1
|
Apoorva E, Jacob R, Rao DN, Kumar S. Helicobacter pylori enhances HLA-C expression in the human gastric adenocarcinoma cells AGS and can protect them from the cytotoxicity of natural killer cells. Helicobacter 2024; 29:e13069. [PMID: 38516860 DOI: 10.1111/hel.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.
Collapse
Affiliation(s)
- Etikala Apoorva
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rini Jacob
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Sim MJW, Brennan P, Wahl KL, Lu J, Rajagopalan S, Sun PD, Long EO. Innate receptors with high specificity for HLA class I-peptide complexes. Sci Immunol 2023; 8:eadh1781. [PMID: 37683038 DOI: 10.1126/sciimmunol.adh1781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Genetic studies associate killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands with a variety of human diseases. The basis for these associations and the relative contribution of inhibitory and activating KIR to NK cell responses are unclear. Because KIR binding to HLA-I is peptide dependent, we performed systematic screens, which totaled more than 3500 specific interactions, to determine the specificity of five KIR for peptides presented by four HLA-C ligands. Inhibitory KIR2DL1 was largely peptide sequence agnostic and could bind ~60% of hundreds of HLA-peptide complexes tested. Inhibitory KIR2DL2, KIR2DL3, and activating KIR2DS1 and KIR2DS4 bound only 10% and down to 1% of HLA-peptide complexes tested, respectively. Activating KIR2DS1, previously described as weak, had high binding affinity for HLA-C, with high peptide sequence specificity. Our data revealed MHC-restricted peptide recognition by germline-encoded NK receptors and suggest that NK cell responses can be shaped by HLA-I-bound immunopeptidomes in the context of disease or infection.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Paul Brennan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Katherine L Wahl
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| |
Collapse
|
3
|
KIR signaling is regulated by electrostatic interaction of its cytosolic tail with the plasma membrane despite being neutral polyampholyte. Proc Natl Acad Sci U S A 2023; 120:e2212987120. [PMID: 36574700 PMCID: PMC9910492 DOI: 10.1073/pnas.2212987120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many receptors signal upon phosphorylation of tyrosine-based motifs in their cytosolic tail, with intrinsic disorder as a common feature. Studies on CD3ζ and CD3ε tails, which are disordered and polybasic, suggested regulation of phosphorylation through accessibility of tyrosines, governed by electrostatic interactions with membrane anionic lipids. We noticed characteristics of intrinsic disorder and previously unappreciated features in tyrosine-based motif-bearing cytosolic tails of many, especially, inhibitory receptors. They are neutral or acidic polyampholytes, with acidic and basic residues linearly segregated. To explore roles of these electrostatic features, we studied inhibitory killer-cell immunoglobulin-like receptor (KIR). Its cytosolic tail is a disordered neutrally charged polyampholyte, wherein juxtamembrane and membrane distal stretches are basic, and the intervening stretch is acidic. Despite lacking net charge, it interacted electrostatically with the plasma membrane. The juxtamembrane stretch was crucial for overall binding, which sequestered tyrosines in the lipid bilayer and restrained their constitutive phosphorylation. Human leukocyte antigen-C ligand binding to KIR released its tail from the plasma membrane to initiate signaling. Tail release occurred independently of KIR polymerization, clustering, or tyrosine phosphorylation, but required acidic residues of the acidic stretch. Tail interaction with the plasma membrane dictated signaling strength of KIR. These results revealed an electrostatic protein-lipid interaction that is unusual in being governed by segregated clusters of acidic and basic residues in polyampholytic disordered region of protein. In contrast to previously known, segregated distribution of oppositely charged residues made both binding and unbinding modules inherent to receptor tail, which could make the interaction an independent signaling switch.
Collapse
|
4
|
A Dual-Functional Orphan Response Regulator Negatively Controls the Differential Transcription of Duplicate groELs and Plays a Global Regulatory Role in Myxococcus. mSystems 2022; 7:e0105621. [PMID: 35353010 PMCID: PMC9040617 DOI: 10.1128/msystems.01056-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Differential transcription of functionally divergent duplicate genes is critical for bacterial cells to properly and competitively function in the environment, but the transcriptional regulation mechanisms remain in mystery. Myxococcus xanthus DK1622 possesses two duplicate groELs with divergent functions. Here, we report that MXAN_4468, an orphan gene located upstream of groEL2, encodes a response regulator (RR) and is responsible for the differential expression regulation of duplicate groELs. This RR protein realizes its negative regulatory role via a novel dual-mode functioning manner: binding to the transcription repressor HrcA to enhance its transcriptional inhibition of duplicate groELs and binding to the 3′ end of the MXAN_4468 sequence to specifically decrease the transcription of the following groEL2. Phosphorylation at the conserved 61st aspartic acid is required to trigger the regulatory functions of MXAN_4468. Pull-down experiment and mutation demonstrated that two noncognate CheA proteins, respectively belonging to the Che8 and Che7 chemosensory pathways, are involved in the protein phosphorylation. A transcriptome analysis, as well as the pull-down experiment, suggested that MXAN_4468 plays a global negative regulatory role in M. xanthus. This study elucidates, for the first time, the regulatory mechanism of differential transcription of bacterial duplicate groELs and suggests a global regulatory role of a dual-functional orphan RR. IMPORTANCE Multiply copied groELs require precise regulation of transcriptions for their divergent cellular functions. Here, we reported that an orphan response regulator (RR) tunes the transcriptional discrepancy of the duplicate groELs in Myxococcus xanthus DK1622 in a dual-functional mode. This RR protein has a conserved phosphorylation site, and the phosphorylation is required for the regulatory functions. Transcriptomic analysis, as well as a pull-down experiment, suggests that the RR plays a global regulatory role in M. xanthus. This study highlights that the dual-functional orphan RR might be involved in conducting the transcriptional symphony to stabilize the complex biological functions in cells.
Collapse
|
5
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
6
|
Hassani SN, Rezaeeyan H, Ghodsi A, Saki N. Restoration of natural killer cell cytotoxicity in the suppressive tumor microenvironment: novel approaches to treat AML. J Hematop 2017. [DOI: 10.1007/s12308-017-0306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Sim MJW, Malaker SA, Khan A, Stowell JM, Shabanowitz J, Peterson ME, Rajagopalan S, Hunt DF, Altmann DM, Long EO, Boyton RJ. Canonical and Cross-reactive Binding of NK Cell Inhibitory Receptors to HLA-C Allotypes Is Dictated by Peptides Bound to HLA-C. Front Immunol 2017; 8:193. [PMID: 28352266 PMCID: PMC5348643 DOI: 10.3389/fimmu.2017.00193] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human natural killer (NK) cell activity is regulated by a family of killer cell immunoglobulin-like receptors (KIRs) that bind human leukocyte antigen (HLA) class I. Combinations of KIR and HLA genotypes are associated with disease, including susceptibility to viral infection and disorders of pregnancy. KIR2DL1 binds HLA-C alleles of group C2 (Lys80). KIR2DL2 and KIR2DL3 bind HLA-C alleles of group C1 (Asn80). However, this model cannot explain HLA-C allelic effects in disease or the impact of HLA-bound peptides. The goal of this study was to determine the extent to which the endogenous HLA-C peptide repertoire can influence the specific binding of inhibitory KIR to HLA-C allotypes. RESULTS The impact of HLA-C bound peptide on inhibitory KIR binding was investigated taking advantage of the fact that HLA-C*05:01 (HLA-C group 2, C2) and HLA-C*08:02 (HLA-C group 1, C1) have identical sequences apart from the key KIR specificity determining epitope at residues 77 and 80. Endogenous peptides were eluted from HLA-C*05:01 and used to test the peptide dependence of KIR2DL1 and KIR2DL2/3 binding to HLA-C*05:01 and HLA-C*08:02 and subsequent impact on NK cell function. Specific binding of KIR2DL1 to the C2 allotype occurred with the majority of peptides tested. In contrast, KIR2DL2/3 binding to the C1 allotype occurred with only a subset of peptides. Cross-reactive binding of KIR2DL2/3 with the C2 allotype was restricted to even fewer peptides. Unexpectedly, two peptides promoted binding of the C2 allotype-specific KIR2DL1 to the C1 allotype. We showed that presentation of endogenous peptides or HIV Gag peptides by HLA-C can promote KIR cross-reactive binding. CONCLUSION KIR2DL2/3 binding to C1 is more peptide selective than that of KIR2DL1 binding to C2, providing an explanation for KIR2DL3-C1 interactions appearing weaker than KIR2DL1-C2. In addition, cross-reactive binding of KIR is characterized by even higher peptide selectivity. We demonstrate a hierarchy of functional peptide selectivity of KIR-HLA-C interactions with relevance to NK cell biology and human disease associations. This selective peptide sequence-driven binding of KIR provides a potential mechanism for pathogen as well as self-peptide to modulate NK cell activation through altering levels of inhibition.
Collapse
Affiliation(s)
- Malcolm J. W. Sim
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
- Lung Immunology Group, Department of Medicine, Imperial College London, London, UK
| | - Stacy A. Malaker
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ayesha Khan
- Lung Immunology Group, Department of Medicine, Imperial College London, London, UK
| | - Janet M. Stowell
- Lung Immunology Group, Department of Medicine, Imperial College London, London, UK
| | | | - Mary E. Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Donald F. Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Daniel M. Altmann
- Lung Immunology Group, Department of Medicine, Imperial College London, London, UK
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Rosemary J. Boyton
- Lung Immunology Group, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
8
|
Zinc-Induced Polymerization of Killer-Cell Ig-like Receptor into Filaments Promotes Its Inhibitory Function at Cytotoxic Immunological Synapses. Mol Cell 2016; 62:21-33. [PMID: 27058785 DOI: 10.1016/j.molcel.2016.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 11/22/2022]
Abstract
The inhibitory function of killer cell immunoglobulin-like receptors (KIR) that bind HLA-C and block activation of human natural killer (NK) cells is dependent on zinc. We report that zinc induced the assembly of soluble KIR into filamentous polymers, as detected by electron microscopy, which depolymerized after zinc chelation. Similar KIR filaments were isolated from lysates of cells treated with zinc, and membrane protrusions enriched in zinc were detected on whole cells by scanning electron microscopy and imaging mass spectrometry. Two independent mutations in the extracellular domain of KIR, away from the HLA-C binding site, impaired zinc-driven polymerization and inhibitory function. KIR filaments formed spontaneously, without the addition of zinc, at functional inhibitory immunological synapses of NK cells with HLA-C(+) cells. Adding to the recent paradigm of signal transduction through higher order molecular assemblies, zinc-induced polymerization of inhibitory KIR represents an unusual mode of signaling by a receptor at the cell surface.
Collapse
|
9
|
Oszmiana A, Williamson DJ, Cordoba SP, Morgan DJ, Kennedy PR, Stacey K, Davis DM. The Size of Activating and Inhibitory Killer Ig-like Receptor Nanoclusters Is Controlled by the Transmembrane Sequence and Affects Signaling. Cell Rep 2016; 15:1957-72. [PMID: 27210755 PMCID: PMC4893158 DOI: 10.1016/j.celrep.2016.04.075] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/15/2016] [Accepted: 04/20/2016] [Indexed: 01/24/2023] Open
Abstract
Super-resolution microscopy has revealed that immune cell receptors are organized in nanoscale clusters at cell surfaces and immune synapses. However, mechanisms and functions for this nanoscale organization remain unclear. Here, we used super-resolution microscopy to compare the surface organization of paired killer Ig-like receptors (KIR), KIR2DL1 and KIR2DS1, on human primary natural killer cells and cell lines. Activating KIR2DS1 assembled in clusters two-fold larger than its inhibitory counterpart KIR2DL1. Site-directed mutagenesis established that the size of nanoclusters is controlled by transmembrane amino acid 233, a lysine in KIR2DS1. Super-resolution microscopy also revealed two ways in which the nanoscale clustering of KIR affects signaling. First, KIR2DS1 and DAP12 nanoclusters are juxtaposed in the resting cell state but coalesce upon receptor ligation. Second, quantitative super-resolution microscopy revealed that phosphorylation of the kinase ZAP-70 or phosphatase SHP-1 is favored in larger KIR nanoclusters. Thus, the size of KIR nanoclusters depends on the transmembrane sequence and affects downstream signaling. Activating and inhibitory NK cell receptors have a distinct nanoscale organization The transmembrane sequence of KIR controls their nanoscale organization Nanoclusters of KIR2DS1 and its adaptor are juxtaposed but mix upon activation Phosphorylation of ZAP-70 or SHP-1 is favored in larger receptor nanoclusters
Collapse
Affiliation(s)
- Anna Oszmiana
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - David J Williamson
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Shaun-Paul Cordoba
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - David J Morgan
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Philippa R Kennedy
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Kevin Stacey
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Daniel M Davis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
10
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|