1
|
Helgers LC, Keijzer NCH, van Hamme JL, Sprokholt JK, Geijtenbeek TBH. Dengue Virus Infects Human Skin Langerhans Cells through Langerin for Dissemination to Dendritic Cells. J Invest Dermatol 2024; 144:1099-1111.e3. [PMID: 37979773 DOI: 10.1016/j.jid.2023.09.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 11/20/2023]
Abstract
Dengue virus (DENV) is the most disease-causative flavivirus worldwide. DENV as a mosquito-borne virus infects human hosts through the skin; however, the initial target cells in the skin remain unclear. In this study, we have investigated whether epidermal Langerhans cells (LCs) play a role in DENV acquisition and dissemination. We have used a human epidermal ex vivo infection model as well as isolated LCs to investigate infection by DENV. Notably, both immature and mature LCs were permissive to DENV infection in vitro and ex vivo, and infection was dependent on C-type lectin receptor langerin because blocking antibodies against langerin significantly reduced DENV infection in vitro and ex vivo. DENV-infected LCs efficiently transmitted DENV to target cells such as dendritic cells. Moreover, DENV exposure increased the migration of LCs from epidermal explants. These results strongly suggest that DENV targets epidermal LCs for infection and dissemination in the human host. These findings could provide potential drug targets to combat the early stage of DENV infection.
Collapse
Affiliation(s)
- Leanne C Helgers
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nadia C H Keijzer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris K Sprokholt
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Amsterdam institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Reis E Sousa C, Yamasaki S, Brown GD. Myeloid C-type lectin receptors in innate immune recognition. Immunity 2024; 57:700-717. [PMID: 38599166 DOI: 10.1016/j.immuni.2024.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
C-type lectin receptors (CLRs) expressed by myeloid cells constitute a versatile family of receptors that play a key role in innate immune recognition. Myeloid CLRs exhibit a remarkable ability to recognize an extensive array of ligands, from carbohydrates and beyond, and encompass pattern-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs), and markers of altered self. These receptors, classified into distinct subgroups, play pivotal roles in immune recognition and modulation of immune responses. Their intricate signaling pathways orchestrate a spectrum of cellular responses, influencing processes such as phagocytosis, cytokine production, and antigen presentation. Beyond their contributions to host defense in viral, bacterial, fungal, and parasitic infections, myeloid CLRs have been implicated in non-infectious diseases such as cancer, allergies, and autoimmunity. A nuanced understanding of myeloid CLR interactions with endogenous and microbial triggers is starting to uncover the context-dependent nature of their roles in innate immunity, with implications for therapeutic intervention.
Collapse
Affiliation(s)
- Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| | - Sho Yamasaki
- Molecular Immunology, Research Institute for Microbial Diseases, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan.
| | - Gordon D Brown
- MRC Centre for Medical Mycology at the University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
3
|
Abstract
The critical role of conventional dendritic cells in physiological cross-priming of immune responses to tumors and pathogens is widely documented and beyond doubt. However, there is ample evidence that a wide range of other cell types can also acquire the capacity to cross-present. These include not only other myeloid cells such as plasmacytoid dendritic cells, macrophages and neutrophils, but also lymphoid populations, endothelial and epithelial cells and stromal cells including fibroblasts. The aim of this review is to provide an overview of the relevant literature that analyzes each report cited for the antigens and readouts used, mechanistic insight and in vivo experimentation addressing physiological relevance. As this analysis shows, many reports rely on the exceptionally sensitive recognition of an ovalbumin peptide by a transgenic T cell receptor, with results that therefore cannot always be extrapolated to physiological settings. Mechanistic studies remain basic in most cases but reveal that the cytosolic pathway is dominant across many cell types, while vacuolar processing is most encountered in macrophages. Studies addressing physiological relevance rigorously remain exceptional but suggest that cross-presentation by non-dendritic cells may have significant impact in anti-tumor immunity and autoimmunity.
Collapse
Affiliation(s)
- François-Xavier Mauvais
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service de Physiologie - Explorations Fonctionnelles Pédiatriques, AP-HP, Hôpital Universitaire Robert Debré, F-75019 Paris, France.
| | - Peter van Endert
- Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France.
| |
Collapse
|
4
|
Eder J, Zijlstra-Willems E, Koen G, Kootstra NA, Wolthers KC, Geijtenbeek TB. Transmission of Zika virus by dendritic cell subsets in skin and vaginal mucosa. Front Immunol 2023; 14:1125565. [PMID: 36949942 PMCID: PMC10025456 DOI: 10.3389/fimmu.2023.1125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Zika virus is a member of the Flaviviridae family that has caused recent outbreaks associated with neurological malformations. Transmission of Zika virus occurs primarily via mosquito bite but also via sexual contact. Dendritic cells (DCs) and Langerhans cells (LCs) are important antigen presenting cells in skin and vaginal mucosa and paramount to induce antiviral immunity. To date, little is known about the first cells targeted by Zika virus in these tissues as well as subsequent dissemination of the virus to other target cells. We therefore investigated the role of DCs and LCs in Zika virus infection. Human monocyte derived DCs (moDCs) were isolated from blood and primary immature LCs were obtained from human skin and vaginal explants. Zika virus exposure to moDCs but not skin and vaginal LCs induced Type I Interferon responses. Zika virus efficiently infected moDCs but neither epidermal nor vaginal LCs became infected. Infection of a human full skin model showed that DC-SIGN expressing dermal DCs are preferentially infected over langerin+ LCs. Notably, not only moDCs but also skin and vaginal LCs efficiently transmitted Zika virus to target cells. Transmission by LCs was independent of direct infection of LCs. These data suggest that DCs and LCs are among the first target cells for Zika virus not only in the skin but also the genital tract. The role of vaginal LCs in dissemination of Zika virus from the vaginal mucosa further emphasizes the threat of sexual transmission and supports the investigation of prophylaxes that go beyond mosquito control.
Collapse
Affiliation(s)
- Julia Eder
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Esther Zijlstra-Willems
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A. Kootstra
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Katja C. Wolthers
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B. Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- *Correspondence: Teunis B. Geijtenbeek,
| |
Collapse
|
5
|
The synthesis of hyaluronic acid related oligosaccharides and elucidation of their antiangiogenic activity. Carbohydr Res 2022; 522:108701. [DOI: 10.1016/j.carres.2022.108701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
|
6
|
Processing human skin samples for single-cell assays. STAR Protoc 2022; 3:101470. [PMID: 35769924 PMCID: PMC9234085 DOI: 10.1016/j.xpro.2022.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Characterizing resident immune cells in human skin using single-cell assays provides insight into their role in infections, inflammation, and cancer. We describe an optimized protocol to rapidly isolate viable cells from 6-mm skin punch-biopsies. We provide an example in which we coupled single-cell RNA sequencing (scRNA-seq) with single-cell T-cell receptor sequencing (scTCR-seq) of skin and blood cells to study transcriptional profiles and clonotypes of skin resident and peripheral circulating, memory, and effector T cells. This is an improved protocol based on Saluzzo et al. (2021). For complete details on the use and execution of this protocol, please refer to Saluzzo et al. (2021). Preparation of a high-quality single-cell suspension from human skin punch biopsies Suitable for single-cell RNA and TCR sequencing to study skin and blood T cells Cost minimization by hash-tagging and pooling blood and skin cells of one individual Overview of the downstream bioinformatic analysis for the T cell characterization
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
|
7
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
8
|
Targeting human langerin promotes HIV-1 specific humoral immune responses. PLoS Pathog 2021; 17:e1009749. [PMID: 34324611 PMCID: PMC8354475 DOI: 10.1371/journal.ppat.1009749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 08/10/2021] [Accepted: 06/24/2021] [Indexed: 12/01/2022] Open
Abstract
The main avenue for the development of an HIV-1 vaccine remains the induction of protective antibodies. A rationale approach is to target antigen to specific receptors on dendritic cells (DC) via fused monoclonal antibodies (mAb). In mouse and non-human primate models, targeting of skin Langerhans cells (LC) with anti-Langerin mAbs fused with HIV-1 Gag antigen drives antigen-specific humoral responses. The development of these immunization strategies in humans requires a better understanding of early immune events driven by human LC. We therefore produced anti-Langerin mAbs fused with the HIV-1 gp140z Envelope (αLC.Env). First, we show that primary skin human LC and in vitro differentiated LC induce differentiation and expansion of naïve CD4+ T cells into T follicular helper (Tfh) cells. Second, when human LC are pre-treated with αLC.Env, differentiated Tfh cells significantly promote the production of specific IgG by B cells. Strikingly, HIV-Env-specific Ig are secreted by HIV-specific memory B cells. Consistently, we found that receptors and cytokines involved in Tfh differentiation and B cell functions are upregulated by LC during their maturation and after targeting Langerin. Finally, we show that subcutaneous immunization of mice by αLC.Env induces germinal center (GC) reaction in draining lymph nodes with higher numbers of Tfh cells, Env-specific B cells, as well as specific IgG serum levels compared to mice immunized with the non-targeting Env antigen. Altogether, we provide evidence that human LC properly targeted may be licensed to efficiently induce Tfh cell and B cell responses in GC. In recent years, the place of innovative vaccines based on the induction/regulation and modulation of the immune response with the aim to elicit an integrated T- and B cell immune responses against complex antigens has emerged besides “classical” vaccine vectors. Targeting antigens to dendritic cells is a vaccine technology concept supported by more than a decade of animal models and human pre-clinical experimentation. Recent investigations in animals underscored that Langerhans cells (LC) are an important target to consider for the induction of antibody responses by DC targeting vaccine approaches. Nonetheless, the development of these immunization strategies in humans remains elusive. We therefore developed and produced an HIV vaccine candidate targeting specifically LC through the Langerin receptor. We tested the ability of our vaccine candidate of targeting LC from skin explant and of inducing in vitro the differentiation of T follicular helper (Tfh) cells. Using complementary in vitro models, we demonstrated that Tfh cells induced by human LC are functional and the targeting of LC by our vaccine candidate promotes the secretion of anti-HIV IgG by memory B cells from HIV-infected individuals. In this study human LC exhibit key cellular functions able to drive potent anti-HIV-1 humoral responses providing mechanistic evidence of the Tfh- and B cell stimulating functions of primary skin targeted LC. Finally, we demonstrated in Xcr1DTA mice the significant advantage of LC targeting for inducing Tfh and germinal center (GC)-B cells and anti-HIV-1 antibodies. Therefore, the targeting of the human Langerin receptor appears to be a promising strategy for developing efficient HIV-1 vaccine.
Collapse
|
9
|
Cristófalo AE, Nieto PM, Thépaut M, Fieschi F, Di Chenna PH, Uhrig ML. Synthesis, self-assembly and Langerin recognition studies of a resorcinarene-based glycocluster exposing a hyaluronic acid thiodisaccharide mimetic. Org Biomol Chem 2021; 19:6455-6467. [PMID: 34236375 DOI: 10.1039/d1ob00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the synthesis of an octavalent glycocluster exposing a thiodisaccharide mimetic of the repetitive unit of hyaluronic acid, βSGlcA(1 → 3)βSGlcNAc, constructed on a calix[4]resorcinarene scaffold by CuAAC reaction of suitable precursors. This glycocluster showed a strong tendency toward self-aggregation. DOSY-NMR and DLS experiments demonstrated the formation of spherical micelles of d ≅ 6.2 nm, in good agreement. TEM micrographs showed the presence of particles of different sizes, depending on the pH of the starting solution, thus evidencing that the negative charge on the micelle surface due to ionization of the GlcA residues plays an important role in the aggregation process. STD-NMR and DLS experiments provided evidence of the interaction between the synthetic glycocluster and Langerin, a relevant C-type lectin. This interaction was not observed in the STD-NMR experiments performed with the basic disaccharide, providing evidence of a multivalent effect.
Collapse
Affiliation(s)
- Alejandro E Cristófalo
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| | - Pedro M Nieto
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), cicCartuja, CSIC and Universidad de Sevilla, 41092 Sevilla, España.
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, F-38044 Grenoble, France
| | - Pablo H Di Chenna
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR), C1428EGA Buenos Aires, Argentina
| | - María Laura Uhrig
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EGA Buenos Aires, Argentina. and CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EGA Buenos Aires, Argentina
| |
Collapse
|
10
|
Heydari P, Kharaziha M, Varshosaz J, Javanmard SH. Current knowledge of immunomodulation strategies for chronic skin wound repair. J Biomed Mater Res B Appl Biomater 2021; 110:265-288. [PMID: 34318595 DOI: 10.1002/jbm.b.34921] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022]
Abstract
In orchestrating the wound healing process, the immune system plays a critical role. Hence, controlling the immune system to repair skin defects is an attractive approach. The highly complex immune system includes the coordinated actions of several immune cells, which can produce various inflammatory and antiinflammatory cytokines and affect the healing of skin wounds. This process can be optimized using biomaterials, bioactive molecules, and cell delivery. The present review discusses various immunomodulation strategies for supporting the healing of chronic wounds. In this regard, following the evolution of the immune system and its role in the wound healing mechanism, the interaction between the extracellular mechanism and immune cells for acceleration wound healing will be firstly investigated. Consequently, the immune-based chronic wounds will be briefly examined and the mechanism of progression, and conventional methods of their treatment are evaluated. In the following, various biomaterials-based immunomodulation strategies are introduced to stimulate and control the immune system to treat and regenerate skin defects. Other effective methods of controlling the immune system in wound healing which is the release of bioactive agents (such as antiinflammatory, antigens, and immunomodulators) and stem cell therapy at the site of injury are reviewed.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jaleh Varshosaz
- School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Blondin-Ladrie L, Aranguren M, Doyon-Laliberté K, Poudrier J, Roger M. The Importance of Regulation in Natural Immunity to HIV. Vaccines (Basel) 2021; 9:vaccines9030271. [PMID: 33803543 PMCID: PMC8003059 DOI: 10.3390/vaccines9030271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, most Human Immunodeficiency Virus (HIV) infections are acquired through heterosexual intercourse, and in sub-Saharan Africa, 59% of new HIV infections affect women. Vaccines and microbicides hold promise for preventing the acquisition of HIV. To this end, the study of HIV highly exposed seronegative (HESN) female commercial sex workers (CSWs), who constitute a model of natural immunity to HIV, provides an exceptional opportunity to determine important clues for the development of preventive strategies. Studies using both female genital tract (FGT) and peripheral blood samples of HESN CSWs, have allowed identifying distinct features, notably low-inflammatory patterns associated with resistance to infection. How this seemingly regulated response is achieved at the initial site of HIV infection remains unknown. One hypothesis is that populations presenting regulatory profiles contribute to the orchestration of potent anti-viral and low-inflammatory responses at the initial site of HIV transmission. Here, we view to update our knowledge regarding this issue.
Collapse
Affiliation(s)
- Laurence Blondin-Ladrie
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Matheus Aranguren
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Kim Doyon-Laliberté
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
| | - Johanne Poudrier
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: (J.P.); (M.R.)
| | - Michel Roger
- Axe Immunopathologie, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X0A9, Canada; (L.B.-L.); (M.A.); (K.D.-L.)
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, QC H3C3J7, Canada
- Institut National de Santé Publique du Québec, Montréal, QC H2P1E2, Canada
- Correspondence: (J.P.); (M.R.)
| |
Collapse
|
12
|
Abdouni Y, Ter Huurne GM, Yilmaz G, Monaco A, Redondo-Gómez C, Meijer EW, Palmans ARA, Becer CR. Self-Assembled Multi- and Single-Chain Glyconanoparticles and Their Lectin Recognition. Biomacromolecules 2020; 22:661-670. [PMID: 33373527 DOI: 10.1021/acs.biomac.0c01486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, we describe the physicochemical characterization of amphiphilic glycopolymers synthesized via copper(0)-mediated reversible-deactivation radical polymerization (Cu-RDRP). Depending on the chemical composition of the polymer, these glycopolymers are able to form multi-chain or single-chain polymeric nanoparticles. The folding of these polymers is first of all driven by the amphiphilicity of the glycopolymers and furthermore by the supramolecular formation of helical supramolecular stacks of benzene-1,3,5-tricarboxamides (BTAs) stabilized by threefold hydrogen bonding. The obtained polymeric nanoparticles were subsequently evaluated for their lectin-binding affinity toward a series of mannose- and galactose-binding lectins via surface plasmon resonance. We found that addition of 2-ethylhexyl acrylate to the polymer composition results in compact particles, which translates to a reduction in binding affinity, whereas with the addition of BTAs, the relation between the nature of the particle and the binding ability system becomes more unpredictable.
Collapse
Affiliation(s)
- Yamin Abdouni
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - Gijs M Ter Huurne
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Gokhan Yilmaz
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Alessandra Monaco
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Carlos Redondo-Gómez
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - Anja R A Palmans
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands
| | - C Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.,Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
13
|
Nilsson JS, Sobti A, Swoboda S, Erjefält JS, Forslund O, Lindstedt M, Greiff L. Immune Phenotypes of Nasopharyngeal Cancer. Cancers (Basel) 2020; 12:cancers12113428. [PMID: 33218184 PMCID: PMC7699205 DOI: 10.3390/cancers12113428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Simple Summary As for many solid cancers, nasopharyngeal cancer (NPC) interacts with the immune system. In this retrospective study, immune features of NPC were explored and assessed against Epstein-Barr virus status, clinical stage, and survival. Specific immune phenotypes were identified based on presence and distribution of CD8+ T-cells: i.e., “inflamed”, “excluded”, and “deserted” NPC, which carried important prognostic information. Presence and distribution of CD207+ cells, likely representing antigen-presenting dendritic cells, were demonstrated, suggesting a potential for immune cell targeting. Gene expression revealed differences in immune profiles between NPC and control tissue as well as between subgroups of NPC based on CD8 expression (high vs. low). Taken together, the observations may be of relevance to prognostication of NPC as well as for explorations into the field of immunotherapy. Abstract Nasopharyngeal cancer (NPC) features intralesional immune cells, but data are lacking on presence/distribution of T-cells and dendritic cells (DCs). Based on intralesional distribution of lymphocytes, a series of NPC biopsies (n = 48) were classified into “inflamed”, “excluded”, and “deserted” phenotypes. In addition, CD8+ T-cells and CD207+ DCs were quantified. The data were analyzed in relation to Epstein–Barr virus-encoded small RNA (EBER), Epstein-Barr virus (EBV) DNA, and survival. Separately, data on gene expression from a public database were analyzed. 61.7% of NPC lesions were “inflamed”, 29.8% were “excluded”, and 8.5% were “deserted”. While CD8+ cells were present in cancer cell areas and in surrounding stroma, CD207+ cells were observed largely in cancer cell areas. High CD8+ T-cell presence was associated with EBV+ disease, but no such pattern was observed for CD207+ DCs. There was a difference in disease-free survival in favor of “inflamed” over “excluded” NPC. Gene expression analysis revealed differences between NPC and control tissue (e.g., with regard to interferon activity) as well as between subgroups of NPC based on CD8 expression (high vs. low). In conclusion, NPC lesions are heterogeneous with regard to distribution of CD8+ T-cells and CD207+ DCs. NPC can be classified into immune phenotypes that carry prognostic information. CD207+ DCs may represent a target for immunotherapy with potential to facilitate the antigen cross-presentation necessary to execute cytotoxic T-lymphocyte responses.
Collapse
Affiliation(s)
- Johan S. Nilsson
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85 Lund, Sweden; (S.S.); (L.G.)
- Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden
- Correspondence:
| | - Aastha Sobti
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden; (A.S.); (M.L.)
| | - Sabine Swoboda
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85 Lund, Sweden; (S.S.); (L.G.)
- Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden
| | - Jonas S. Erjefält
- Department of Experimental Medicine, Lund University, 221 84 Lund, Sweden;
| | - Ola Forslund
- Department of Microbiology, Lund University, 221 85 Lund, Sweden;
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, 223 81 Lund, Sweden; (A.S.); (M.L.)
| | - Lennart Greiff
- Department of ORL, Head & Neck Surgery, Skåne University Hospital, 221 85 Lund, Sweden; (S.S.); (L.G.)
- Department of Clinical Sciences, Lund University, 221 85 Lund, Sweden
| |
Collapse
|
14
|
Abdouni Y, Yilmaz G, Monaco A, Aksakal R, Becer CR. Effect of Arm Number and Length of Star-Shaped Glycopolymers on Binding to Dendritic and Langerhans Cell Lectins. Biomacromolecules 2020; 21:3756-3764. [DOI: 10.1021/acs.biomac.0c00856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yamin Abdouni
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Gokhan Yilmaz
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Alessandra Monaco
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Resat Aksakal
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - C. Remzi Becer
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
15
|
Li RJE, Hogervorst TP, Achilli S, Bruijns SCM, Spiekstra S, Vivès C, Thépaut M, Filippov DV, van der Marel GA, van Vliet SJ, Fieschi F, Codée JDC, van Kooyk Y. Targeting of the C-Type Lectin Receptor Langerin Using Bifunctional Mannosylated Antigens. Front Cell Dev Biol 2020; 8:556. [PMID: 32760719 PMCID: PMC7371993 DOI: 10.3389/fcell.2020.00556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Langerhans cells (LCs) are antigen-presenting cells that reside in the skin. They uniquely express high levels of the C-type lectin receptor Langerin (CD207), which is an attractive target for antigen delivery in immunotherapeutic vaccination strategies against cancer. We here assess a library of 20 synthetic, well-defined mannoside clusters, built up from one, two, and three of six monomannosides, dimannosides, or trimannosides, appended to an oligopeptide backbone, for binding with Langerin using surface plasmon resonance and flow cytometric quantification. It is found that Langerin binding affinity increases with increasing number of mannosides. Hexavalent presentation of the mannosides resulted in binding affinities ranging from 3 to 12 μM. Trivalent presentation of the dimannosides and trimannosides led to Langerin affinity in the same range. The model melanoma gp100 antigenic peptide was subsequently equipped with a hexavalent cluster of the dimannosides and trimannosides as targeting moieties. Surprisingly, although the bifunctional conjugates were taken up in LCs in a Langerin-dependent manner, limited antigen presentation to cytotoxic T cells was observed. These results indicate that targeting glycan moieties on immunotherapeutic vaccines should not only be validated for target binding, but also on the continued effects on biology, such as antigen presentation to both CD8+ and CD4+ T cells.
Collapse
Affiliation(s)
- Rui-Jun Eveline Li
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tim P Hogervorst
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Silvia Achilli
- Univ. Grenoble Alpes, CEA, CRNS, Institut de Biologie Structurale, Grenoble, France
| | - Sven C M Bruijns
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sander Spiekstra
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Corinne Vivès
- Univ. Grenoble Alpes, CEA, CRNS, Institut de Biologie Structurale, Grenoble, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CRNS, Institut de Biologie Structurale, Grenoble, France
| | - Dmitri V Filippov
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Gijs A van der Marel
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CRNS, Institut de Biologie Structurale, Grenoble, France
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis, Faculty of Science, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Israr M, DeVoti JA, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Altered Monocyte and Langerhans Cell Innate Immunity in Patients With Recurrent Respiratory Papillomatosis (RRP). Front Immunol 2020; 11:336. [PMID: 32210959 PMCID: PMC7076114 DOI: 10.3389/fimmu.2020.00336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022] Open
Abstract
The micromilieu within respiratory papillomas supports persistent human papillomavirus (HPV) infection and disease recurrence in patients with recurrent respiratory papillomatosis (RRP). These patients show polarized (TH2-/Treg) adaptive immunity in papillomas and blood, enriched immature Langerhans cell (iLC) numbers, and overexpression of cyclooxygenase-2/prostaglandin E2 (PGE2) in the upper airway. Blood monocyte-derived, and tissue-derived iLCs from RRP patients and controls were now studied to more fully understand innate immune dysregulation in RRP. Patients' monocytes generated fewer iLCs than controls, due to a reduced fraction of classical monocytes that generated most but not all the iLCs. Prostaglandin E2, which was elevated in RRP plasma, reduced monocyte-iLC differentiation from controls to the levels of RRP patients, but had no effect on subsequent iLC maturation. Cytokine/chemokine responses by iLCs from papillomas, foreskin, and abdominal skin differed significantly. Freshly derived tissue iLCs expressed low CCL-1 and high CCL-20 mRNAs and were unresponsive to IL-36γ stimulation. Papilloma iLCs uniquely expressed IL-36γ at baseline and expressed CCL1 when cultured overnight outside their immunosuppressive microenvironment without additional stimulation. We conclude that monocyte/iLC innate immunity is impaired in RRP, in part due to increased PGE2 exposure in vivo. The immunosuppressive papilloma microenvironment likely alters iLC responses, and vice versa, supporting TH2-like/Treg HPV-specific adaptive immunity in RRP.
Collapse
Affiliation(s)
- Mohd Israr
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - James A DeVoti
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Fung Lam
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Allan L Abramson
- Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Bettie M Steinberg
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Otolaryngology, Long Island Jewish Medical Center, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| | - Vincent R Bonagura
- Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Pediatrics, Steven and Alexandra Cohen Children's Medical Center of New York, Barbara and Donald Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States
| |
Collapse
|
17
|
A new approach for therapeutic vaccination against chronic HBV infections. Vaccine 2020; 38:3105-3120. [DOI: 10.1016/j.vaccine.2020.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
|
18
|
Busold S, Nagy NA, Tas SW, van Ree R, de Jong EC, Geijtenbeek TBH. Various Tastes of Sugar: The Potential of Glycosylation in Targeting and Modulating Human Immunity via C-Type Lectin Receptors. Front Immunol 2020; 11:134. [PMID: 32117281 PMCID: PMC7019010 DOI: 10.3389/fimmu.2020.00134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
C-type lectin receptors (CLRs) are important in several immune regulatory processes. These receptors recognize glycans expressed by host cells or by pathogens. Whereas pathogens are recognized through their glycans, which leads to protective immunity, aberrant cellular glycans are now increasingly recognized as disease-driving factors in cancer, auto-immunity, and allergy. The vast variety of glycan structures translates into a wide spectrum of effects on the immune system ranging from immune suppression to hyper-inflammatory responses. CLRs have distinct expression patterns on antigen presenting cells (APCs) controlling their role in immunity. CLRs can also be exploited to selectively target specific APCs, modulate immune responses and enhance antigen presentation. Here we will discuss the role of glycans and their receptors in immunity as well as potential strategies for immune modulation. A special focus will be given to different dendritic cell subsets as these APCs are crucial orchestrators of immune responses in infections, cancer, auto-immunity and allergies. Furthermore, we will highlight the potential use of nanoscale lipid bi-layer structures (liposomes) in targeted immunotherapy.
Collapse
Affiliation(s)
- Stefanie Busold
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Noémi A Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
20
|
Martin-Gayo E, Yu XG. Role of Dendritic Cells in Natural Immune Control of HIV-1 Infection. Front Immunol 2019; 10:1306. [PMID: 31244850 PMCID: PMC6563724 DOI: 10.3389/fimmu.2019.01306] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that link innate and adaptive immunity and are critical for the induction of protective immune responses against pathogens. Proportions of these cells are markedly decreased in the blood of untreated HIV-1-infected individuals, suggesting they might be intrinsically involved in HIV-1 pathogenesis. However, despite several decades of active research, the precise role and contribution of these cells to protective or detrimental host responses against HIV-1 are still remarkably unclear. Recent studies have shown that DCs possess a fine-tuned machinery to recognize HIV-1 replication products through a variety of innate pathogen sensing mechanisms, which may be instrumental for generating both cellular and humoral protective immune responses in persons who naturally control HIV-1 replication. Yet, dysregulated and abnormal activation of DCs might also contribute to sustained inflammation and immune activation accelerating disease progression during chronic progressive infection. Emerging data also suggest that DCs can influence the induction of potent broadly-neutralizing antibodies, and may, for this reason, have to be considered as important components of future HIV-1 vaccination strategies. Apart from their involvement in antiviral host immunity, at least a subgroup of DCs seem intrinsically susceptible to HIV-1 infection and may serve as a viral target cell population. Indeed recent studies suggest that specific DC subpopulations residing in the genital mucosa are preferentially infected by HIV-1 and play an active role in sexual transmission; therefore, DCs may contribute to viral dissemination and possible persistence of the viral reservoirs through either direct or indirect mechanisms. Here, we analyze the distinct and partially opposing roles of DCs during HIV-1 disease pathogenesis, with a focus on implications of DC biology natural immune control and HIV cure research efforts.
Collapse
Affiliation(s)
- Enrique Martin-Gayo
- Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Xu G Yu
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Otsuka Y, Watanabe E, Shinya E, Okura S, Saeki H, Geijtenbeek TBH, Takahashi H. Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22-Specific Th Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3006-3016. [PMID: 30322965 PMCID: PMC6215253 DOI: 10.4049/jimmunol.1701402] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 09/16/2018] [Indexed: 01/09/2023]
Abstract
Human mucosal tissues and skin contain two distinct types of dendritic cell (DC) subsets, epidermal Langerhans cells (LCs) and dermal DCs, which can be distinguished by the expression of C-type lectin receptors, Langerin and DC-SIGN, respectively. Although peripheral blood monocytes differentiate into these distinct subsets, monocyte-derived LCs (moLCs) induced by coculture with GM-CSF, IL-4, and TGF-β1 coexpress both Langerin and DC-SIGN, suggesting that the environmental cues remain unclear. In this study, we show that LC differentiation is TGF-β1 dependent and that cofactors such as IL-4 and TNF-α promote TGF-β1-dependent LC differentiation into Langerin+DC-SIGN- moLCs but continuous exposure to IL-4 blocks differentiation. Steroids such as dexamethasone greatly enhanced TNF-α-induced moLC differentiation and blocked DC-SIGN expression. Consistent with primary LCs, dexamethasone-treated moLCs express CD1a, whereas monocyte-derived DCs (moDCs) express CD1b, CD1c, and CD1d. moDCs but not moLCs produced inflammatory cytokines after stimulation with CD1b and CD1d ligands mycolic acid and α-galactosylceramide, respectively. Strikingly, CD1a triggering with squalene on moLCs but not moDCs induced strong IL-22-producing CD4+ helper T cell responses. As IL-22 is an important cytokine in the maintenance of skin homeostasis, these data suggest that CD1a on LCs is involved in maintaining the immune barrier in the skin.
Collapse
Affiliation(s)
- Yohei Otsuka
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
- Department of Dermatology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Eri Watanabe
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Eiji Shinya
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sadayuki Okura
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Hidehisa Saeki
- Department of Dermatology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, 1105 HV Amsterdam, the Netherlands; and
- Amsterdam Infection and Immunity Institute, 1105 HV Amsterdam, the Netherlands
| | - Hidemi Takahashi
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan;
| |
Collapse
|
22
|
Dioszeghy V, Mondoulet L, Laoubi L, Dhelft V, Plaquet C, Bouzereau A, Dupont C, Sampson H. Antigen Uptake by Langerhans Cells Is Required for the Induction of Regulatory T Cells and the Acquisition of Tolerance During Epicutaneous Immunotherapy in OVA-Sensitized Mice. Front Immunol 2018; 9:1951. [PMID: 30233572 PMCID: PMC6129590 DOI: 10.3389/fimmu.2018.01951] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/07/2018] [Indexed: 01/22/2023] Open
Abstract
The skin is a major immunologic organ that may induce protection, sensitization or tolerance. Epicutaneous immunotherapy (EPIT) has been proposed as an attractive strategy to actively treat food allergy and has been shown to induce tolerance in sensitized mice through the induction of Foxp3+ regulatory T cells (Tregs), especially CD62L+ Tregs. Among immune cells in the skin, dendritic cells are key players in antigen-specific immune activation or regulation. The role of different populations of skin DCs in tolerance induction remains to be elucidated. Using OVA-sensitized BALB/c mice, we demonstrated that the application of a patch containing OVA-A647 to the skin resulted in allergen uptake by Langerhans cells (LCs) and CD11b+ dermal cDC2 and subsequent migration into skin draining lymph nodes. These 2 populations induced Foxp3 expression in CD4+ cells in vitro. Only LCs induced LAP+ cells and CD62L+ Tregs. Using Langerin-eGFP-DTR mice, we analyzed the role of LCs in the mechanisms of tolerance induction by EPIT in vivo. Following complete depletion of LCs, a dramatic decrease in the number of OVA+ DCs and OVA+ CD11b+ dermal cDC2 was observed in skin draining lymph nodes 48 h after epicutaneous application. Likewise, 2 weeks of EPIT in non-depleted mice induced Foxp3+ Tregs, especially CD62L+, and LAP+ Tregs in skin draining lymph nodes and spleen, whereas no induction of Tregs was observed in LC-depleted mice. Following 8 weeks of treatment, EPIT-treated mice showed significant protection against anaphylaxis accompanied by a significant increase of Foxp3+ Tregs, especially CD62L+ Tregs, which was not seen in the absence of LCs. In summary, although both LCs and CD11b+ dermal cDC2s could induce regulatory T cells, the absence of LCs during EPIT impaired treatment efficacy, indicating their crucial role in skin-induced tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christophe Dupont
- Department of Pediatric Gastroenterology Hepatology and Nutrition, Hôpital Necker Enfants Malades, Paris, France
| | | |
Collapse
|
23
|
Yao WR, Li D, Yu L, Wang FJ, Xing H, Yang GB. The levels of DNGR-1 and its ligand-bearing cells were altered after human and simian immunodeficiency virus infection. Immunol Res 2018; 65:869-879. [PMID: 28478499 DOI: 10.1007/s12026-017-8925-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cell NK lectin Group Receptor-1 (DNGR-1), also known as C-type lectin domain family 9, member A (CLEC9A), is a member of C-type lectin receptor superfamily expressed primarily on dendritic cells (DC) that excel in cross-presentation of exogenous antigens. To find out whether and how it is affected in human immunodeficiency virus infections or acquired immunodeficiency syndromes (HIV/AIDS), DNGR-1 expression and DNGR-1-binding cells in simian/human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV)-infected rhesus macaques and antiretroviral therapy (ART)-treated AIDS patients were examined by real-time RT-PCR, flow cytometry, and confocal microscopy. DNGR-1 expression was observed in both lymphoid and non-lymphoid tissues including gut-associated lymphoid tissues (GALT) of rhesus macaques. DNGR-1 mRNA levels were significantly reduced in the blood while significantly elevated in the GALT of SHIV/SIV-infected rhesus macaques. DNGR-1 transcription levels were also significantly reduced in the blood of ART-treated AIDS patients irrespective of viral status. White blood cells with exposed DNGR-1 ligands were significantly increased in ART-treated AIDS patients, while significantly decreased in SIV-infected rhesus macaques. These data indicate that DNGR-1 expression, and by extension, the function of cross-presentation of antigens associated with dead/damaged cells might be compromised in HIV/SIV infection, which might play a role in HIV/AIDS pathogenesis and should be taken into consideration in therapeutic AIDS vaccine development.
Collapse
Affiliation(s)
- Wen-Rong Yao
- National Center for AIDS/STD Control and Prevention, China CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Dong Li
- National Center for AIDS/STD Control and Prevention, China CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Lei Yu
- National Center for AIDS/STD Control and Prevention, China CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Feng-Jie Wang
- National Center for AIDS/STD Control and Prevention, China CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Hui Xing
- National Center for AIDS/STD Control and Prevention, China CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, China CDC, 155 Changbai Road, Changping District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
24
|
Yao C, Kaplan DH. Langerhans Cells Transfer Targeted Antigen to Dermal Dendritic Cells and Acquire Major Histocompatibility Complex II In Vivo. J Invest Dermatol 2018; 138:1665-1668. [PMID: 29474944 DOI: 10.1016/j.jid.2018.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/29/2018] [Accepted: 02/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Chen Yao
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel H Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
25
|
Jackson DG. Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 2018; 78-79:219-235. [PMID: 29425695 DOI: 10.1016/j.matbio.2018.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
LYVE-1, a close relative of the leucocyte receptor, CD44, is the main receptor for hyaluronan (HA) in lymphatic vessel endothelium and a widely used marker for distinguishing between blood and lymphatic vessels. Enigmatic for many years because of its anomalous HA-binding characteristics, the function of LYVE-1 has just recently been identified as that of a lymphatic docking receptor for dendritic cells, selectively engaging with their surface HA glycocalyx to regulate entry to peripheral lymphatics and migration to downstream lymph nodes for immune activation. Furthermore, LYVE-1 mediates the trafficking of macrophages, and is also exploited by HA-encapsulated Group A streptococci for lymphatic invasion and host dissemination. Consistent with a role in lymphatic trafficking, the interaction of LYVE-1 with HA and its degradation products can also activate intracellular signalling pathways for endothelial junctional retraction and lymphatic endothelial proliferation. Here we outline the latest findings on the receptor in the context of its peculiar biochemical properties and speculate on how the interaction of LYVE-1 with different HA sizes and conformations might variably influence cell function as a consequence of avidity and receptor crosslinking. Finally, we evaluate evidence that LYVE-1 can also bind growth factors and associate with kinase-linked growth factor receptors and conclude on how the LYVE-1·HA axis may be exploited as a target to either block inflammation or tissue allograft rejection, or potentiate vaccine and drug delivery.
Collapse
Affiliation(s)
- David G Jackson
- University of Oxford, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
26
|
Hertoghs N, Pul LV, Geijtenbeek TBH. Mucosal dendritic cells in HIV-1 susceptibility: a critical role for C-type lectin receptors. Future Virol 2017. [DOI: 10.2217/fvl-2017-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sexual transmission is the major route of HIV-1 infection worldwide. The interaction of HIV-1 with mucosal dendritic cells (DCs) might determine HIV-1 susceptibility as well as initial antiviral immunity controlling virus in the chronic phase. Different DC subsets reside in mucosal tissues and express specific C-type lectin receptors (CLRs) that interact with HIV-1 with different outcomes. HIV-1 has been shown to subvert CLRs for viral transmission and immune evasion, whereas CLRs can also protect against HIV-1 infection. Here, we will discuss the role of CLRs in HIV-1 transmission and adaptive immunity, and how the CLRs dictate the function of DCs in infection. Ultimately, understanding the interplay between CLRs and HIV-1 will lead to targeted approaches in the search for preventative measures.
Collapse
Affiliation(s)
- Nina Hertoghs
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Hanske J, Wawrzinek R, Geissner A, Wamhoff EC, Sellrie K, Schmidt H, Seeberger PH, Rademacher C. Calcium-Independent Activation of an Allosteric Network in Langerin by Heparin Oligosaccharides. Chembiochem 2017; 18:1183-1187. [PMID: 28198086 DOI: 10.1002/cbic.201700027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Indexed: 02/02/2023]
Abstract
The C-type lectin receptor Langerin is a glycan-binding protein that serves as an uptake receptor on Langerhans cells and is essential for the formation of Birbeck granules. Whereas most Langerin ligands are recognized by a canonical Ca2+ -dependent binding site, heparins have been proposed to make additional contacts to a secondary, Ca2+ -independent site. Glycan array screening and biomolecular NMR spectroscopy were employed to investigate the molecular mechanism of these interactions. We observed that binding of heparin hexasaccharides to a secondary site did not require the presence of Ca2+ and activated a previously identified intradomain allosteric network of Langerin (thus far only associated with Ca2+ affinity and release). We propose a communication hub between these two binding sites, which sheds new light on modulatory functions of Langerin-heparin interactions.
Collapse
Affiliation(s)
- Jonas Hanske
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany
| | - Robert Wawrzinek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany
| | - Andreas Geissner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Eike-Christian Wamhoff
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Katrin Sellrie
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany
| | - Henrik Schmidt
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| |
Collapse
|
28
|
Interplay between HIV-1 innate sensing and restriction in mucosal dendritic cells: balancing defense and viral transmission. Curr Opin Virol 2017; 22:112-119. [DOI: 10.1016/j.coviro.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 02/06/2023]
|
29
|
Botting RA, Rana H, Bertram KM, Rhodes JW, Baharlou H, Nasr N, Cunningham AL, Harman AN. Langerhans cells and sexual transmission of HIV and HSV. Rev Med Virol 2017; 27. [PMID: 28044388 DOI: 10.1002/rmv.1923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
Langerhans cells (LCs) situated in stratified squamous epithelium of the skin and mucosal tissue are amongst the first cells that sexually transmitted pathogens encounter during transmission. They are potent antigen presenting cells and play a key role in the host mounting an appropriate immune response. As such, viruses have evolved complex strategies to manipulate these cells to facilitate successful transmission. One of best studied examples is HIV, which manipulates the natural function of these cells to interact with CD4 T cells, which are the main target cell for HIV in which rapid replication occurs. However, there is controversy in the literature as to the role that LCs play in this process. Langerhans cells also play a key role in the way the body mounts an immune response to HSV, and there is also a complex interplay between the transmission of HSV and HIV that involves LCs. In this article, we review both past and present literatures with a particular focus on a few very recent studies that shed new light on the role that LCs play in the transmission and immune response to these 2 pathogens.
Collapse
Affiliation(s)
- Rachel A Botting
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Hafsa Rana
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Kirstie M Bertram
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Jake W Rhodes
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Heeva Baharlou
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Najla Nasr
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Anthony L Cunningham
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Andrew N Harman
- The Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
30
|
Hanske J, Schulze J, Aretz J, McBride R, Loll B, Schmidt H, Knirel Y, Rabsch W, Wahl MC, Paulson JC, Rademacher C. Bacterial Polysaccharide Specificity of the Pattern Recognition Receptor Langerin Is Highly Species-dependent. J Biol Chem 2016; 292:862-871. [PMID: 27903635 DOI: 10.1074/jbc.m116.751750] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
The recognition of pathogen surface polysaccharides by glycan-binding proteins is a cornerstone of innate host defense. Many members of the C-type lectin receptor family serve as pattern recognition receptors facilitating pathogen uptake, antigen processing, and immunomodulation. Despite the high evolutionary pressure in host-pathogen interactions, it is still widely assumed that genetic homology conveys similar specificities. Here, we investigate the ligand specificities of the human and murine forms of the myeloid C-type lectin receptor langerin for simple and complex ligands augmented by structural insight into murine langerin. Although the two homologs share the same three-dimensional structure and recognize simple ligands identically, a screening of more than 300 bacterial polysaccharides revealed highly diverging avidity and selectivity for larger and more complex glycans. Structural and evolutionary conservation analysis identified a highly variable surface adjacent to the canonic binding site, potentially forming a secondary site of interaction for large glycans.
Collapse
Affiliation(s)
- Jonas Hanske
- From the Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany.,the Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Jessica Schulze
- From the Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany.,the Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Jonas Aretz
- From the Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany.,the Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Ryan McBride
- the Department of Cell and Molecular Biology, Department of Immunology and Microbial Science and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Bernhard Loll
- the Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Henrik Schmidt
- From the Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany.,the Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - Yuriy Knirel
- the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia, and
| | - Wolfgang Rabsch
- the Robert Koch Institute, Wernigerode Branch, National Reference Centre for Salmonellae and other Bacterial Enteric Pathogens, Wernigerode 38855, Germany
| | - Markus C Wahl
- the Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| | - James C Paulson
- the Department of Cell and Molecular Biology, Department of Immunology and Microbial Science and Department of Chemical Physiology, Scripps Research Institute, La Jolla, California 92037
| | - Christoph Rademacher
- From the Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany, .,the Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin 14195, Germany
| |
Collapse
|
31
|
De Monte A, Olivieri CV, Vitale S, Bailleux S, Castillo L, Giordanengo V, Maryanski JL, Segura E, Doglio A. CD1c-Related DCs that Express CD207/Langerin, but Are Distinguishable from Langerhans Cells, Are Consistently Present in Human Tonsils. Front Immunol 2016; 7:197. [PMID: 27252701 PMCID: PMC4879127 DOI: 10.3389/fimmu.2016.00197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022] Open
Abstract
Several subsets of dendritic cells (DCs) are present in the oropharyngeal tonsillar tissues and are thought to behave as major actors in development and regulation of immunity by acting as a first line of recognition for airborne and alimentary antigens. We previously discovered in human adult tonsils infected with Epstein–Barr virus (EBV), a subset of DCs that expressed langerin/CD207, a lectin usually recognized as a hallmark of epidermal Langerhans cells (LCs). In the present study, we analyzed the content of several child and adult tonsils in order to characterize in more detail the phenotype of these tonsillar CD207-expressing DCs (tCD207 DCs) and to compare it with that of other human DC subsets. We showed that all the human tonsils studied (n = 12) contained significant proportions of tCD207 DCs among tonsillar cells expressing HLA-DR. Moreover, the presence of tCD207 DCs in tonsils from young children free of EBV infection indicated that these cells could be established early in the tonsil independently of EBV infection. We also showed that tCD207 DCs, that were found mainly located within the tonsillar lymphoid stroma, were distinguishable from LCs by the level of expression of CD1a and EpCAM, and also from human inflammatory DCs by the lack of CD1a, CD206, and CD14 expression. Detailed analysis of cell surface DC markers showed that tCD207 DCs were unrelated to CD141+ DCs or macrophages, but defined a subtype of tonsillar DCs closely related to myeloid resident CD1c DCs. Since it was established that blood CD1c myeloid DCs exhibit plasticity and are capable of expressing CD207 notably in the presence of inflammatory cytokines, it is tempting to speculate that CD207+ CD1c+ DCs may play a specific immune role.
Collapse
Affiliation(s)
- Anne De Monte
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France; Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet, Nice, France
| | - Charles-Vivien Olivieri
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| | - Sébastien Vitale
- Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet , Nice , France
| | - Sonanda Bailleux
- Department of Pediatric Otorhinolaryngology, Hôpitaux pédiatriques de Nice CHU-Lenval , Nice , France
| | - Laurent Castillo
- Department of Otorhinolaryngology, Institut Universitaire de la Face et du Cou , Nice , France
| | - Valérie Giordanengo
- Laboratory of Virology, Centre Hospitalier Universitaire de Nice, Hôpital l'Archet , Nice , France
| | - Janet L Maryanski
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| | | | - Alain Doglio
- Laboratory MICORALIS EA7354, Faculté de chirurgie dentaire, Université Nice-Sophia-Antipolis, Nice, France; Laboratory Unité de Thérapie Cellulaire et Génique (UTCG), Centre Hospitalier Universitaire de Nice, Hôpital Pasteur, Nice, France
| |
Collapse
|
32
|
Ribeiro CMS, Sarrami-Forooshani R, Geijtenbeek TBH. HIV-1 border patrols: Langerhans cells control antiviral responses and viral transmission. Future Virol 2015. [DOI: 10.2217/fvl.15.79] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Langerhans cells (LCs) reside in the mucosal epithelia and are refractory to HIV-1 infection; HIV-1 capture by C-type lectin receptor langerin and subsequent targeting to Birbeck granules prevents infection. Furthermore, LCs restrict transmission of CXCR4-using HIV-1 variants, which underscores the role of immature LCs as gatekeepers in the selection of HIV-1 variants. Interaction of langerin on LCs with hyaluronic acid on dendritic cells facilitates cross-presentation of HIV-1 to CD8+ T cells. Activation of LCs upon inflammation bypasses the langerin-dependent barrier, which favors cross-presentation and increases susceptibility of LCs to HIV-1 infection. These recent developments not only highlight the plasticity of LCs but also define an important role for LC-dendritic cell crosstalk at the periphery in directing adaptive immune responses to viruses.
Collapse
Affiliation(s)
- Carla MS Ribeiro
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Ramin Sarrami-Forooshani
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Teunis BH Geijtenbeek
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|