review our understanding of the functional roles of monocytes and their derivative cells in host defense against bacteria, fungi, and parasites.
Collapse
Affiliation(s)
- Grégoire Lauvau
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY, United States.
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Immunology Program, Memorial Sloan Kettering Cencer Center, New York, NY, United States.
| |
Collapse
|
31
|
Liu WF, Wen SH, Zhan JH, Li YS, Shen JT, Yang WJ, Zhou XW, Liu KX. Treatment with Recombinant Trichinella spiralis Cathepsin B-like Protein Ameliorates Intestinal Ischemia/Reperfusion Injury in Mice by Promoting a Switch from M1 to M2 Macrophages. THE JOURNAL OF IMMUNOLOGY 2015; 195:317-28. [PMID: 25987744 DOI: 10.4049/jimmunol.1401864] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 04/14/2015] [Indexed: 01/18/2023]
Abstract
Intestinal ischemia/reperfusion (I/R) injury, in which macrophages play a key role, can cause high morbidity and mortality. The switch from classically (M1) to alternatively (M2) activated macrophages, which is dependent on the activation of STAT6 signaling, has been shown to protect organs from I/R injuries. In the current study, the effects of recombinant Trichinella spiralis cathepsin B-like protein (rTsCPB) on intestinal I/R injury and the potential mechanism related to macrophage phenotypes switch were investigated. In a mouse I/R model undergoing 60-min intestinal ischemia followed by 2-h or 7-d reperfusion, we demonstrated that intestinal I/R caused significant intestinal injury and induced a switch from M2 to M1 macrophages, evidenced by a decrease in levels of M2 markers (arginase-1 and found in inflammatory zone protein), an increase in levels of M1 markers (inducible NO synthase and CCR7), and a decrease in the ratio of M2/M1 macrophages. RTsCPB reversed intestinal I/R-induced M2-M1 transition and promoted M1-M2 phenotype switch evidenced by a significant decrease in M1 markers, an increase in M2 markers, and the ratio of M2/M1 macrophages. Meanwhile, rTsCPB significantly ameliorated intestinal injury and improved intestinal function and survival rate of animals, accompanied by a decrease in neutrophil infiltration and an increase in cell proliferation in the intestine. However, a selective STAT6 inhibitor, AS1517499, reversed the protective effects of rTsCPB by inhibiting M1 to M2 transition. These findings suggest that intestinal I/R injury causes a switch from M2 to M1 macrophages and that rTsCPB ameliorates intestinal injury by promoting STAT6-dependent M1 to M2 transition.
Collapse
Affiliation(s)
- Wei-Feng Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Shi-Hong Wen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian-Hua Zhan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; and
| | - Yun-Sheng Li
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jian-Tong Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Xing-Wang Zhou
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou 510080, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| |
Collapse
|
32
|
Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 2015; 35:2452-64. [PMID: 25673840 DOI: 10.1523/jneurosci.4088-14.2015] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Engrafted mesenchymal stem cells from human deciduous dental pulp (SHEDs) support recovery from neural insults via paracrine mechanisms that are poorly understood. Here we show that the conditioned serum-free medium (CM) from SHEDs, administered intrathecally into rat injured spinal cord during the acute postinjury period, caused remarkable functional recovery. The ability of SHED-CM to induce recovery was associated with an immunoregulatory activity that induced anti-inflammatory M2-like macrophages. Secretome analysis of the SHED-CM revealed a previously unrecognized set of inducers for anti-inflammatory M2-like macrophages: monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (ED-Siglec-9). Depleting MCP-1 and ED-Siglec-9 from the SHED-CM prominently reduced its ability to induce M2-like macrophages and to promote functional recovery after spinal cord injury (SCI). The combination of MCP-1 and ED-Siglec-9 synergistically promoted the M2-like differentiation of bone marrow-derived macrophages in vitro, and this effect was abolished by a selective antagonist for CC chemokine receptor 2 (CCR2) or by the genetic knock-out of CCR2. Furthermore, MCP-1 and ED-Siglec-9 administration into the injured spinal cord induced M2-like macrophages and led to a marked recovery of hindlimb locomotor function after SCI. The inhibition of this M2 induction through the inactivation of CCR2 function abolished the therapeutic effects of both SHED-CM and MCP-1/ED-Siglec-9. Macrophages activated by MCP-1 and ED-Siglec-9 extended neurite and suppressed apoptosis of primary cerebellar granule neurons against the neurotoxic effects of chondroitin sulfate proteoglycans. Our data suggest that the unique combination of MCP-1 and ED-Siglec-9 repairs the SCI through anti-inflammatory M2-like macrophage induction.
Collapse
|