1
|
Didona D, Scarsella L, Hudemann C, Volkmann K, Zimmer CL, Beckert B, Tikkanen R, Korff V, Kühn K, Wienzek-Lischka S, Bein G, Di Zenzo G, Böhme J, Cunha T, Solimani F, Pieper J, Juratli HA, Göbel M, Schmidt T, Borradori L, Yazdi AS, Sitaru C, Garn H, Eming R, Fleischer S, Hertl M. Type 2 T-Cell Responses against Distinct Epitopes of the Desmoglein 3 Ectodomain in Pemphigus Vulgaris. J Invest Dermatol 2024; 144:263-272.e8. [PMID: 37717934 DOI: 10.1016/j.jid.2023.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 09/19/2023]
Abstract
Pemphigus vulgaris (PV) is an autoimmune blistering disorder of the skin and/or mucous membranes caused by IgG autoantibodies that predominantly target two transmembrane desmosomal cadherins: desmoglein (DSG)1 and DSG3. DSG-specific T cells play a central role in PV pathogenesis because they provide help to autoreactive B cells for autoantibody production. In this study, we characterized DSG3-specific peripheral T cells in a cohort of 52 patients with PV and 41 healthy controls with regard to cytokine profile and epitope specificity. By ELISpot analysis, type 2 T cells reactive with the DSG3 ectodomain were significantly increased in patients with PV compared with those in healthy controls. By dextramer analysis, CD4+ T cells specific for an epitope within the extracellular domain of DSG3, DSG3(206-220), were found at significantly higher frequencies in patients with PV than in HLA-matched healthy controls. T-cell recognition of two distinct DSG3 epitopes, that is, DSG3(206-220) and DSG3(378-392), correlated significantly, suggesting a synergistic effect in B-cell help. Immunization of HLA-DRB1∗04:02-transgenic mice with PV with the same set of DSG3 peptides induced pathogenic DSG3-specific IgG antibodies, which induced loss of keratinocyte adhesion in vitro. Thus, DSG3 peptide-specific T cells are of particular interest as surrogate markers of disease activity and potential therapeutic targets in PV.
Collapse
Affiliation(s)
- Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Luca Scarsella
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Karolin Volkmann
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Christine L Zimmer
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Benedikt Beckert
- Institute of Biochemistry, Medical Faculty, University of Giessen, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Germany
| | - Vera Korff
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Katja Kühn
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Sandra Wienzek-Lischka
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University, Giessen, Germany
| | - Giovanni Di Zenzo
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Jaqueline Böhme
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Tomas Cunha
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Farzan Solimani
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany; Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Josquin Pieper
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Hazem A Juratli
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany; Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Manuel Göbel
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Luca Borradori
- Department of Dermatology, University of Bern, Bern, Switzerland
| | - Amir S Yazdi
- Department of Dermatology, RWTH Aachen University, Aachen, Germany
| | - Cassian Sitaru
- Department of Dermatology, Albert-Ludwigs University, Freiburg, Germany
| | - Holger Garn
- Translational Inflammation Research Division & Core Facility for Single Cell Multiomics, Philipps University, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany; Klinik III Dermatologie, Venerologie & Allergologie, Bundeswehrzentralkrankenhaus Koblenz, Koblenz, Germany
| | | | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany.
| |
Collapse
|
2
|
Wan H, Teh MT, Mastroianni G, Ahmad US. Comparative Transcriptome Analysis Identifies Desmoglein-3 as a Potential Oncogene in Oral Cancer Cells. Cells 2023; 12:2710. [PMID: 38067138 PMCID: PMC10705960 DOI: 10.3390/cells12232710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The role of desmoglein-3 (DSG3) in oncogenesis is unclear. This study aimed to uncover molecular mechanisms through comparative transcriptome analysis in oral cancer cells, defining potential key genes and associated biological processes related to DSG3 expression. Four mRNA libraries of oral squamous carcinoma H413 cell lines were sequenced, and 599 candidate genes exhibited differential expression between DSG3-overexpressing and matched control lines, with 12 genes highly significantly differentially expressed, including 9 upregulated and 3 downregulated. Genes with known implications in cancer, such as MMP-13, KRT84, OLFM4, GJA1, AMOT and ADAMTS1, were strongly linked to DSG3 overexpression. Gene ontology analysis indicated that the DSG3-associated candidate gene products participate in crucial cellular processes such as junction assembly, focal adhesion, extracellular matrix formation, intermediate filament organisation and keratinocyte differentiation. Validation of RNA-Seq was performed through RT-qPCR, Western blotting and immunofluorescence analyses. Furthermore, using transmission electron microscopy, we meticulously examined desmosome morphology and revealed a slightly immature desmosome structure in DSG3-overexpressing cells compared to controls. No changes in desmosome frequency and diameter were observed between the two conditions. This study underscores intricate and multifaceted alterations associated with DSG3 in oral squamous carcinoma cells, implying a potential oncogenic role of this gene in biological processes that enable cell communication, motility and survival.
Collapse
Affiliation(s)
- Hong Wan
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Muy-Teck Teh
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
| | - Usama Sharif Ahmad
- Center for Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
3
|
Hartmann V, Hariton WV, Rahimi S, Hammers CM, Ludwig RJ, Müller EJ, Hundt JE. The human skin organ culture model as an optimal complementary tool for murine pemphigus models. Lab Anim 2023; 57:381-395. [PMID: 36647613 DOI: 10.1177/00236772221145647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pemphigus is a severe autoimmune bullous disease of the skin and/or mucous membranes caused by autoantibodies that mainly target the adhesion proteins desmoglein (Dsg) 3 and/or Dsg1. Clinically, pemphigus is characterized by flaccid blistering, leading to severe water and electrolyte loss. Before the introduction of corticosteroid treatment, the disease turned out to be fatal in many cases. Despite recent therapeutic improvements, treatment of pemphigus patients is centred on prolonged systemic immunosuppression and remains challenging. Current drug development for pemphigus has a strong focus on disease-causing B cells and autoantibodies and, more recently, also on modulating autoantibody-induced tissue pathology and keratinocyte signalling. This drug development requires reliable pre-clinical model systems replicating the pathogenesis of the human disease. Among those are neonatal and adult mouse models based on the transfer of Dsg3, Dsg1/3 or Dsg1-specific autoantibodies. To reduce the number of animal experiments, we recently established a standardized human skin organ culture (HSOC) model for pemphigus. This model reproduces the clinical phenotype of autoantibody-induced tissue pathology in pemphigus vulgaris. For induction of blistering, a recombinant single-chain variable fragment (scFv) targeting both Dsg1 and 3 is injected into pieces of human skin (obtained from plastic surgeries). Further characterization of the HSOC model demonstrated that key morphologic, molecular and immunologic features of pemphigus are being replicated. Thus, the pemphigus HSOC model is an excellent alternative to pemphigus animal model systems that are based on the transfer of (auto)antibodies.
Collapse
Affiliation(s)
- Veronika Hartmann
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
| | - William Vj Hariton
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | - Siavash Rahimi
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | | | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
- Centre for Research on Inflammation of the Skin, University of Lübeck, Germany
- Department of Dermatology, Allergy, and Venerology, University of Lübeck, Germany
| | - Eliane J Müller
- Department for BioMedical Research, Molecular Dermatology and Stem Cell Research, University of Bern, Switzerland
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Switzerland
- DermFocus, Vetsuisse Faculty, University of Bern, Switzerland
| | - Jennifer E Hundt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Germany
- Centre for Research on Inflammation of the Skin, University of Lübeck, Germany
| |
Collapse
|
4
|
Lakoš Jukić I, Mokos M, Marinović B. HLA class II antigens in Croatian patients with pemphigus vulgaris and their correlation with anti-desmoglein antibodies. Front Immunol 2023; 14:1200992. [PMID: 37529044 PMCID: PMC10387520 DOI: 10.3389/fimmu.2023.1200992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Pemphigus vulgaris (PV) is an acquired autoimmune blistering disease characterized by the production of autoantibodies targeting desmosomal cadherins, primarily desmoglein 1 and desmoglein 3, leading to acantholysis. The etiology of PV is multifactorial, including genetic susceptibility. This retrospective study aimed to evaluate the association of HLA class II alleles and PV and to examine the impact of PV-associated HLA class II alleles on the concentration of anti-desmoglein antibodies. The study group included 30 patients in whom the diagnosis of PV was confirmed by histopathological analysis, immunofluorescence findings, and ELISA testing for detecting antibodies against desmoglein 1 and desmoglein 3. HLA class II alleles were typed by polymerase chain reaction with sequence-specific primers (PCR-SSP). The control group consisted of 190 healthy volunteer blood donors. Data analysis revealed a significantly higher frequency of HLA class II alleles in our population of patients with PV, including HLA-DRB1*04:02, HLA-DRB1*14:54, HLA-DQB1*03:02, HLA-DQB1*05:03, HLA- DQA1*03:01, and HLA-DQA1*01:04, as well as a significantly lower frequency of HLA-DQA1*05:01 compared to the control group. We have also investigated the influence of risk alleles for PV, recognized in almost all study populations, HLA-DRB1*04:02 and HLA-DQB1*05:03, on the concentration of antibodies against desmogleins 1 and 3 in relation to the presence of these alleles. The results showed significantly higher levels of antibodies directed against desmoglein 3 among patients with DRB1*04:02 compared to patients without this allele. No difference was found for anti-desmoglein 1 antibodies. Regarding DQB1*05:03 allele, statistical analysis showed no differences in the concentration of anti-desmoglein antibodies in patients carrying this allele versus those without it.
Collapse
Affiliation(s)
- Ines Lakoš Jukić
- Department of Dermatovenereology, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mislav Mokos
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Branka Marinović
- Department of Dermatovenereology, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Lotti R, Atene CG, Zanfi ED, Bertesi M, Pincelli C, Zanocco-Marani T. A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants. BIOLOGY 2023; 12:biology12050702. [PMID: 37237515 DOI: 10.3390/biology12050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Background: Pemphigus is a life-threatening blistering autoimmune disease. Several forms, characterized by the presence of autoantibodies against different autoantigens, have been described. In Pemphigus Vulgaris (PV), autoantibodies target the cadherin Desmoglein 3 (DSG3), while in Pemphigus foliaceous (PF) autoantibodies target the cadherin Desmoglein 1 (DSG1). Another variant, mucocutaneous Pemphigus, is characterized by the presence of IgG against both DSG1 and DSG3. Moreover, other forms of Pemphigus characterized by the presence of autoantibodies against other autoantigens have been described. With regard to animal models, one can distinguish between passive models, where pathological IgG are transferred into neonatal mice, and active models, where B cells deriving from animals immunized against a specific autoantigen are transferred into immunodeficient mice that develop the disease. Active models recreate PV and a form of Pemphigus characterized by the presence of IgG against the cadherin Desmocollin 3 (DSC3). Further approaches allow to collect sera or B/T cells from mice immunized against a specific antigen to evaluate the mechanisms underlying the onset of the disease. Objective: To develop and characterize a new active model of Pemphigus where mice express auto antibodies against either DSG1 alone, or DSG1 and DSG3, thereby recapitulating PF and mucocutaneous Pemphigus, respectively. In addition to the existing models, with the active models reported in this work, it will be possible to recapitulate and mimic the main forms of pemphigus in adult mice, thus allowing a better understanding of the disease in the long term, including the benefit/risk ratio of new therapies. Results: The new DSG1 and the DSG1/DSG3 mixed models were developed as proposed. Immunized animals, and subsequently, animals that received splenocytes from the immunized donors produce a high concentration of circulating antibodies against the specific antigens. The severity of the disease was assessed by evaluating the PV score, evidencing that the DSG1/DSG3 mixed model exhibits the most severe symptoms among those analyzed. Alopecia, erosions, and blistering were observed in the skin of DSG1, DSG3 and DSG1/DSG3 models, while lesions in the mucosa were observed only in DSG3 and DSG1/DSG3 animals. The effectiveness of the corticosteroid Methyl-Prednisolone was evaluated in the DSG1 and DSG1/DSG3 models, that showed only partial responsiveness.
Collapse
Affiliation(s)
- Roberta Lotti
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Claudio Giacinto Atene
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Emma Dorotea Zanfi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Matteo Bertesi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carlo Pincelli
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
6
|
Hudemann C, Hoffmann J, Schmidt E, Hertl M, Eming R. T Regulatory Cell-Associated Tolerance Induction by High-Dose Immunoglobulins in an HLA-Transgenic Mouse Model of Pemphigus. Cells 2023; 12:cells12091340. [PMID: 37174740 PMCID: PMC10177252 DOI: 10.3390/cells12091340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal autoimmune bullous skin disorder caused by IgG autoantibodies against desmoglein 3 (Dsg3) and Dsg1. During the last three decades, high-dose intravenous immunoglobulins (IVIgs) have been applied as an effective and relatively safe treatment regime in severe, therapy-refractory PV. This prompted us to study T- and B- cell polarization by IVIg in a human-Dsg3-dependent mouse model for PV. Using humanized mice transgenic for HLA-DRB1*04:02, which is a highly prevalent haplotype in PV, we employed IVIg in two different experimental approaches: in prevention and quasi-therapeutic settings. Our data show that intraperitoneally applied IVIg was systemically distributed for up to 42 days or longer. IVIg-treated Dsg3-immunized mice exhibited, in contrast to Dsg3-immunized mice without IVIg, significantly less Dsg3-specific IgG, and showed induction of T regulatory cells in lymphatic tissue. Ex vivo splenocyte analysis upon Dsg3-specific stimulation revealed an initial, temporarily reduced antigen-induced cell proliferation, as well as IFN-γ secretion that became less apparent over the course of time. Marginal-zone B cells were initially reduced in the preventive approach but re-expanded over time. In contrast, in the quasi-therapeutic approach, a robust down-regulation in both spleen and lymph nodes was observed. We found a significant down-regulation of the immature transitional 1 (T1) B cells in IVIg-treated mice in the quasi-therapeutic approach, while T2 and T3, representing a healthy stage of B-cell development, appeared to be up-regulated by IVIg. In summary, in two experimental settings employing an active PV mouse model, we demonstrate distinct alterations of T- and B-cell populations upon IVIg treatment, compatible with a tolerance-associated polarization in lymphatic tissue. Our data suggest that the clinical efficacy of IVIg is at least modulated by distinct alterations of T- and B-cell populations compatible with a tolerance-associated polarization in lymphatic tissue.
Collapse
Affiliation(s)
- Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Jochen Hoffmann
- Department of Dermatology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, 23562 Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, 35037 Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University Marburg, 35037 Marburg, Germany
- Department of Dermatology, Venerology and Allergology, German Armed Forces Central Hospital Koblenz, 56072 Koblenz, Germany
| |
Collapse
|
7
|
Takahashi H, Iriki H, Asahina Y. T cell autoimmunity and immune regulation to desmoglein 3, a pemphigus autoantigen. J Dermatol 2023; 50:112-123. [PMID: 36539957 PMCID: PMC10107879 DOI: 10.1111/1346-8138.16663] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
Pemphigus is a life-threatening autoimmune bullous disease mediated by anti-desmoglein IgG autoantibodies. Pemphigus is mainly classified into three subtypes: pemphigus vulgaris, pemphigus foliaceus, and paraneoplastic pemphigus. The pathogenicity of autoantibodies has been extensively studied. Anti-human CD20 antibody therapy targeting B cells emerged as a more effective treatment option compared to conventional therapy for patients with an intractable disease. On the other hand, autoreactive T cells are considered to be involved in the pathogenesis based on the test results of human leukocyte antigen association, autoreactive T cell detection, and cytokine profile analysis. Research on the role of T cells in pemphigus has continued to progress, including that on T follicular helper cells, which initiate molecular mechanisms involved in antibody production in B cells. Autoreactive T cell research in mice has highlighted the crucial roles of cellular autoimmunity and improved the understanding of its pathogenesis, especially in paraneoplastic pemphigus. The mouse research has helped elucidate novel regulatory mechanisms of autoreactive T cells, such as thymic tolerance to desmoglein 3 and the essential roles of regulatory T cells, Langerhans cells, and other molecules in peripheral tissues. This review focuses on the immunological aspects of autoreactive T cells in pemphigus by providing detailed information on various related topics.
Collapse
Affiliation(s)
- Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Iriki
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuhiko Asahina
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Hudemann C, Exner Y, Pollmann R, Schneider K, Zakrzewicz A, Feldhoff S, Schmidt T, Spindler V, Rafei-Shamsabadi D, Völlner F, Waschke J, Tikkanen R, Hertl M, Eming R. IgG against the Membrane-Proximal Portion of the Desmoglein 3 Ectodomain Induces Loss of Keratinocyte Adhesion, a Hallmark in Pemphigus Vulgaris. J Invest Dermatol 2023; 143:254-263.e3. [PMID: 36089007 DOI: 10.1016/j.jid.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
Pemphigus vulgaris is a severe autoimmune blistering disease characterized by IgG autoantibodies (auto-abs) against the desmosomal adhesion molecules desmoglein (DSG) 3 and DSG1. Underlying mechanisms leading to blister formation upon binding of DSG-specific IgG auto-abs are not fully understood. Numerous studies showed the pathogenicity of IgG auto-ab binding to the aminoterminal region 1 (EC1) of the DSG3 ectodomain. However, auto-abs in pemphigus vulgaris are polyclonal, including IgG against both aminoterminal- and membrane-proximal epitopes of the DSG3 ectodomain. In this study, the pathogenicity of a previously uncharacterized murine monoclonal IgG antibody, 2G4, directed against the membrane-proximal region (EC5) of the DSG3 ectodomain was characterized and tested in various specificity and functionality assays. The results clearly show that 2G4 is capable of inhibiting intercellular keratinocyte adhesion and of inducing cellular DSG3 redistribution by activation of the p38MAPK signal transduction pathway. In this study, we provide evidence that an IgG auto-abs directed against the membrane-proximal region EC5 of DSG3 induces acantholysis, the hallmark in pemphigus vulgaris. These findings challenge the current concept that IgG auto-abs targeting the NH2-terminal portion of the DSG3 ectodomain are pathogenic only. Our study provides further aspects for a deeper understanding of desmosomal keratinocyte adhesion and improves our insight into the complex auto-ab‒induced blister formation in pemphigus vulgaris.
Collapse
Affiliation(s)
- Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany.
| | - Yvonne Exner
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Karina Schneider
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Anna Zakrzewicz
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Simon Feldhoff
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians University Munich, Munich, Germany
| | - David Rafei-Shamsabadi
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany; Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Frauke Völlner
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians University Munich, Munich, Germany
| | - Ritva Tikkanen
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany; Department of Dermatology, Venerology and Allergology, German Armed Forces Central Hospital Koblenz, Koblenz, Germany
| |
Collapse
|
9
|
Papara C, Danescu S, Rogojan L, Leucuta DC, Candrea E, Zillikens D, Baican A. Lymphocyte-predominant lesional inflammatory infiltrates of the skin are associated with mucosal-dominant phenotype in pemphigus. J Cutan Pathol 2023. [PMID: 36680509 DOI: 10.1111/cup.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/19/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Pemphigus is a potentially life-threatening autoimmune blistering disease. To date, studies assessing the association of histopathology with clinical phenotype are lacking. We sought to evaluate the main histopathologic findings and, also, the potential links between cutaneous inflammatory infiltrates and clinical characteristics in pemphigus. METHODS We conducted a retrospective cohort study in patients diagnosed with pemphigus vulgaris (PV) and pemphigus foliaceus (PF) in a referral center for autoimmune blistering diseases. RESULTS A total of 124 patients were included in the study (97 had PV and 27 had PF). On biopsy specimens, PV was more frequently associated with the "row of tombstones" feature (36.1% vs. 11.1%, p = 0.013), and PF was associated with acanthosis (44.4% vs. 23.7%, p = 0.034). Acantholysis was found in the upper half of the epidermis in PF (96.3% vs. 5.15%, p < 0.001), as opposed to the lower half in PV (75.2% vs. 0%, p = 0.002). Patients with lymphocyte-predominant inflammatory infiltrates in lesional skin specimens presented with a higher frequency of the mucosal-dominant phenotype (25.5% vs. 9.1%, p = 0.014), higher-density cellular infiltrate (100% vs. 41.6%, p < 0.001), and more frequent acantholytic cells (42.6% vs. 23.4%, p = 0.025). Neutrophil-predominant infiltrates in specimens from lesional skin were linked to a milder disease based on median Pemphigus Disease Area Index (38.9% vs. 13.2%, p = 0.036) and Autoimmune Bullous Skin Disorder Intensity Score (20.2 vs. 36.3, p = 0.019), while eosinophil-predominant inflammatory infiltrates were more often associated with eosinophilic spongiosis (100% vs. 23.1%, p = 0.014). CONCLUSIONS Lymphocyte-predominant infiltrates in lesional skin specimens of pemphigus patients predict a mucosal-dominant phenotype, while neutrophil-predominant infiltrates are associated with a milder disease.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Sorina Danescu
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Liliana Rogojan
- Department of Pathology, County Emergency Hospital Cluj-Napoca, Cluj-Napoca, Romania
| | - Daniel Corneliu Leucuta
- Department of Medical Informatics and Biostatistics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Elisabeta Candrea
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Adrian Baican
- Department of Dermatology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Baker J, Seiffert-Sinha K, Sinha AA. Patient genetics shape the autoimmune response in the blistering skin disease pemphigus vulgaris. Front Immunol 2023; 13:1064073. [PMID: 36703961 PMCID: PMC9871500 DOI: 10.3389/fimmu.2022.1064073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
Background and aim Pemphigus vulgaris (PV) is known to have one of the strongest HLA associations among autoimmune diseases. DRB1*0402 and DQB1*0503 in particular are significantly overrepresented in PV patients in certain worldwide populations. Yet, there remain significant gaps in our understanding regarding the precise link between PV-associated HLA molecules, the specificity of the autoimmune response, and clinical expression. In this study we assessed correlations between factors including HLA genotype, ethnicity, autoantibody levels, and lesion distribution in a cohort of 293 patients. Methods and population Participants were recruited from multiple outpatient dermatology clinic settings and patient support meetings in the USA. On intake, patients provided venous blood samples and answered questionnaires regarding their current disease activity. Results Eighty-one percent of patients typed as either DRB1*0402 or DQB1*0503 with a high prevalence of DRB1*0402 in patients of Ashkenazi Jewish or Caucasian (non-Jewish) descent (86% and 42%, respectively) and DQB1*0503 in patients of Southeast Asian descent (78%). Patients typing as HLA DRB1*0402 had higher levels of anti-desmoglein (Dsg)3 antibodies (204.6 +/- 340.5 IU/ml) than patients without DRB1*0402 (138.5 +/- 236.4 IU/ml) (p=0.03) and had mucosal only lesions more often than cutaneous only or mucocutaneous lesions. Patients typing as DQB1*0503 had higher levels of anti-Dsg1 antibodies (47.3 +/- 59.8 IU/ml) compared to other groups (27.8 +/- 43.7 IU/ml) (p=0.06) and higher rates of mucocutaneous disease than other lesion types. We also report an unexpected HLA association of DRB1*0804 in PV patients of African descent. Sixty-four percent of this population carried the DRB1*0804 allele, and presented with highly elevated levels of anti-Dsg3 (p=0.02). However, neither African heritage nor the presence of DRB1*0804 correlated with a predilection to any specific lesion morphology. Patients that carried neither DRB1*0402, nor DQB1*0503 or DRB1*0804 had the lowest levels of anti-Dsg3 antibodies (60.0 +/- 80.0 IU/ml) and the highest rate of solely cutaneous disease compared to carriers of these alleles. Conclusion Our data illuminate the broader impact of genetic factors on disease development by showing that differences in HLA expression among patients and ethnicities play a large role in driving distinct patterns of antibody selection and disease phenotype in PV. These findings provide insights regarding clinical heterogeneity, and are relevant to developing improved, patient tailored management strategies.
Collapse
|
11
|
Emtenani S, Hertl M, Schmidt E, Hudemann C. Mouse models of pemphigus: valuable tools to investigate pathomechanisms and novel therapeutic interventions. Front Immunol 2023; 14:1169947. [PMID: 37180099 PMCID: PMC10172572 DOI: 10.3389/fimmu.2023.1169947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune blistering diseases (AIBD) are paradigms of autoantibody-mediated organ-specific autoimmune disorders that involve skin and/or mucous membranes. Compared to other autoimmune diseases, the pathogenicity of autoantibodies in AIBD is relatively well described. Pemphigus is a potentially lethal autoantibody driven autoimmune disorder with a strong HLA class II association. It is mainly characterized by IgG against the desmosomal adhesion molecules desmoglein 3 (Dsg3) and Dsg1. Several murine pemphigus models were developed subsequently, each allowing the analysis of a characteristic feature, such as pathogenic IgG or Dsg3-specific T or B cells. Thus, the models can be employed to preclinically evaluate potentially novel therapies. We here thoroughly summarize past and recent efforts in developing and utilizing pemphigus mouse models for pathomechanistic investigation and therapeutic interventions.
Collapse
Affiliation(s)
- Shirin Emtenani
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
- *Correspondence: Christoph Hudemann,
| |
Collapse
|
12
|
Lee AY, Kim T, Kim JH. Understanding CD4 + T cells in autoimmune bullous diseases. Front Immunol 2023; 14:1161927. [PMID: 37138879 PMCID: PMC10149917 DOI: 10.3389/fimmu.2023.1161927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Autoimmune bullous diseases (AIBDs) are a group of life-threatening blistering diseases caused by autoantibodies that target proteins in the skin and mucosa. Autoantibodies are the most important mediator in the pathogenesis of AIBDs, and various immune mechanisms contribute to the production of these pathogenic autoantibodies. Recently, significant progress has been made in understanding how CD4+ T cells drive autoantibody production in these diseases. Here, we review the critical role of CD4+ T cells in the production of pathogenic autoantibodies for the initiation and perpetuation of humoral response in AIBDs. To gain an in-depth understanding of CD4+ T-cell pathogenicity, antigen specificity, and mechanisms of immune tolerance, this review covers comprehensive mouse and human studies of pemphigus and bullous pemphigoid. Further exploration of pathogenic CD4+ T cells will potentially provide immune targets for improved treatment of AIBDs.
Collapse
|
13
|
Polakova A, Kauter L, Ismagambetova A, Didona D, Solimani F, Ghoreschi K, Hertl M, Möbs C, Hudemann C. Detection of rare autoreactive T cell subsets in patients with pemphigus vulgaris. Front Immunol 2022; 13:979277. [PMID: 36203615 PMCID: PMC9531257 DOI: 10.3389/fimmu.2022.979277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
Analysis of T lymphocyte proliferation and activation after antigenic or mitogenic stimulation is a vital parameter used in the diagnosis of various immuno-deficiencies and during the monitoring of treatment responses. Most applied techniques are based on the incorporation of tritiated thymidine (3H-TdR) or ELISPOT analysis, both rely on rather time-consuming/-intensive ex vivo protocols or encompass inherent drawbacks such as the inability to distinguish specific cell populations (3H-TdR, ELISPOT) or focus on a single cytokine (ELISPOT). Here we aimed at characterizing the rapid expression of intracellular CD154 (CD40L) as a marker for rare antigen-specific CD4+ T cells in pemphigus vulgaris (PV). Upon stimulation with human desmoglein (Dsg) 3, the major autoantigen in PV, the expression of CD154 was significantly increased in PV patients compared to healthy controls (HC) and correlated with anti-Dsg3 IgG titers. Patients with active disease showed higher numbers of Dsg3-reactive CD4+ T cells in CXCR5+ T follicular helper cells. In remittent PV and HC, CXCR5+CD4+ T cells remained largely unaffected by Dsg3. IL-17 and IL-21 expression were significantly induced only in CD154+CD4+ T cells from PV patients, lending themselves as potential novel treatment targets. Additionally, stimulation with immunodominant Dsg3-derived epitopes strongly induced a CD4+ T cell response via CD40-CD154 interaction similar to the human Dsg3 protein. We here established a rapid ex vivo assay allowing the detection of Dsg3-reactive CD4+ T cells from activated systemically available PBMCs, which further supports the crucial concept of antigen-specific T cells in the pathogenesis of PV.
Collapse
Affiliation(s)
- Alexandra Polakova
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Leonie Kauter
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Adina Ismagambetova
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
- *Correspondence: Christoph Hudemann,
| |
Collapse
|
14
|
Lotti R, Atene CG, Zanfi ED, Bertesi M, Zanocco-Marani T. In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus. Int J Mol Sci 2022; 23:7044. [PMID: 35806044 PMCID: PMC9266423 DOI: 10.3390/ijms23137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Pemphigus is a life-threatening autoimmune disease. Several phenotypic variants are part of this family of bullous disorders. The disease is mainly mediated by pathogenic autoantibodies, but is also directed against two desmosomal adhesion proteins, desmoglein 1 (DSG1) and 3 (DSG3), which are expressed in the skin and mucosae. By binding to their antigens, autoantibodies induce the separation of keratinocytes, in a process known as acantholysis. The two main Pemphigus variants are Pemphigus vulgaris and foliaceus. Several models of Pemphigus have been described: in vitro, ex vivo and in vivo, passive or active mouse models. Although no model is ideal, different models display specific characteristics that are useful for testing different hypotheses regarding the initiation of Pemphigus, or to evaluate the efficacy of experimental therapies. Different disease models also allow us to evaluate the pathogenicity of specific Pemphigus autoantibodies, or to investigate the role of previously not described autoantigens. The aim of this review is to provide an overview of Pemphigus disease models, with the main focus being on active models and their potential to reproduce different disease subgroups, based on the involvement of different autoantigens.
Collapse
Affiliation(s)
- Roberta Lotti
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Claudio Giacinto Atene
- Hematology Section, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Emma Dorotea Zanfi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (T.Z.-M.)
| | - Matteo Bertesi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (T.Z.-M.)
| | - Tommaso Zanocco-Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.D.Z.); (M.B.); (T.Z.-M.)
| |
Collapse
|
15
|
Chen S, Zhan S, Hua C, Tang Y, Cheng H. A Novel Combined Use of Dupilumab for Treatment of Aggressive Refractory Pemphigus Vulgaris Complicated With Pulmonary Tuberculosis: A Case Report and the RNA-seq Analysis. Front Immunol 2022; 13:825796. [PMID: 35222408 PMCID: PMC8863860 DOI: 10.3389/fimmu.2022.825796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pemphigus vulgaris (PV) is a kind of IgG-mediated autoimmune blistering disease (AIBD) that is characterized by loss of keratinocyte adhesion in the epithelium of mucous membranes or skin. Recently, pemphigus vulgaris was thought to be associated with classical T helper 2 (TH2)-type cytokines such as interleukin-4 (IL-4) and interleukin-17 (IL-17) signaling pathway. A humanized monoclonal IgG4 antibody called dupilumab binds to the alpha subunit of the interleukin-4 receptor (IL-4Rα) and inhibits the signaling of IL-4 and interleukin-13 (IL-13), which has been successfully applied for atopic dermatitis and asthma. Currently, the clinical trial evaluating dupilumab in bullous pemphigoid is ongoing. Objective To determine whether dupilumab may be of benefit in the aggressive refractory pemphigus vulgaris. Methods We report a 35-year old male with refractory pemphigus vulgaris and pulmonary tuberculosis who received treatment with dupilumab for 10 weeks. The mRNA expression of peripheral blood mononuclear cells (PBMCs) was analyzed by RNA sequencing (RNA-seq) which showed the gene expression changes after treatment. Results The skin lesions of the patient improved in response to the combined use of dupilumab, moderate dose of glucocorticosteroids, and intravenous immune globulin (IVIG). Downregulations of inflammatory response-related genes and IL-17 signaling pathway-related genes were observed in PBMCs. Conclusion We describe a patient with refractory pemphigus vulgaris and pulmonary tuberculosis who had the disease under control with combined use of dupilumab as an add-on treatment. Dupilumab may provide a beneficial effect in aggressive refractory pemphigus vulgaris.
Collapse
Affiliation(s)
- Siji Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaowei Zhan
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Tang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Lim YL, Bohelay G, Hanakawa S, Musette P, Janela B. Autoimmune Pemphigus: Latest Advances and Emerging Therapies. Front Mol Biosci 2022; 8:808536. [PMID: 35187073 PMCID: PMC8855930 DOI: 10.3389/fmolb.2021.808536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pemphigus represents a group of rare and severe autoimmune intra-epidermal blistering diseases affecting the skin and mucous membranes. These painful and debilitating diseases are driven by the production of autoantibodies that are mainly directed against the desmosomal adhesion proteins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1). The search to define underlying triggers for anti-Dsg-antibody production has revealed genetic, environmental, and possible vaccine-driven factors, but our knowledge of the processes underlying disease initiation and pathology remains incomplete. Recent studies point to an important role of T cells in supporting auto-antibody production; yet the involvement of the myeloid compartment remains unexplored. Clinical management of pemphigus is beginning to move away from broad-spectrum immunosuppression and towards B-cell-targeted therapies, which reduce many patients’ symptoms but can have significant side effects. Here, we review the latest developments in our understanding of the predisposing factors/conditions of pemphigus, the underlying pathogenic mechanisms, and new and emerging therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Yen Loo Lim
- Department of Dermatology, National Skin Centre, Singapore
| | - Gerome Bohelay
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Sho Hanakawa
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Philippe Musette
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Baptiste Janela
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology network, Agency for Science, Technology and Research (A*STAR), Singapore
- *Correspondence: Baptiste Janela,
| |
Collapse
|
17
|
Kneiber D, Kowalski EH, Amber KT. The Immunogenetics of Autoimmune Blistering Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:173-212. [DOI: 10.1007/978-3-030-92616-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Ujiie H, Yamagami J, Takahashi H, Izumi K, Iwata H, Wang G, Sawamura D, Amagai M, Zillikens D. The pathogeneses of pemphigus and pemphigoid diseases. J Dermatol Sci 2021; 104:154-163. [PMID: 34916040 DOI: 10.1016/j.jdermsci.2021.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Autoimmune bullous diseases (AIBDs) are skin disorders which are mainly induced by autoantibodies against desmosomal or hemidesmosomal structural proteins. Previous studies using patients' samples and animal disease models identified target antigens and elucidated the mechanisms of blister formation. Pemphigus has been the subject of more active clinical and basic research than any other AIBD. These efforts have revealed the pathogenesis of pemphigus, which in turn has led to optimal diagnostic methods and novel therapies, such as rituximab. In bullous pemphigoid (BP), studies with passive-transfer mouse models using rabbit anti-mouse BP180 antibodies and studies with passive-transfer or active mouse models using autoantigen-humanized mice elucidated the immune reactions to BP180 in vivo. Recently, dipeptidyl peptidase-4 inhibitors have attracted attention as a trigger for BP. For epidermolysis bullosa acquisita (EBA), investigations using mouse models are actively under way and several molecules have been identified as targets for novel therapies. In this review, we give an overview and discussion of the recent progress in our understanding of the pathogenesis of pemphigus, BP, and EBA. Further studies on the breakdown of self-tolerance and on the identification of key molecules that are relevant to blister formation may expand our understanding of the etiology of AIBDs and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Detlef Zillikens
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany, University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Boch K, Dräger S, Zillikens D, Hudemann C, Hammers CM, Patzelt S, Schmidt E, Langan EA, Eming R, Ludwig RJ, Bieber K. Immunization with desmoglein 3 induces non-pathogenic autoantibodies in mice. PLoS One 2021; 16:e0259586. [PMID: 34731225 PMCID: PMC8565724 DOI: 10.1371/journal.pone.0259586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 11/19/2022] Open
Abstract
Background Pemphigus vulgaris (PV) is a rare autoimmune blistering disease characterized by the development of autoantibodies targeting desmoglein (Dsg) 3, but also against Dsg1 in mucocutaneous disease. Given that existing PV animal models only recapitulate aspects of the disease, we aimed to establish a more comprehensive disease model based on the immunization of mice with PV autoantigen(s). Methods The following immunization strategies were tested: (i) C57Bl/6J, B6.SJL-H2s C3c/1CyJ, DBA2/J, or SJL/J mice were immunized with recombinant murine Dsg3 (mDsg3), (ii) DBA2/J and SJL/J mice were immunized with mDsg3 and additionally injected a single non-blister inducing dose of exfoliative toxin A (ETA), and (iii) DBA2/J and SJL/J mice were immunized with human Dsg (hDsg) 1 and 3. Results Despite the induction of autoantibodies in each immunization protocol, the mice did not develop a clinical phenotype. Tissue-bound autoantibodies were not detected in the skin or mucosa. Circulating autoantibodies did not bind to the native antigen in indirect immunofluorescence microscopy using monkey esophagus as a substrate. Conclusion Immunization with PV autoantigens induced non-pathogenic Dsg1/3 antibodies, but did not cause skin/mucous membrane disease in mice. These findings, confirmed by failure of binding of the induced autoantibodies to their target in the skin, suggest that the autoantibodies which were formed were unable to bind to the conformational epitope present in vivo.
Collapse
Affiliation(s)
- Katharina Boch
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- * E-mail:
| | - Sören Dräger
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Phillips-Universität Marburg, Marburg, Germany
| | - Christoph M. Hammers
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Sabrina Patzelt
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Dermatological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Phillips-Universität Marburg, Marburg, Germany
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
20
|
Schmitt T, Waschke J. Autoantibody-Specific Signalling in Pemphigus. Front Med (Lausanne) 2021; 8:701809. [PMID: 34434944 PMCID: PMC8381052 DOI: 10.3389/fmed.2021.701809] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Pemphigus is a severe autoimmune disease impairing barrier functions of epidermis and mucosa. Autoantibodies primarily target the desmosomal adhesion molecules desmoglein (Dsg) 1 and Dsg 3 and induce loss of desmosomal adhesion. Strikingly, autoantibody profiles in pemphigus correlate with clinical phenotypes. Mucosal-dominant pemphigus vulgaris (PV) is characterised by autoantibodies (PV-IgG) against Dsg3 whereas epidermal blistering in PV and pemphigus foliaceus (PF) is associated with autoantibodies against Dsg1. Therapy in pemphigus is evolving towards specific suppression of autoantibody formation and autoantibody depletion. Nevertheless, during the acute phase and relapses of the disease additional treatment options to stabilise desmosomes and thereby rescue keratinocyte adhesion would be beneficial. Therefore, the mechanisms by which autoantibodies interfere with adhesion of desmosomes need to be characterised in detail. Besides direct inhibition of Dsg adhesion, autoantibodies engage signalling pathways interfering with different steps of desmosome turn-over. With this respect, recent data indicate that autoantibodies induce separate signalling responses in keratinocytes via specific signalling complexes organised by Dsg1 and Dsg3 which transfer the signal of autoantibody binding into the cell. This hypothesis may also explain the different clinical pemphigus phenotypes.
Collapse
Affiliation(s)
- Thomas Schmitt
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| | - Jens Waschke
- Ludwig-Maximilian-Universität München, Anatomische Anstalt, Lehrstuhl Anatomie I - Vegetative Anatomie, Munich, Germany
| |
Collapse
|
21
|
Hudemann C, Maglie R, Llamazares M, Beckert B, Didona D, Tikkanen R, Schmitt T, Hashimoto T, Waschke J, Hertl M, Eming R. Human desmocollin 3-specific IgG antibodies are pathogenic in a humanized HLA-class II transgenic mouse model of pemphigus. J Invest Dermatol 2021; 142:915-923.e3. [PMID: 34265330 DOI: 10.1016/j.jid.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Pemphigus is a potentially lethal autoimmune bullous skin disorder, which is associated with IgG autoantibodies against desmoglein 3 (Dsg3) and Dsg1. Notably, a subset of pemphigus patients presents with a similar clinical phenotype in the absence of anti-Dsg IgG, suggesting the presence of serum IgG reactive with desmosomal components other than Dsg1 or Dsg3. We and others have previously shown that such patients have serum IgG autoantibodies against desmocollin 3 (Dsc3), a component of desmosomes, that induce loss of keratinocyte adhesion ex vivo. Moreover, Dsc3 hypomorphic mice show a severe blistering phenotype of the mucous membrane which is highly characteristic in pemphigus. These findings prompted us to study induction and regulation of anti-human Dsc3 IgG in humanized mice transgenic for HLA-DRB1*04:02, which is a highly prevalent haplotype in pemphigus. We show that IgG from sera of immunized mice induce acantholysis in a dispase-based keratinocyte dissociation assay via the activation of p38 mitogen-activated protein kinases and epidermal growth factor receptor. Passive IgG transfer from mice immunized with recombinant human Dsc3 into neonates did not induce intraepidermal loss of adhesion presumably due to the lack of homology between human and mouse Dsc3. Ex vivo stimulation of splenocytes from Dsc3-immunized mice with human Dsc3 leads to a significant proliferative interferon-γ and interleukin 4 T cell response, which is restricted by HLA-DR/DQ. These findings suggest that induction of pathogenic anti-Dsc3 IgG is associated with Dsc3-specific T cells that recognize Dsc3 in association with HLA-DRB1*04:02.
Collapse
Affiliation(s)
- C Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany.
| | - R Maglie
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany; Section of Dermatology, Department of Health Sciences, University of Florence, Italy
| | - M Llamazares
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany; Cancer Epigenomics Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - B Beckert
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - D Didona
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - R Tikkanen
- Institute of Biochemistry, Medical Faculty, University of Giessen, Giessen, Germany
| | - T Schmitt
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - T Hashimoto
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - J Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - M Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - R Eming
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany; Klinik III Dermatologie, Venerologie & Allergologie, Bundeswehrzentralkrankenhaus Koblenz, Koblenz, Germany
| |
Collapse
|
22
|
van Beek N, Zillikens D, Schmidt E. Bullous Autoimmune Dermatoses–Clinical Features, Diagnostic Evaluation, and Treatment Options. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:413-420. [PMID: 34369370 PMCID: PMC8380840 DOI: 10.3238/arztebl.m2021.0136] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/03/2020] [Accepted: 01/27/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bullous autoimmune dermatoses are a clinically and immunopatho - logically heterogeneous group of diseases, characterized clinically by blisters or erosions of the skin and/or mucous membranes. In Germany, their prevalence is approximately 40 000 cases nationwide, and their incidence approximately 20 new cases per million people per year. METHODS This review is based on publications that were retrieved by a selective search of the literature focusing on the current German and European guidelines. RESULTS Recent years have seen the publication of guidelines, controlled prospective clinical trials, and multicenter diagnostic studies improving both diagnosis and therapy. Specific monovalent and multivariate serological test systems and pattern analysis of tissue-bound autoantibodies allow identification of the target antigens in 80-90% of patients. This enables the precise classification of disease entities, with implications for treatment selection and disease outcome. In 2019, the anti-CD20 antibody rituximab was approved by the European Medicines Agency for the treatment of moderate and severe pemphigus vulgaris, with an ensuing marked improvement in the care of the affected patients. To treat mild and moderate bullous pemphigoid, topical clobetasol proprionate is recommended, in severe disease, combined with systemic treatment, i.e. usually (a) prednisolone p.o. at an initial dose of 0.5mg/kg/d , (b) an immunomodulant, e.g. dapsone or doxycycline, or (c) prednisolone plus an immunomodulant. CONCLUSION The early recognition and precise diagnostic evaluation of bullous autoimmune dermatoses now enables improved, often interdisciplinary treatment, in accordance with the available guidelines. Current research projects are focused on new treatment approaches, an improved understanding of the underlying pathophysiology, and further refinements of diagnostic techniques.
Collapse
Affiliation(s)
- Nina van Beek
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Department of Dermatology, Venereology, and Allergology, University of Lübeck, Lübeck, Germany
- Lu¨beck Institute of Experimental Dermatology (LIED), University of Lu¨beck, Lu¨beck, Germany
| |
Collapse
|
23
|
Wieber K, Zimmer CL, Hertl M. Detection of autoreactive CD4+ T cells by MHC class II multimers in HLA-linked human autoimmune diseases. J Clin Invest 2021; 131:148674. [PMID: 33938450 DOI: 10.1172/jci148674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Recognition of self-peptides in association with distinct HLA class II alleles by autoreactive CD4+ T cells is central for loss of immunological tolerance leading to autoimmune disease. However, identifying immunodominant self-peptides and characterizing autoreactive T cells is challenging. In this issue of the JCI, Falta et al. identify a disease-associated complementarity-determining region 3β motif specific for beryllium-modified C-C motif ligand 4 (CCL4) and CCL3 self-peptides in patients with chronic beryllium disease (CBD), a granulomatous lung disorder with a known HLA class II allelic association. Detection of these antigen-specific CD4+ T cells by beryllium-pulsed HLA-DP2 tetramers presenting CCL4/CCL3 confirms these autoantigens in humans and mice and enables monitoring in the progress of disease. Detection of autoreactive CD4+ T cells by peptide-MHC class II multimers allows for the detailed characterization of disease-promoting T cells. This knowledge has profound implications for the monitoring and development of targeted therapies in human autoimmune disorders.
Collapse
|
24
|
Neri D, Carevic-Neri M, Brück J, Holstein J, Schäfer I, Solimani F, Handgretinger R, Hartl D, Ghoreschi K. Arginase 1 + IL-10 + polymorphonuclear myeloid-derived suppressor cells are elevated in patients with active pemphigus and correlate with an increased Th2/Th1 response. Exp Dermatol 2021; 30:782-791. [PMID: 33528891 DOI: 10.1111/exd.14298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which are characterized by their capability to suppress T-cell responses. While MDSCs have been traditionally associated with cancer diseases, their role as regulators of autoimmune diseases is emerging. Pemphigus is a chronic autoimmune blistering skin disease characterized by dysregulated T-cell responses and autoantibody production. The role of MDSCs in pemphigus disease has not been defined yet. The aim of this study was to characterize MDSCs in pemphigus patients and to dissect their relationship with CD4+ T-cell subsets and clinical disease assessments. For this purpose, we performed a cross-sectional analysis of 20 patients with pemphigus. Our results indicate that a population of CD66b+ CD11b+ polymorphonuclear-like MDSCs (PMN-MDSCs) is expanded in the peripheral blood mononuclear cell fraction of pemphigus patients compared to age-matched healthy donors. These PMN-MDSCs have the capability of suppressing allogeneic T-cell proliferation in vitro and show increased expression of characteristic effector molecules such as arginase I and interleukin-10. We further demonstrate that PMN-MDSCs are especially expanded in patients with active pemphigus, but not in patients in remission. Moreover, MDSC frequencies correlate with an increased Th2/Th1 cell ratio. In conclusion, the identification of a functional PMN-MDSC population suggests a possible role of these cells as regulators of Th cell responses in pemphigus.
Collapse
Affiliation(s)
- Davide Neri
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Pediatrics 1, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Melanie Carevic-Neri
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jürgen Brück
- Department of Dermatology, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Julia Holstein
- Department of Dermatology, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Iris Schäfer
- Department of Dermatology, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Farzan Solimani
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rupert Handgretinger
- Department of Pediatrics 1, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics 1, Medical Center Tübingen, Eberhard Karls University, Tübingen, Germany.,Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Kamran Ghoreschi
- Molecular Immunology Charité (MIC), Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität of Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
Eming R, Zimmer CL, Hertl M. Pemphigus: a critical analysis on clinical subtypes, pathogenesis, diagnostics and established novel therapeutics. Ital J Dermatol Venerol 2020; 156:121-123. [PMID: 33314892 DOI: 10.23736/s2784-8671.20.06790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Christine L Zimmer
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany -
| |
Collapse
|
26
|
Lee J, Lundgren DK, Mao X, Manfredo-Vieira S, Nunez-Cruz S, Williams EF, Assenmacher CA, Radaelli E, Oh S, Wang B, Ellebrecht CT, Fraietta JA, Milone MC, Payne AS. Antigen-specific B cell depletion for precision therapy of mucosal pemphigus vulgaris. J Clin Invest 2020; 130:6317-6324. [PMID: 32817591 PMCID: PMC7685721 DOI: 10.1172/jci138416] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/11/2020] [Indexed: 01/20/2023] Open
Abstract
Desmoglein 3 chimeric autoantibody receptor T cells (DSG3-CAART) expressing the pemphigus vulgaris (PV) autoantigen DSG3 fused to CD137-CD3ζ signaling domains, represent a precision cellular immunotherapy approach for antigen-specific B cell depletion. Here, we present definitive preclinical studies enabling a first-in-human trial of DSG3-CAART for mucosal PV. DSG3-CAART specifically lysed human anti-DSG3 B cells from PV patients and demonstrated activity consistent with a threshold dose in vivo, resulting in decreased target cell burden, decreased serum and tissue-bound autoantibodies, and increased DSG3-CAART engraftment. In a PV active immune model with physiologic anti-DSG3 IgG levels, DSG3-CAART inhibited antibody responses against pathogenic DSG3 epitopes and autoantibody binding to epithelial tissues, leading to clinical and histologic resolution of blisters. DSG3 autoantibodies stimulated DSG3-CAART IFN-γ secretion and homotypic clustering, consistent with an activated phenotype. Toxicology screens using primary human cells and high-throughput membrane proteome arrays did not identify off-target cytotoxic interactions. These preclinical data guided the trial design for DSG3-CAART and may help inform CAART preclinical development for other antibody-mediated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Enrico Radaelli
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Pemphigus vulgaris (PV) is a severe chronic autoimmune blistering disease that affects the skin and mucous membranes. It is characterized by suprabasal acantholysis due to disruption of desmosomal connections between keratinocytes. Autoantibodies against desmosomal cadherins, desmoglein 3 and 1, have been shown to induce disease. Certain human leukocyte antigen (HLA) types and non-HLA foci confer genetic susceptibility. Until the discovery of corticosteroids in the 1950s, PV was 75% fatal. Since then, multiple PV treatments, such as systemic corticosteroids and adjunctive therapy with immunosuppressive medications (mycophenolate mofetil, azathioprine, cyclophosphamide, cyclosporine, methotrexate, gold, and others) have been introduced; however, none have led to long-term remissions and many have undesired adverse effects. Our growing understanding of the pathophysiologic mechanisms in PV is leading to development of new targeted therapies, such as intravenous immunoglobulin, anti-CD20 monoclonal antibodies, inhibitors of Bruton tyrosine kinase and neonatal Fc receptors, and adoptive cellular transfer, that may result in lasting control of this life-threatening disease.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Autoantibodies/immunology
- Autoantibodies/metabolism
- Combined Modality Therapy/methods
- Drug Therapy, Combination/methods
- Genetic Predisposition to Disease
- HLA Antigens/genetics
- HLA Antigens/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoglobulins, Intravenous/pharmacology
- Immunoglobulins, Intravenous/therapeutic use
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Immunotherapy, Adoptive/methods
- Molecular Targeted Therapy/methods
- Pemphigus/genetics
- Pemphigus/immunology
- Pemphigus/therapy
- Plasmapheresis
- Receptors, Fc/antagonists & inhibitors
- Receptors, Fc/metabolism
- Remission Induction/methods
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Emily M Altman
- Department of Dermatology, University of New Mexico, 1021 Medical Arts Avenue NE, Albuquerque, NM, 87102, USA.
| |
Collapse
|
28
|
Abstract
Haematological malignancies induce important alterations of the immune system, which account for the high frequency of autoimmune complications observed in patients. Cutaneous immune-mediated diseases associated with haematological malignancies encompass a heterogeneous group of dermatoses, including, among others, neutrophilic and eosinophilic dermatoses, autoantibody-mediated skin diseases, vasculitis and granulomatous dermatoses. Some of these diseases, such as paraneoplastic pemphigus, are associated with an increased risk of death; others, such as eosinophilic dermatoses of haematological malignancies, run a benign clinical course but portend a significant negative impairment on a patient’s quality of life. In rare cases, the skin eruption reflects immunological alterations associated with an unfavourable prognosis of the associated haematological disorder. Therapeutic management of immune-mediated skin diseases in patients with haematological malignancies is often challenging. Systemic corticosteroids and immunosuppressive drugs are considered frontline therapies but may considerably augment the risk of serious infections. Indeed, developing a specific targeted therapeutic approach is of crucial importance for this particularly fragile patient population. This review provides an up-to-date overview on the immune-mediated skin diseases most frequently encountered by patients with onco-haematological disorders, discussing new pathogenic advances and therapeutic options on the horizon.
Collapse
|
29
|
Abstract
Pemphigus consists of a group of rare and severe autoimmune blistering diseases mediated by pathogenic autoantibodies mainly directed against two desmosomal adhesion proteins, desmoglein (Dsg)1 and Dsg3 (also known as DG1 and DG3), which are present in the skin and surface-close mucosae. The binding of autoantibodies to Dsg proteins induces a separation of neighbouring keratinocytes, in a process known as acantholysis. The two main pemphigus variants are pemphigus vulgaris, which often originates with painful oral erosions, and pemphigus foliaceus, which is characterised by exclusive skin lesions. Pemphigus is diagnosed on the basis of either IgG or complement component 3 deposits (or both) at the keratinocyte cell membrane, detected by direct immunofluorescence microscopy of a perilesional biopsy, with serum anti-Dsg1 or anti-Dsg3 antibodies (or both) detected by ELISA. Corticosteroids are the therapeutic mainstay, which have recently been complemented by the anti-CD20 antibody rituximab in moderate and severe disease. Rituximab induces complete remission off therapy in 90% of patients, despite rapid tapering of corticosteroids, thus allowing for a major corticosteroid-sparing effect and a halved number of adverse events related to corticosteroids.
Collapse
Affiliation(s)
- Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute for Experimental Dermatology, University of Lübeck, Lübeck, Germany.
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pascal Joly
- Department of Dermatology, Rouen University Hospital, Rouen, France; INSERM Unit 2345, French Reference Center for Autoimmune Bullous Diseases, Normandy University, Rouen, France
| |
Collapse
|
30
|
Cho A, Caldara AL, Ran NA, Menne Z, Kauffman RC, Affer M, Llovet A, Norwood C, Scanlan A, Mantus G, Bradley B, Zimmer S, Schmidt T, Hertl M, Payne AS, Feldman R, Kowalczyk AP, Wrammert J. Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Rep 2019; 28:909-922.e6. [PMID: 31340153 PMCID: PMC6684256 DOI: 10.1016/j.celrep.2019.06.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease characterized by blistering sores on skin and mucosal membranes, caused by autoantibodies primarily targeting the cellular adhesion protein, desmoglein-3 (Dsg3). To better understand how Dsg3-specific autoantibodies develop and cause disease in humans, we performed a cross-sectional study of PV patients before and after treatment to track relevant cellular responses underlying disease pathogenesis, and we provide an in-depth analysis of two patients by generating a panel of mAbs from single Dsg3-specific memory B cells (MBCs). Additionally, we analyzed a paired sample from one patient collected 15-months prior to disease diagnosis. We find that Dsg3-specific MBCs have an activated phenotype and show signs of ongoing affinity maturation and clonal selection. Monoclonal antibodies (mAbs) with pathogenic activity primarily target epitopes in the extracellular domains EC1 and EC2 of Dsg3, though they can also bind to the EC4 domain. Combining antibodies targeting different epitopes synergistically enhances in vitro pathogenicity.
Collapse
Affiliation(s)
- Alice Cho
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Amber L Caldara
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nina A Ran
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zach Menne
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert C Kauffman
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Maurizio Affer
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Llovet
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Carson Norwood
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aaron Scanlan
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Grace Mantus
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bridget Bradley
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie Zimmer
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Feldman
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
31
|
Didona D, Maglie R, Eming R, Hertl M. Pemphigus: Current and Future Therapeutic Strategies. Front Immunol 2019; 10:1418. [PMID: 31293582 PMCID: PMC6603181 DOI: 10.3389/fimmu.2019.01418] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
Pemphigus encompasses a heterogeneous group of autoimmune blistering diseases, which affect both mucous membranes and the skin. The disease usually runs a chronic-relapsing course, with a potentially devastating impact on the patients' quality of life. Pemphigus pathogenesis is related to IgG autoantibodies targeting various adhesion molecules in the epidermis, including desmoglein (Dsg) 1 and 3, major components of desmosomes. The pathogenic relevance of such autoantibodies has been largely demonstrated experimentally. IgG autoantibody binding to Dsg results in loss of epidermal keratinocyte adhesion, a phenomenon referred to as acantholysis. This in turn causes intra-epidermal blistering and the clinical appearance of flaccid blisters and erosions at involved sites. Since the advent of glucocorticoids, the overall prognosis of pemphigus has largely improved. However, mortality persists elevated, since long-term use of high dose corticosteroids and adjuvant steroid-sparing immunosuppressants portend a high risk of serious adverse events, especially infections. Recently, rituximab, a chimeric anti CD20 monoclonal antibody which induces B-cell depletion, has been shown to improve patients' survival, as early rituximab use results in higher disease remission rates, long term clinical response and faster prednisone tapering compared to conventional immunosuppressive therapies, leading to its approval as a first line therapy in pemphigus. Other anti B-cell therapies targeting B-cell receptor or downstream molecules are currently tried in clinical studies. More intriguingly, a preliminary study in a preclinical mouse model of pemphigus has shown promise regarding future therapeutic application of Chimeric Autoantibody Receptor T-cells engineered using Dsg domains to selectively target autoreactive B-cells. Conversely, previous studies from our group have demonstrated that B-cell depletion in pemphigus resulted in secondary impairment of T-cell function; this may account for the observed long-term remission following B-cell recovery in rituximab treated patients. Likewise, our data support the critical role of Dsg-specific T-cell clones in orchestrating the inflammatory response and B-cell activation in pemphigus. Monitoring autoreactive T-cells in patients may indeed provide further information on the role of these cells, and would be the starting point for designating therapies aimed at restoring the lost immune tolerance against Dsg. The present review focuses on current advances, unmet challenges and future perspectives of pemphigus management.
Collapse
Affiliation(s)
- Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Roberto Maglie
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany.,Surgery and Translational Medicine, Section of Dermatology, University of Florence, Florence, Italy.,Section of Dermatology, Departement of Health Sciences, University of Florence, Florence, Italy
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| |
Collapse
|
32
|
Boehncke WH, Brembilla NC. Autoreactive T-Lymphocytes in Inflammatory Skin Diseases. Front Immunol 2019; 10:1198. [PMID: 31191553 PMCID: PMC6549194 DOI: 10.3389/fimmu.2019.01198] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The presence of one or several autoantigen(s) and a response by the adaptive immune system are the key criteria to classify a pathology as an autoimmune disease. The list of entities fulfilling this criterion is currently growing in the light of recent advancements in the pathogenetic understanding of a number of important dermatoses. The role of autoreactive T-lymphocytes differs amongst these pathologies. While they are directly involved as effector cells attacking and sometimes killing their respective target in some diseases (e.g., vitiligo), they provide help to B-lymphocytes, which in turn produce the pathogenic autoreactive antibodies in others (pemphigus and pemphigoid). Atopic dermatits is a chimera in this regard, as there is evidence for both functions. Psoriasis is an example for an entity where autoantigens were finally identified, suggesting that at least a subgroup of patients should be classified as suffering from a true autoimmune rather than autoinflammatory condition. Identification of resident memory T-lymphocytes (TRM) helped to understand why certain diseases relapse at the same site after seemingly effective therapy. Therefore, the in-depth characterization of autoreactive T-lyphocytes goes way beyond an academic exercise and opens the door toward improved therapies yielding durable responses. TRM are particularly suitable targets in this regard, and the clinical efficacy of some established and emerging therapeutic strategies such as the inhibition of Janus Kinase 3 or interleukin 15 may rely on their capacity to prevent TRM differentiation and maintenance. Research in this field brings us closer to the ultimate goal in the management of autoimmunity at large, namely resetting the immune system in order to restore the state of tolerance.
Collapse
Affiliation(s)
- Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Divison of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| | | |
Collapse
|
33
|
Abstract
BACKGROUND Pemphigus diseases are a heterogeneous group of potentially life-threatening autoimmune bullous disorders. Therefore, rapidly acting and effective therapeutic approaches are essential. OBJECTIVES In this review, current therapeutic options in line with available guidelines are presented and new therapeutic approaches are discussed. METHODS A literature search was performed using PubMed. RESULTS Treatment of pemphigus is based on systemic glucocorticosteroids, frequently combined with potentially corticosteroid-sparing immunosuppressants such as azathioprine and mycophenolate mofetil/mycophenolic acid. Recently, the impressive efficacy of the anti-CD20 antibody rituximab has been shown in a prospective randomized trial. In severe or treatment-refractory cases, immunoadsorption or high-dose intravenous immunoglobulins (IVIG) are recommended. Adjuvant immunoadsorption also seems to be useful within the first 8-12 weeks of therapy in patients with very high autoantibody levels. A variety of new therapeutic approaches is currently evaluated in phase IIa studies. CONCLUSION Therapy of pemphigus has been greatly improved by the employment of rituximab. The use of glucocorticosteroids, associated with a high number of adverse events and elevated mortality, could be reduced by the additional use of rituximab. After approval of rituximab for the treatment of pemphigus by the US Food and Drug Administration in 2018, licensing in Europe is expected in 2019.
Collapse
Affiliation(s)
- N van Beek
- Klinik für Dermatologie, Allergologie und Venerologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| | - D Zillikens
- Klinik für Dermatologie, Allergologie und Venerologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - E Schmidt
- Klinik für Dermatologie, Allergologie und Venerologie, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.,Lübecker Institut für Experimentelle Dermatologie (LIED), Universität zu Lübeck, Lübeck, Deutschland
| |
Collapse
|
34
|
La Serra L, Salathiel AM, Trevilato TMB, Alves RIS, Segura-Muñoz SI, de Oliveira Souza VC, Barbosa F, Roselino AM. Trace element profile in pemphigus foliaceus and in pemphigus vulgaris patients from Southeastern Brazil. J Trace Elem Med Biol 2019; 51:31-35. [PMID: 30466935 DOI: 10.1016/j.jtemb.2018.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022]
Abstract
Pemphigus foliaceus (PF) and pemphigus vulgaris (PV) are autoimmune bullous diseases; they are endemic in the northeastern region of the state of São Paulo, Southeastern Brazil. Patients' copper (Cu), zinc (Zn), and selenium (Se) metabolic deficiencies have already been associated with PV pathogenesis in the Middle East but not in Brazil. Lead (Pb), Cu, Zn, and Se concentrations were determined in whole blood or serum samples obtained from 56 PV patients, 62 PF patients, and 135 healthy controls from the endemic region and compared. The PV patients had higher (above the reference values) Pb and lower Zn levels as compared to controls. Both the PV and the PF patients presented decreased Se levels as compared to controls. The PV, PF, and control groups did not differ in terms of Cu concentration. These results indicate that high Pb blood levels are related with environmental contamination and consequently with PV pathogenesis. Moreover, Zn and Se depletion, observed in the PV patients and in the PV and the PF patients, respectively, may result from metabolic consumption verified in chronic diseases.
Collapse
Affiliation(s)
- Leonardo La Serra
- Laboratory of the Division of Dermatology, University Hospital, Ribeirão Preto Medical School, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil.
| | - Adriana M Salathiel
- Laboratory of the Division of Dermatology, University Hospital, Ribeirão Preto Medical School, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Tânia M B Trevilato
- Pediatric Department, University Hospital, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | - Renato I S Alves
- Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto Nursing School, University of São Paulo, São Paulo, Brazil
| | - Susana I Segura-Muñoz
- Laboratory of Ecotoxicology and Environmental Parasitology, Ribeirão Preto Nursing School, University of São Paulo, São Paulo, Brazil
| | - Vanessa Cristina de Oliveira Souza
- Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Fernando Barbosa
- Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Roselino
- Laboratory of the Division of Dermatology, University Hospital, Ribeirão Preto Medical School, Avenida Bandeirantes, 3900, 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
35
|
Saha M, Harman K, Mortimer NJ, Binda V, Black MM, Kondeatis E, Vaughan R, Groves RW. Sporadic pemphigus foliaceus and class II human leucocyte antigen allele associations in the white British and Indo-Asian populations in the UK. Clin Exp Dermatol 2018; 44:290-294. [PMID: 30280412 DOI: 10.1111/ced.13774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Pemphigus foliaceus (PF) has both genetic and environmental susceptibility factors. Current data on human leucocyte antigen (HLA) in patients with sporadic PF are limited. AIM To better define the distribution of HLA alleles in patients with PF in the UK. METHODS We recruited 36 patients [26 of white British (WB) descent, 10 of Indo-Asian (IA) descent] with PF who were living in the UK and 159 ethnically matched normal controls, and analysed their class II HLA DRB1 and DQB1 allele distribution. RESULTS There was an increased frequency of DRB1*1404 in association with DQB1*0503 in IA patients with PF. The DRB1*04 allele group as a whole had an increased frequency (P < 0.001) in the WB patient group compared with controls. The alleles contributing to this significance were DRB1*0401 (P = 0.03) and DRB1*0404 (P < 0.01). CONCLUSION This is the largest HLA association study in sporadic PF from the UK to date. There appears to be a difference in PF susceptibility alleles between WB and IA patients, highlighting the importance of racial variation in genetic susceptibility to disease development.
Collapse
Affiliation(s)
- M Saha
- Department of Immunodermatology, St John's Institute of Dermatology, Kings College London, London, UK
| | - K Harman
- Department of Dermatology, University Hospitals Leicester, Leicester, UK
| | - N J Mortimer
- Department of Dermatology, University Hospitals Leicester, Leicester, UK
| | - V Binda
- Clinical Transplantation Laboratory, GSTS and MRC Centre for Transplantation, Kings College London, London, UK
| | - M M Black
- Department of Immunodermatology, St John's Institute of Dermatology, Kings College London, London, UK
| | - E Kondeatis
- Clinical Transplantation Laboratory, GSTS and MRC Centre for Transplantation, Kings College London, London, UK
| | - R Vaughan
- Clinical Transplantation Laboratory, GSTS and MRC Centre for Transplantation, Kings College London, London, UK
| | - R W Groves
- Department of Immunodermatology, St John's Institute of Dermatology, Kings College London, London, UK
| |
Collapse
|
36
|
Abstract
Pemphigus and pemphigoid are characterized as autoimmune blistering diseases in which immunoglobulin G autoantibodies cause blisters and erosions of the skin or mucosa or both. Recently, understanding of the pathophysiology of pemphigus and pemphigoid has been furthered by genetic analyses, characterization of autoantibodies and autoreactive B cells, and elucidation of cell–cell adhesion between keratinocytes. For the management of pemphigus and pemphigoid, the administration of systemic corticosteroids still represents the standard treatment strategy; however, evidence of the efficacy of therapies not involving corticosteroids, such as those employing anti-CD20 antibodies, is increasing. The goal should be to develop antigen-specific immune suppression-based treatments.
Collapse
Affiliation(s)
- Jun Yamagami
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
37
|
Schmidt T, Solimani F, Pollmann R, Stein R, Schmidt A, Stulberg I, Kühn K, Eming R, Eubel V, Kind P, Arweiler N, Sitaru C, Hertl M. T H1/T H17 cell recognition of desmoglein 3 and bullous pemphigoid antigen 180 in patients with lichen planus. J Allergy Clin Immunol 2018; 142:669-672.e7. [PMID: 29626572 DOI: 10.1016/j.jaci.2018.02.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2018] [Accepted: 02/21/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Farzan Solimani
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Ronja Stein
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Ansgar Schmidt
- Department of Pathology, Philipps-University, Marburg, Germany
| | - Inna Stulberg
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Katja Kühn
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Verena Eubel
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Peter Kind
- Hautzentrum Offenbach, Offenbach, Germany
| | - Nicole Arweiler
- Department of Periodontology, Philipps-University, Marburg, Germany
| | - Cassian Sitaru
- Department of Dermatology, Albert-Ludwigs-University, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany.
| |
Collapse
|
38
|
Ahmed AR, Carrozzo M, Caux F, Cirillo N, Dmochowski M, Alonso AE, Gniadecki R, Hertl M, López-Zabalza MJ, Lotti R, Pincelli C, Pittelkow M, Schmidt E, Sinha AA, Sprecher E, Grando SA. Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology. Exp Dermatol 2018; 25:839-846. [PMID: 27305362 DOI: 10.1111/exd.13106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 01/31/2023]
Abstract
This viewpoint highlights major, partly controversial concepts about the pathogenesis of pemphigus. The monopathogenic theory explains intra-epidermal blistering through the "desmoglein (Dsg) compensation" hypothesis, according to which an antibody-dependent disabling of Dsg 1- and/or Dsg 3-mediated cell-cell attachments of keratinocytes (KCs) is sufficient to disrupt epidermal integrity and cause blistering. The multipathogenic theory explains intra-epidermal blistering through the "multiple hit" hypothesis stating that a simultaneous and synchronized inactivation of the physiological mechanisms regulating and/or mediating intercellular adhesion of KCs is necessary to disrupt epidermal integrity. The major premise for a multipathogenic theory is that a single type of autoantibody induces only reversible changes, so that affected KCs can recover due to a self-repair. The damage, however, becomes irreversible when the salvage pathway and/or other cell functions are altered by a partnering autoantibody and/or other pathogenic factors. Future studies are needed to (i) corroborate these findings, (ii) characterize in detail patient populations with non-Dsg-specific autoantibodies, and (iii) determine the extent of the contribution of non-Dsg antibodies in disease pathophysiology.
Collapse
Affiliation(s)
- A Razzaque Ahmed
- Department of Dermatology of Tufts University and Center for Blistering Diseases, Boston, MA, USA
| | - Marco Carrozzo
- School of Dental Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Frédéric Caux
- Department of Dermatology, University Paris 13, Avicenne Hospital, APHP, Bobigny, France
| | - Nicola Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, Vic., Australia
| | - Marian Dmochowski
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agustín España Alonso
- Department of Dermatology, School of Medicine, University Clinic of Navarra, University of Navarra, Navarra, Spain
| | - Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | | | - Roberta Lotti
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Mark Pittelkow
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Sergei A Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
39
|
Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a Comprehensive Review on Pathogenesis, Clinical Presentation and Novel Therapeutic Approaches. Clin Rev Allergy Immunol 2018; 54:1-25. [DOI: 10.1007/s12016-017-8662-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
40
|
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, Kowalczyk AP, Müller EJ, Payne AS, Pincelli C, Sinha AA, Sprecher E, Zillikens D, Hertl M, Waschke J. Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol 2017; 138:32-37. [PMID: 29037765 DOI: 10.1016/j.jid.2017.06.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
The autoimmune blistering skin disease pemphigus is caused by IgG autoantibodies against desmosomal cadherins, but the precise mechanisms are in part a matter of controversial discussions. This review focuses on the currently existing models of the disease and highlights the relevance of desmoglein-specific versus nondesmoglein autoantibodies, the contribution of nonautoantibody factors, and the mechanisms leading to cell dissociation and blister formation in response to autoantibody binding. As the review brings together the majority of laboratories currently working on pemphigus pathogenesis, it aims to serve as a solid basis for further investigations for the entire field.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Rüdiger Eming
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Sergei Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, California, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew P Kowalczyk
- Departments of Cell Biology and Dermatology, Emory University, Atlanta, Georgia, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Bern, Switzerland; Vetsuisse Faculty, DermFocus, Bern, Switzerland; Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, University of Modena and Reggio Emilia, Modena, Italy
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
41
|
Abstract
Pemphigus is a group of IgG-mediated autoimmune diseases of stratified squamous epithelia, such as the skin and oral mucosa, in which acantholysis (the loss of cell adhesion) causes blisters and erosions. Pemphigus has three major subtypes: pemphigus vulgaris, pemphigus foliaceus and paraneoplastic pemphigus. IgG autoantibodies are characteristically raised against desmoglein 1 and desmoglein 3, which are cell-cell adhesion molecules found in desmosomes. The sites of blister formation can be physiologically explained by the anti-desmoglein autoantibody profile and tissue-specific expression pattern of desmoglein isoforms. The pathophysiological roles of T cells and B cells have been characterized in mouse models of pemphigus and patients, revealing insights into the mechanisms of autoimmunity. Diagnosis is based on clinical manifestations and confirmed with histological and immunochemical testing. The current first-line treatment is systemic corticosteroids and adjuvant therapies, including immunosuppressive agents, intravenous immunoglobulin and plasmapheresis. Rituximab, a monoclonal antibody against CD20+ B cells, is a promising therapeutic option that may soon become first-line therapy. Pemphigus is one of the best-characterized human autoimmune diseases and provides an ideal paradigm for both basic and clinical research, especially towards the development of antigen-specific immune suppression treatments for autoimmune diseases.
Collapse
|
42
|
Research Techniques Made Simple: Mouse Models of Autoimmune Blistering Diseases. J Invest Dermatol 2017; 137:e1-e6. [DOI: 10.1016/j.jid.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Van Drongelen V, Holoshitz J. A reciprocal HLA-Disease Association in Rheumatoid Arthritis and Pemphigus Vulgaris. Front Biosci (Landmark Ed) 2017; 22:909-919. [PMID: 27814654 DOI: 10.2741/4524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human leukocyte antigens (HLA) have been extensively studied as being antigen presenting receptors, but many aspects of their function remain elusive, especially their association with various autoimmune diseases. Here we discuss an illustrative case of the reciprocal relationship between certain HLA-DRB1 alleles and two diseases, rheumatoid arthritis (RA) and pemphigus vulgaris (PV). RA is strongly associated with HLA-DRB1 alleles that encode a five amino acid sequence motif in the 70-74 region of the DR beta chain, called the shared epitope (SE), while PV is associated with the HLA-DRB1*04:02 allele that encodes a different sequence motif in the same region. Interestingly, while HLA-DRB1*04:02 confers susceptibility to PV, this and other alleles that encode the same sequence motif in the 70-74 region of the DR beta chain are protective against RA. Currently, no convincing explanation for this antagonistic effect is present. Here we briefly review the immunology and immunogenetics of both diseases, identify remaining gaps in our understanding of their association with HLA, and propose the possibility that the 70-74 DR beta epitope may contribute to disease risk by mechanisms other than antigen presentation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- University of Michigan, 5520D MSRB1, SPC 5680, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5680,
| |
Collapse
|
44
|
Hammers CM, Stanley JR. Mechanisms of Disease: Pemphigus and Bullous Pemphigoid. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:175-97. [PMID: 26907530 DOI: 10.1146/annurev-pathol-012615-044313] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pemphigus and bullous pemphigoid are autoantibody-mediated blistering skin diseases. In pemphigus, keratinocytes in epidermis and mucous membranes lose cell-cell adhesion, and in pemphigoid, the basal keratinocytes lose adhesion to the basement membrane. Pemphigus lesions are mediated directly by the autoantibodies, whereas the autoantibodies in pemphigoid fix complement and mediate inflammation. In both diseases, the autoantigens have been cloned and characterized; pemphigus antigens are desmogleins (cell adhesion molecules in desmosomes), and pemphigoid antigens are found in hemidesmosomes (which mediate adhesion to the basement membrane). This knowledge has enabled diagnostic testing for these diseases by enzyme-linked immunosorbent assays and dissection of various pathophysiological mechanisms, including direct inhibition of cell adhesion, antibody-induced internalization of antigen, and cell signaling. Understanding these mechanisms of disease has led to rational targeted therapeutic strategies.
Collapse
Affiliation(s)
- Christoph M Hammers
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; .,Department of Dermatology, University of Luebeck, D-23562 Luebeck, Germany;
| | - John R Stanley
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
45
|
Schmidt T, Willenborg S, Hünig T, Deeg CA, Sonderstrup G, Hertl M, Eming R. Induction of T regulatory cells by the superagonistic anti-CD28 antibody D665 leads to decreased pathogenic IgG autoantibodies against desmoglein 3 in a HLA-transgenic mouse model of pemphigus vulgaris. Exp Dermatol 2016; 25:293-8. [PMID: 26661498 DOI: 10.1111/exd.12919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 01/22/2023]
Abstract
Pemphigus vulgaris (PV) is a potentially life-threatening autoimmune disease of the skin and mucous membranes. Its pathogenesis is based on IgG autoantibodies that target the desmosomal cadherins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1) and induce intra-epidermal loss of adhesion. Although the PV pathogenesis is well-understood, therapeutic options are still limited to immunosuppressive drugs, particularly corticosteroids, which are associated with significant side effects. Dsg3-reactive T regulatory cells (Treg) have been previously identified in PV and healthy carriers of PV-associated HLA class II alleles. Ex vivo, Dsg3-specific Treg cells down-regulated the activation of pathogenic Dsg3-specific T-helper (Th) 2 cells. In this study, in a HLA-DRB1*04:02 transgenic mouse model of PV, peripheral Treg cells were modulated by the use of Treg-depleting or expanding monoclonal antibodies, respectively. Our findings show that, in vivo, although not statistically significant, Treg cells exert a clear down-regulatory effect on the Dsg3-driven T-cell response and, accordingly, the formation of Dsg3-specific IgG antibodies. These observations confirm the powerful immune regulatory functions of Treg cells and identify Treg cells as potential therapeutic modulators in PV.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Willenborg
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology, Department of Immunology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Cornelia A Deeg
- Department of Ophthalmology, Philipps-University Marburg, Marburg, Germany
| | - Grete Sonderstrup
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
46
|
Hennerici T, Pollmann R, Schmidt T, Seipelt M, Tackenberg B, Möbs C, Ghoreschi K, Hertl M, Eming R. Increased Frequency of T Follicular Helper Cells and Elevated Interleukin-27 Plasma Levels in Patients with Pemphigus. PLoS One 2016; 11:e0148919. [PMID: 26872212 PMCID: PMC4752242 DOI: 10.1371/journal.pone.0148919] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/24/2016] [Indexed: 01/24/2023] Open
Abstract
Pemphigus is an autoimmune disease in which IgG auto-antibodies (auto-ab) against the desmosomal cadherins desmoglein (Dsg) 3 and Dsg1 cause loss of epidermal keratinocyte adhesion. Aim of this study was to investigate cytokines derived from antigen-presenting cells (APC) and their relation to CD4+ T cell subpopulations and to the auto-ab response in pemphigus. In this regard, patients with pemphigus were compared to patients with myasthenia gravis (MG), an unrelated auto-ab–mediated autoimmune disease, and healthy controls. In pemphigus and MG, the plasma concentrations of the APC-derived immunomodulatory cytokine IL-27 were highly increased. Strikingly, IL-27 strongly correlated with Dsg-specific IgG auto-ab titers. T helper (Th) 17 cells were augmented in both pemphigus and MG patients while T follicular helper (Tfh) cells, which are essential in providing B cell help, were increased only in pemphigus along with increasing plasma concentrations of IL-21, a cytokine produced by Th17 and Tfh cells. Moreover, we could detect Dsg3-specific autoreactive T cells producing IL-21 upon ex vivo stimulation with Dsg3. These findings suggest that IL-27 and IL-21-producing T cells, are involved in the pathogenesis of pemphigus. The further characterization of IL-21-producing T cells and of the role of IL-27 will lead to a more defined understanding of the auto-ab response in pemphigus.
Collapse
Affiliation(s)
- Tina Hennerici
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Robert Pollmann
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Maria Seipelt
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Björn Tackenberg
- Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
47
|
Pan M, Zhu H, Xu R. Immune cellular regulation on autoantibody production in pemphigus. J Dermatol 2015; 42:11-7. [PMID: 25558947 DOI: 10.1111/1346-8138.12697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Meng Pan
- Department of Dermatology; Rui Jin Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Haiqin Zhu
- Department of Dermatology; Rui Jin Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Renchao Xu
- Department of Dermatology; Rui Jin Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|