1
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
2
|
Targeting CXCR4 and CD47 Receptors: An Overview of New and Old Molecules for a Biological Personalized Anticancer Therapy. Int J Mol Sci 2022; 23:ijms232012499. [PMID: 36293358 PMCID: PMC9604048 DOI: 10.3390/ijms232012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Biological therapy, with its multifaceted applications, has revolutionized the treatment of tumors, mainly due to its ability to exclusively target cancer cells and reduce the adverse effects on normal tissues. This review focuses on the therapies targeting the CXCR4 and CD47 receptors. We surveyed the results of early clinical trials testing compounds classified as nonpeptides, small peptides, CXCR4 antagonists or specific antibodies whose activity reduces or completely blocks the intracellular signaling pathways and cell proliferation. We then examined antibodies and fusion proteins against CD47, the receptor that acts as a “do not eat me” signal to phagocytes escaping immune surveillance. Despite these molecules being tested in early clinical trials, some drawbacks are emerging that impair their use in practice. Finally, we examined the ImmunoGenic Surrender mechanism that involves crosstalk and co-internalization of CXCR4 and CD47 upon engagement of CXCR4 by ligands or other molecules. The favorable effect of such compounds is dual as CD47 surface reduction impact on the immune response adds to the block of CXCR4 proliferative potential. These results suggest that a combination of different therapeutic approaches has more beneficial effects on patients’ survival and may pave the way for new accomplishments in personalized anticancer therapy.
Collapse
|
3
|
Scherm MG, Wyatt RC, Serr I, Anz D, Richardson SJ, Daniel C. Beta cell and immune cell interactions in autoimmune type 1 diabetes: How they meet and talk to each other. Mol Metab 2022; 64:101565. [PMID: 35944899 PMCID: PMC9418549 DOI: 10.1016/j.molmet.2022.101565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022] Open
Abstract
Background Scope of review Major conclusions
Collapse
|
4
|
CXCR4/CXCL12 Activities in the Tumor Microenvironment and Implications for Tumor Immunotherapy. Cancers (Basel) 2022; 14:cancers14092314. [PMID: 35565443 PMCID: PMC9105267 DOI: 10.3390/cancers14092314] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Chemokines are small soluble proteins that control and regulate cell trafficking within and between tissues by binding to their receptors. Among them, CXCL12 and its receptor CXCR4 appeared with ancestral vertebrates, are expressed almost ubiquitously, and play essential roles in embryogenesis and organogenesis. In addition, CXCL12 and CXCR4 are involved in antigen recognition by T and B cells and in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. New data indicate that CXCR4 interacts with the surface protein CD47 in a novel form of immunosurveillance, called ImmunoGenic Surrender (IGS). Following the co-internalization of CXCR4 and CD47 in tumor cells, macrophages phagocytose them and cross-present their antigens to the adaptive immune system, leading to tumor rejection in a fraction of mice. All of these specific activities of CXCL12 and CXCR4 in antigen presentation might be complementary to current immunotherapies. Abstract CXCR4 is a G-Protein coupled receptor that is expressed nearly ubiquitously and is known to control cell migration via its interaction with CXCL12, the most ancient chemokine. The functions of CXCR4/CXCL12 extend beyond cell migration and involve the recognition and disposal of unhealthy or tumor cells. The CXCR4/CXCL12 axis plays a relevant role in shaping the tumor microenvironment (TME), mainly towards dampening immune responses. Notably, CXCR4/CXCL12 cross-signal via the T and B cell receptors (TCR and BCR) and co-internalize with CD47, promoting tumor cell phagocytosis by macrophages in an anti-tumor immune process called ImmunoGenic Surrender (IGS). These specific activities in shaping the immune response might be exploited to improve current immunotherapies.
Collapse
|
5
|
D'Agostino G, García-Cuesta EM, Gomariz RP, Rodríguez-Frade JM, Mellado M. The multilayered complexity of the chemokine receptor system. Biochem Biophys Res Commun 2020; 528:347-358. [PMID: 32145914 DOI: 10.1016/j.bbrc.2020.02.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 01/08/2023]
Abstract
The chemokines receptor family are membrane-expressed class A-specific seven-transmembrane receptors linked to G proteins. Through interaction with the corresponding ligands, the chemokines, they induce a wide variety of cellular responses including cell polarization, movement, immune and inflammatory responses, as well as the prevention of HIV-1 infection. Like a Russian matryoshka doll, the chemokine receptor system is more complex than initially envisaged. This review focuses on the mechanisms that contribute to this dazzling complexity and how they modulate the signaling events triggered by chemokines. The chemokines and their receptors exist as monomers, dimers and oligomers, their expression pattern is highly regulated, and the ligands can bind distinct receptors with similar affinities. The use of novel imaging-based technologies, particularly real-time imaging modalities, has shed new light on the very dynamic conformations that chemokine receptors adopt depending on the cellular context, and that affect chemokine-mediated responses. This complex scenario presents both challenging and exciting opportunities for drug discovery.
Collapse
Affiliation(s)
- Gianluca D'Agostino
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Eva M García-Cuesta
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Rosa P Gomariz
- Dept. Cell Biology, Complutense University of Madrid, Research Institute Hospital 12 de Octubre (i+12), E-28041, Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain
| | - Mario Mellado
- Dept. Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin 3, Campus Cantoblanco, E-28049, Madrid, Spain.
| |
Collapse
|
6
|
Regulation of autoimmune disease by the E3 ubiquitin ligase Itch. Cell Immunol 2019; 340:103916. [PMID: 31126634 DOI: 10.1016/j.cellimm.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Itch is a HECT type E3 ubiquitin ligase that is required to prevent the development of autoimmune disease in both mice and humans. Itch is expressed in most mammalian cell types, and, based on published data, it regulates many cellular pathways ranging from T cell differentiation to liver tumorigenesis. Since 1998, when Itch was first discovered, hundreds of publications have described mechanisms through which Itch controls various biologic activities in both immune and non-immune cells. Other studies have provided insight into how Itch catalytic activity is regulated. However, while autoimmunity is the primary clinical feature that occurs in both mice and humans lacking Itch, and Itch control of immune cell function has been well-studied, it remains unclear how Itch prevents the emergence of autoimmune disease. In this review, we explore recent discoveries that advance our understanding of how Itch regulates immune cell biology, and the extent to which these clarify how Itch prevents autoimmune disease. Additionally, we discuss how molecular regulators of Itch impact its ability to control these processes, as this may provide clues on how to therapeutically target Itch to treat patients with autoimmune disease.
Collapse
|
7
|
Torralba D, Martín-Cófreces NB, Sanchez-Madrid F. Mechanisms of polarized cell-cell communication of T lymphocytes. Immunol Lett 2019; 209:11-20. [PMID: 30954509 DOI: 10.1016/j.imlet.2019.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/13/2019] [Accepted: 03/17/2019] [Indexed: 01/07/2023]
Abstract
Cell-cell communication comprises a variety of molecular mechanisms that immune cells use to respond appropriately to diverse pathogenic stimuli. T lymphocytes polarize in response to different stimuli, such as cytokines, adhesion to specific ligands and cognate antigens presented in the context of MHC. Polarization takes different shapes, from migratory front-back polarization to the formation of immune synapses (IS). The formation of IS between a T cell and an antigen-presenting cell involves early events of receptor-ligand interaction leading to the reorganization of the plasma membrane and the cytoskeleton to orchestrate vesicular and endosomal traffic and directed secretion of several types of mediators, including cytokines and nanovesicles. Cell polarization involves the repositioning of many subcellular organelles, including the endosomal compartment, which becomes an effective platform for the shuttling of molecules as vesicular cargoes that lately will be secreted to transfer information to antigen-presenting cells. Overall, the polarized interaction between a T cell and APC modifies the recipient cell in different ways that are likely lineage-dependent, e.g. dendritic cells, B cells or even other T cells. In this review, we will discuss the mechanisms that mediate the polarization of different membrane receptors, cytoskeletal components and organelles in T cells in a variety of immune contexts.
Collapse
Affiliation(s)
- D Torralba
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - N B Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - F Sanchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP, 28006 Madrid, Spain; Area of Vascular Pathophysiology, Laboratory of Intercellular Communication Fundación Centro Nacional de Investigaciones Cardiovasculares-Carlos III, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| |
Collapse
|
8
|
García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front Endocrinol (Lausanne) 2019; 10:585. [PMID: 31507535 PMCID: PMC6718456 DOI: 10.3389/fendo.2019.00585] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily. These receptors are intimately involved in cell movement, and thus play a critical role in several physiological and pathological situations that require the precise regulation of cell positioning. CXCR4 is one of the most studied chemokine receptors and is involved in many functions beyond leukocyte recruitment. During embryogenesis, it plays essential roles in vascular development, hematopoiesis, cardiogenesis, and nervous system organization. It has been also implicated in tumor progression and autoimmune diseases and, together with CD4, is one of the co-receptors used by the HIV-1 virus to infect immune cells. In contrast to other chemokine receptors that are characterized by ligand promiscuity, CXCR4 has a unique ligand-stromal cell-derived factor-1 (SDF1, CXCL12). However, this ligand also binds ACKR3, an atypical chemokine receptor that modulates CXCR4 functions and is overexpressed in multiple cancer types. The CXCL12/CXCR4/ACKR3 axis constitutes a potential therapeutic target for a wide variety of inflammatory diseases, not only by interfering with cell migration but also by modulating immune responses. Thus far, only one antagonist directed against the ligand-binding site of CXCR4, AMD3100, has demonstrated clinical relevance. Here, we review the role of this ligand and its receptors in different autoimmune diseases.
Collapse
Affiliation(s)
- Eva M. García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - César A. Santiago
- Macromolecular X-Ray Crystallography Unit, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Jesús Vallejo-Díaz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Yasmina Juarranz
- Department Cell Biology, Research Institute Hospital 12 de Octubre (i+12), Complutense University of Madrid, Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
- *Correspondence: Mario Mellado
| |
Collapse
|
9
|
Martín-Cófreces NB, Vicente-Manzanares M, Sánchez-Madrid F. Adhesive Interactions Delineate the Topography of the Immune Synapse. Front Cell Dev Biol 2018; 6:149. [PMID: 30425987 PMCID: PMC6218456 DOI: 10.3389/fcell.2018.00149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
T cells form adhesive contacts with antigen-presenting cells (APCs) as part of the normal surveillance process that occurs in lymph nodes and other tissues. Most of these adhesive interactions are formed by integrins that interact with ligands expressed on the surface of the APC. The interactive strength of integrins depends on their degree of membrane proximity as well as intracellular signals that dictate the conformation of the integrin. Integrins appear in different conformations that endow them with different affinities for their ligand(s). Integrin conformation and thus adhesive strength between the T cell and the APC is tuned by intracellular signals that are turned on by ligation of the T cell receptor (TCR) and chemokine receptors. During the different stages of the process, integrins, the TCR and chemokine receptors may be interconnected by the actin cytoskeleton underneath the plasma membrane, forming a chemical and physical network that facilitates the spatiotemporal dynamics, positioning, and function of these receptors and supports cell-cell adhesion during T cell activation, allowing it to perform its effector function.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer, CIC-IBMCC (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria Princesa (IP), Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
10
|
Dinkel BA, Kremer KN, Rollins MR, Medlyn MJ, Hedin KE. GRK2 mediates TCR-induced transactivation of CXCR4 and TCR-CXCR4 complex formation that drives PI3Kγ/PREX1 signaling and T cell cytokine secretion. J Biol Chem 2018; 293:14022-14039. [PMID: 30018141 DOI: 10.1074/jbc.ra118.003097] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
The immune system includes abundant examples of biologically-relevant cross-regulation of signaling pathways by the T cell antigen receptor (TCR) and the G protein-coupled chemokine receptor, CXCR4. TCR ligation induces transactivation of CXCR4 and TCR-CXCR4 complex formation, permitting the TCR to signal via CXCR4 to activate a phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 protein (PREX1)-dependent signaling pathway that drives robust cytokine secretion by T cells. To understand this receptor heterodimer and its regulation, we characterized the molecular mechanisms required for TCR-mediated TCR-CXCR4 complex formation. We found that the cytoplasmic C-terminal domain of CXCR4 and specifically phosphorylation of Ser-339 within this region were required for TCR-CXCR4 complex formation. Interestingly, siRNA-mediated depletion of G protein-coupled receptor kinase-2 (GRK2) or inhibition by the GRK2-specific inhibitor, paroxetine, inhibited TCR-induced phosphorylation of CXCR4-Ser-339 and TCR-CXCR4 complex formation. Either GRK2 siRNA or paroxetine treatment of human T cells significantly reduced T cell cytokine production. Upstream, TCR-activated tyrosine kinases caused inducible tyrosine phosphorylation of GRK2 and were required for the GRK2-dependent events of CXCR4-Ser-339 phosphorylation and TCR-CXCR4 complex formation. Downstream of TCR-CXCR4 complex formation, we found that GRK2 and phosphatidylinositol 3-kinase γ (PI3Kγ) were required for TCR-stimulated membrane recruitment of PREX1 and for stabilization of cytokine mRNAs and robust cytokine secretion. Together, our results identify a novel role for GRK2 as a target of TCR signaling that is responsible for TCR-induced transactivation of CXCR4 and TCR-CXCR4 complex formation that signals via PI3Kγ/PREX1 to mediate cytokine production. Therapeutic regulation of GRK2 or PI3Kγ may therefore be useful for limiting cytokines produced by T cell malignancies or autoimmune diseases.
Collapse
Affiliation(s)
- Brittney A Dinkel
- From the Mayo IMM Ph.D. Training Program, Mayo Clinic Graduate School of Biomedical Sciences, and.,Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Kimberly N Kremer
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Meagan R Rollins
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Michael J Medlyn
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Karen E Hedin
- Department of Immunology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
11
|
Martín-Cófreces NB, Sánchez-Madrid F. Sailing to and Docking at the Immune Synapse: Role of Tubulin Dynamics and Molecular Motors. Front Immunol 2018; 9:1174. [PMID: 29910809 PMCID: PMC5992405 DOI: 10.3389/fimmu.2018.01174] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022] Open
Abstract
The different cytoskeleton systems and their connecting molecular motors move vesicles and intracellular organelles to shape cells. Polarized cells with specialized functions display an exquisite spatio-temporal regulation of both cytoskeletal and organelle arrangements that support their specific tasks. In particular, T cells rapidly change their shape and cellular function through the establishment of cell surface and intracellular polarity in response to a variety of cues. This review focuses on the contribution of the microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, and different organelles to the formation of the antigen-driven immune synapse.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
12
|
Villares R, Criado G, Juarranz Y, Lopez-Santalla M, García-Cuesta EM, Rodríguez-Frade JM, Leceta J, Lucas P, Pablos JL, Martínez-A C, Garin MI, Gomariz RP, Mellado M. Inhibitory Role of Growth Hormone in the Induction and Progression Phases of Collagen-Induced Arthritis. Front Immunol 2018; 9:1165. [PMID: 29887869 PMCID: PMC5980961 DOI: 10.3389/fimmu.2018.01165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Evidence indicates an intimate connection between the neuroendocrine and the immune systems. A number of in vitro and in vivo studies have demonstrated growth hormone (GH) involvement in immune regulation. The GH receptor is expressed by several leukocyte subpopulations, and GH modulates immune cell proliferation and activity. Here, we found that sustained GH expression protected against collagen-induced arthritis (CIA); in GH-transgenic C57BL/6 (GHTg) mice, disease onset was delayed, and its overall severity was decreased. The anti-collagen response was impaired in these mice, as were inflammatory cytokine levels. Compared to control arthritic littermates, immunized GHTg mice showed significantly lower RORγt (retinoic acid receptor-related orphan receptor gamma 2), IL-17, GM-CSF, IL-22, and IFNγ mRNA expression in draining lymph nodes, whereas there were no differences in IL-21, IL-6, or IL-2 mRNA levels. Data thus suggest that Th17/Th1 cell plasticity toward a pathological phenotype is reduced in these mice. Exogenous GH administration in arthritic DBA/1J mice reduced the severity of established CIA as well as the inflammatory environment, which also shows a GH effect on arthritis progression. These results indicate that GH prevents inflammatory joint destruction in CIA. Our findings demonstrate a modulatory GH role in immune system function that contributes to alleviating CIA symptoms and underlines the importance of endocrine regulation of the immune response.
Collapse
Affiliation(s)
- Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Gabriel Criado
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Lopez-Santalla
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Eva M García-Cuesta
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José M Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Javier Leceta
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - José Luis Pablos
- Inflammatory and Autoimmune Diseases Group, Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Marina I Garin
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain.,Advanced Therapy Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Rosa P Gomariz
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
13
|
Martínez-Muñoz L, Villares R, Rodríguez-Fernández JL, Rodríguez-Frade JM, Mellado M. Remodeling our concept of chemokine receptor function: From monomers to oligomers. J Leukoc Biol 2018; 104:323-331. [PMID: 29719064 DOI: 10.1002/jlb.2mr1217-503r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023] Open
Abstract
The chemokines direct leukocyte recruitment in both homeostatic and inflammatory conditions, and are therefore critical for immune reactions. By binding to members of the class A G protein-coupled receptors, the chemokines play an essential role in numerous physiological and pathological processes. In the last quarter century, the field has accumulated much information regarding the implications of these molecules in different immune processes, as well as mechanistic insight into the signaling events activated through their binding to their receptors. Here, we will focus on chemokine receptors and how new methodological approaches have underscored the role of their conformations in chemokine functions. Advances in biophysical-based techniques show that chemokines and their receptors act in very complex networks and therefore should not be considered isolated entities. In this regard, the chemokine receptors can form homo- and heterodimers as well as oligomers at the cell surface. These findings are changing our view as to how chemokines influence cell biology, identify partners that regulate chemokine function, and open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Martínez-Muñoz
- Department of Cell Signaling, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER-CSIC), Seville, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José Luis Rodríguez-Fernández
- Department of Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas (CIB/CSIC), Madrid, Spain
| | | | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
14
|
Troxerutin Protects Kidney Tissue against BDE-47-Induced Inflammatory Damage through CXCR4-TXNIP/NLRP3 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9865495. [PMID: 29849929 PMCID: PMC5932985 DOI: 10.1155/2018/9865495] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/07/2017] [Indexed: 12/11/2022]
Abstract
2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) induces oxidative stress in kidney cells, but the underlying mechanism remains poorly understood. Troxerutin, a natural flavonoid, has potential antioxidant and anti-inflammatory efficacy. In this study, we assessed the effect of troxerutin on kidney damage caused by BDE-47 and investigated the underlying mechanism. The results showed troxerutin reduced reactive oxygen species (ROS) level and urine albumin-to-creatinine ratio (ACR), decreased the activities of inflammatory factors including cyclooxygenase-2 (COX-2), induced nitric oxide synthase (iNOS) and nuclear factor kappa B (NF-κB) in the kidney tissues of BDE-47-treated mice. Furthermore, troxerutin significantly weakened the expression of kidney NLRP3 inflammasome containing NLRP3, ASC, and caspase-1, contributing to the decline of IL-1β. Additionally, troxerutin inhibited the increased protein level of stromal-derived factor-1(SDF-1), C-X-C chemokine ligand 12 receptor 4 (CXCR4), and thioredoxin interaction protein (TXNIP) caused by BDE-47. Specifically, the immunoprecipitation assay indicated that there was a direct interaction between CXCR4 and TXNIP. CXCR4 siRNA and TXNIP siRNA also decreased the inflammatory damage, which was similar to the action of troxerutin. Our data demonstrated that troxerutin regulated the inflammatory lesions via CXCR4-TXNIP/NLRP3 inflammasome in the kidney of mice induced by BDE-47.
Collapse
|
15
|
Laufer JM, Legler DF. Beyond migration-Chemokines in lymphocyte priming, differentiation, and modulating effector functions. J Leukoc Biol 2018; 104:301-312. [PMID: 29668063 DOI: 10.1002/jlb.2mr1217-494r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokines and their receptors coordinate the positioning of leukocytes, and lymphocytes in particular, in space and time. Discrete lymphocyte subsets, depending on their activation and differentiation status, express various sets of chemokine receptors to be recruited to distinct tissues. Thus, the network of chemokines and their receptors ensures the correct localization of specialized lymphocyte subsets within the appropriate microenvironment enabling them to search for cognate antigens, to become activated, and to fulfill their effector functions. The chemokine system therefore is vital for the initiation as well as the regulation of immune responses to protect the body from pathogens while maintaining tolerance towards self. Besides the well investigated function of orchestrating directed cell migration, chemokines additionally act on lymphocytes in multiple ways to shape immune responses. In this review, we highlight and discuss the role of chemokines and chemokine receptors in controlling cell-to-cell contacts required for lymphocyte arrest on endothelial cells and immunological synapse formation, in lymphocyte priming and differentiation, survival, as well as in modulating effector functions.
Collapse
Affiliation(s)
- Julia M Laufer
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Golbert DCF, Santana-Van-Vliet E, Ribeiro-Alves M, Fonsêca MMBD, Lepletier A, Mendes-da-Cruz DA, Loss G, Cotta-de-Almeida V, Vasconcelos ATR, Savino W. Small interference ITGA6 gene targeting in the human thymic epithelium differentially regulates the expression of immunological synapse-related genes. Cell Adh Migr 2018; 12:152-167. [PMID: 28494186 DOI: 10.1080/19336918.2017.1327513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The thymus supports differentiation of T cell precursors. This process requires relocation of developing thymocytes throughout multiple microenvironments of the organ, mainly with thymic epithelial cells (TEC), which control intrathymic T cell differentiation influencing the formation and maintenance of the immunological synapse. In addition to the proteins of the major histocompatibility complex (MHC), this structure is supported by several adhesion molecules. During the process of thymopoiesis, we previously showed that laminin-mediated interactions are involved in the entrance of T-cell precursors into the thymus, as well as migration of differentiating thymocytes within the organ. Using small interference RNA strategy, we knocked-down the ITGA6 gene (which encodes the CD49f integrin α-chain) in cultured human TEC, generating a decrease in the expression of the corresponding CD49f subunit, in addition to modulation in several other genes related to cell adhesion and migration. Thymocyte adhesion to TEC was significantly impaired, comprising both immature and mature thymocyte subsets. Moreover, we found a modulation of the MHC, with a decrease in membrane expression of HLA-ABC, in contrast with increase in the expression of HLA-DR. Interestingly, the knockdown of the B2M gene (encoding the β-2 microglobulin of the HLA-ABC complex) increased CD49f expression levels, thus unraveling the existence of a cross-talk event in the reciprocal control of CD49f and HLA-ABC. Our data suggest that the expression levels of CD49f may be relevant in the general control of MHC expression by TEC and consequently the corresponding synapse with developing thymocytes mediated by the T-cell receptor.
Collapse
Affiliation(s)
- Daiane Cristina F Golbert
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,c Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis , Rio de Janeiro , Brazil
| | - Eliane Santana-Van-Vliet
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Marcelo Ribeiro-Alves
- d Evandro Chagas Research Institute, Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Marbella Maria B da Fonsêca
- e Nuffield Department of Clinical Medicine, Structural Genomics Consortium , University of Oxford, UK, Structural Genomics Consortium , Old Road Campus, Headington , Oxford , England
| | - Ailin Lepletier
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Daniella Arêas Mendes-da-Cruz
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Guilherme Loss
- c Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis , Rio de Janeiro , Brazil
| | - Vinícius Cotta-de-Almeida
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | - Ana Tereza R Vasconcelos
- c Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis , Rio de Janeiro , Brazil
| | - Wilson Savino
- a Laboratory on Thymus Research, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil.,b National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute , Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| |
Collapse
|
17
|
Pan Z, Shan Q, Gu P, Wang XM, Tai LW, Sun M, Luo X, Sun L, Cheung CW. miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis. J Neuroinflammation 2018; 15:29. [PMID: 29386025 PMCID: PMC5791181 DOI: 10.1186/s12974-018-1073-0] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chemokine CXC receptor 4 (CXCR4) in spinal glial cells has been implicated in neuropathic pain. However, the regulatory cascades of CXCR4 in neuropathic pain remain elusive. Here, we investigated the functional regulatory role of miRNAs in the pain process and its interplay with CXCR4 and its downstream signaling. METHODS miRNAs and CXCR4 and its downstream signaling molecules were measured in the spinal cords of mice with sciatic nerve injury via partial sciatic nerve ligation (pSNL). Immunoblotting, immunofluorescence, immunoprecipitation, and mammal two-hybrid and behavioral tests were used to explore the downstream CXCR4-dependent signaling pathway. RESULTS CXCR4 expression increased in spinal glial cells of mice with pSNL-induced neuropathic pain. Blocking CXCR4 alleviated the pain behavior; contrarily, overexpressing CXCR4 induced pain hypersensitivity. MicroRNA-23a-3p (miR-23a) directly bounds to 3' UTR of CXCR4 mRNA. pSNL-induced neuropathic pain significantly reduced mRNA expression of miR-23a. Overexpression of miR-23a by intrathecal injection of miR-23a mimics or lentivirus reduced spinal CXCR4 and prevented pSNL-induced neuropathic pain. In contrast, knockdown of miR-23a by intrathecal injection of miR-23a inhibitor or lentivirus induced pain-like behavior, which was reduced by CXCR4 inhibition. Additionally, miR-23a knockdown or CXCR4 overexpression in naïve mice could increase the thioredoxin-interacting protein (TXNIP), which was associated with induction of NOD-like receptor protein 3 (NLRP3) inflammasome. Indeed, CXCR4 and TXNIP were co-expressed. The mammal two-hybrid assay revealed the direct interaction between CXCR4 and TXNIP, which was increased in the spinal cord of pSNL mice. In particular, inhibition of TXNIP reversed pain behavior elicited by pSNL, miR-23a knockdown, or CXCR4 overexpression. Moreover, miR-23a overexpression or CXCR4 knockdown inhibited the increase of TXNIP and NLRP3 inflammasome in pSNL mice. CONCLUSIONS miR-23a, by directly targeting CXCR4, regulates neuropathic pain via TXNIP/NLRP3 inflammasome axis in spinal glial cells. Epigenetic interventions against miR-23a, CXCR4, or TXNIP may potentially serve as novel therapeutic avenues in treating peripheral nerve injury-induced nociceptive hypersensitivity.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China. .,Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China. .,Department of Anaesthesiology, Queen Mary Hospital, The University of Hong Kong, Rm 424, 4/F, Block K, 102 Pokfulam, Hong Kong, China.
| | - Qun Shan
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China.,School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Pan Gu
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Xiao Min Wang
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Lydia Wai Tai
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Menglan Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Xin Luo
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Liting Sun
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China. .,Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong SAR, China. .,Department of Anaesthesiology, Queen Mary Hospital, The University of Hong Kong, Rm 424, 4/F, Block K, 102 Pokfulam, Hong Kong, China.
| |
Collapse
|
18
|
López-Cotarelo P, Gómez-Moreira C, Criado-García O, Sánchez L, Rodríguez-Fernández JL. Beyond Chemoattraction: Multifunctionality of Chemokine Receptors in Leukocytes. Trends Immunol 2017; 38:927-941. [PMID: 28935522 DOI: 10.1016/j.it.2017.08.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/05/2017] [Accepted: 08/08/2017] [Indexed: 12/19/2022]
Abstract
The word chemokine is a combination of the words chemotactic and cytokine, in other words cytokines that promote chemotaxis. Hence, the term chemokine receptor refers largely to the ability to regulate chemoattraction. However, these receptors can modulate additional leukocyte functions, as exemplified by the case of CCR7 which, apart from chemotaxis, regulates survival, migratory speed, endocytosis, differentiation and cytoarchitecture. We present evidence highlighting that multifunctionality is a common feature of chemokine receptors. Based on the activities that they regulate, we suggest that chemokine receptors can be classified into inflammatory (which control both inflammatory and homeostatic functions) and homeostatic families. The information accrued also suggests that the non-chemotactic functions controlled by chemokine receptors may contribute to optimizing leukocyte functioning under normal physiological conditions and during inflammation.
Collapse
Affiliation(s)
- Pilar López-Cotarelo
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Equal first authors
| | - Carolina Gómez-Moreira
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Equal first authors
| | - Olga Criado-García
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Equal first authors
| | - Lucas Sánchez
- Cellular and Molecular Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Luis Rodríguez-Fernández
- Molecular Microbiology and Infection Biology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| |
Collapse
|
19
|
Kremer KN, Dinkel BA, Sterner RM, Osborne DG, Jevremovic D, Hedin KE. TCR-CXCR4 signaling stabilizes cytokine mRNA transcripts via a PREX1-Rac1 pathway: implications for CTCL. Blood 2017; 130:982-994. [PMID: 28694325 PMCID: PMC5570680 DOI: 10.1182/blood-2017-03-770982] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
As with many immunopathologically driven diseases, the malignant T cells of cutaneous T-cell lymphomas (CTCLs), such as Sézary syndrome, display aberrant cytokine secretion patterns that contribute to pathology and disease progression. Targeting this disordered release of cytokines is complicated by the changing cytokine milieu that drives the phenotypic changes of CTCLs. Here, we characterize a novel signaling pathway that can be targeted to inhibit the secretion of cytokines by modulating either CXCR4 or CXCR4-mediated signaling. We demonstrate that upon ligation of the T-cell antigen receptor (TCR), the TCR associates with and transactivates CXCR4 via phosphorylation of S339-CXCR4 in order to activate a PREX1-Rac1-signaling pathway that stabilizes interleukin-2(IL-2), IL-4, and IL-10 messenger RNA (mRNA) transcripts. Pharmacologic inhibition of either TCR-CXCR4 complex formation or PREX1-Rac1 signaling in primary human T cells decreased mRNA stability and inhibited secretion of IL-2, IL-4, and IL-10. Applying this knowledge to Sézary syndrome, we demonstrate that targeting various aspects of this signaling pathway blocks both TCR-dependent and TCR-independent cytokine secretion from a Sézary syndrome-derived cell line and patient isolates. Together, these results identify multiple aspects of a novel TCR-CXCR4-signaling pathway that could be targeted to inhibit the aberrant cytokine secretion that drives the immunopathogenesis of Sézary syndrome and other immunopathological diseases.
Collapse
MESH Headings
- Benzylamines
- Cyclams
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Guanine Nucleotide Exchange Factors/metabolism
- Heterocyclic Compounds/pharmacology
- Humans
- Jurkat Cells
- Lymphocyte Subsets/drug effects
- Lymphocyte Subsets/metabolism
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/pathology
- Models, Biological
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, CXCR4/metabolism
- Sezary Syndrome/pathology
- Signal Transduction/drug effects
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
- rac1 GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | | | - Rosalie M Sterner
- Department of Immunology
- Mayo Clinic Medical Scientist Training Program, and
| | | | - Dragan Jevremovic
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
20
|
Jain P, Keating M, Renner S, Cleeland C, Xuelin H, Gonzalez GN, Harris D, Li P, Liu Z, Veletic I, Rozovski U, Jain N, Thompson P, Bose P, DiNardo C, Ferrajoli A, O'Brien S, Burger J, Wierda W, Verstovsek S, Kantarjian H, Estrov Z. Ruxolitinib for symptom control in patients with chronic lymphocytic leukaemia: a single-group, phase 2 trial. LANCET HAEMATOLOGY 2017; 4:e67-e74. [PMID: 28089238 PMCID: PMC5356368 DOI: 10.1016/s2352-3026(16)30194-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/04/2016] [Accepted: 11/10/2016] [Indexed: 12/17/2022]
Abstract
Background Disease-related symptoms impair the quality of life of countless patients with chronic lymphocytic leukemia (CLL) who do not require systemic therapy. Currently available therapies are not specifically aimed at symptom control. Because stimulation of the B-cell receptor activates Janus kinase (JAK)-2 in CLL cells and the JAK2 inhibitor ruxolitinib improves symptoms of patients with myelofibrosis, we hypothesized that ruxolitinib would improve disease-related symptoms in CLL patients. Methods Ruxolitinib (10 mg twice daily) was administered to symptomatic CLL patients who did not require systemic therapy for CLL. Scores on the brief fatigue inventory (BFI), CLL module of the MD Anderson symptom inventory (MDASI) and symptom-associated interference in daily activities (interference score; IS), were assessed prior to treatment and after 3 months of treatment. Plasma cytokine/chemokine levels were measured at baseline and at 3 months. Findings Forty-one CLL patients (25 untreated and 16 previously treated) were enrolled. Thirty-two (78%) of the participants experienced ≥20% reduction in the average BFI score or in the average MDASI score. 59% of the participants had ≥2 units reduction in worst fatigue score in 24 hours as assessed by the BFI. The mean percentage reductions in BFI, MDASI, and IS scores were >42% (p<0.0001). Improvements in the three symptom scores correlated with reductions in levels of IL-6, C-reactive protein, CXCL10, osteopontin, TNF-α, ICAM-1/CD54, VCAM-1/CD106, and beta-2 microglobulin. Furthermore, treatment with ruxolitinib increased and then decreased lymphocyte counts to baseline levels or lower. Grade 3/4 cytopenias were recorded in three patients. Interpretation In CLL patients, ruxolitinib significantly improved disease-related symptoms, reduced cytokine and chemokine levels, and increased and then decreased lymphocyte counts, likely through mobilization followed by apoptosis of CLL cells. Further studies aimed at testing the therapeutic efficacy of ruxolitinib in CLL are warranted. Funding Supported by the Incyte Corp., MD Anderson Cancer Center Support Grant CA016672 and Award Number P01 CA049639 from the National Cancer Institute.
Collapse
Affiliation(s)
- Preetesh Jain
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Keating
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarah Renner
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Cleeland
- Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huang Xuelin
- Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - David Harris
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhiming Liu
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ivo Veletic
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uri Rozovski
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Phillip Thompson
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prithviraj Bose
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alessandra Ferrajoli
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan O'Brien
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Burger
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William Wierda
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Srdan Verstovsek
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zeev Estrov
- Departments of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
22
|
Bustos-Morán E, Blas-Rus N, Martín-Cófreces NB, Sánchez-Madrid F. Orchestrating Lymphocyte Polarity in Cognate Immune Cell-Cell Interactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:195-261. [PMID: 27692176 DOI: 10.1016/bs.ircmb.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The immune synapse (IS) is a specialized structure established between different immune cells that fulfills several functions, including a role as a communication bridge. This intimate contact between a T cell and an antigen-presenting cell promotes the proliferation and differentiation of lymphocytes involved in the contact. T-cell activation requires the specific triggering of the T-cell receptor (TCR), which promotes the activation of different signaling pathways inducing the polarization of the T cell. During this process, different adhesion and signaling receptors reorganize at specialized membrane domains, concomitantly to the polarization of the tubulin and actin cytoskeletons, forming stable polarization platforms. The centrosome also moves toward the IS, driving the movement of different organelles, such as the biosynthetic, secretory, degrading machinery, and mitochondria, to sustain T-cell activation. A proper orchestration of all these events is essential for T-cell effector functions and the accomplishment of a complete immune response.
Collapse
Affiliation(s)
- Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain
| | - Noelia Blas-Rus
- Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Noa Beatriz Martín-Cófreces
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Spanish National Center of Cardiovascular Research (CNIC), Madrid, Spain.,Department of Immunology, La Princesa Hospital, Autonomus University of Madrid (UAM), Health Research Institute of Princesa Hospital (ISS-IP), Madrid, Spain
| |
Collapse
|
23
|
Moens L, Frans G, Bosch B, Bossuyt X, Verbinnen B, Poppe W, Boeckx N, Slatter M, Brusselmans C, Diaz G, Tousseyn T, Flipts H, Corveleyn A, Dierickx D, Meyts I. Successful hematopoietic stem cell transplantation for myelofibrosis in an adult with warts-hypogammaglobulinemia-immunodeficiency-myelokathexis syndrome. J Allergy Clin Immunol 2016; 138:1485-1489.e2. [PMID: 27484033 DOI: 10.1016/j.jaci.2016.04.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/04/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Leen Moens
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatric Pulmonology, University Hospitals Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Bert Verbinnen
- Department of Microbiology and Immunology, Experimental Laboratory Immunology, University Hospitals Leuven, Leuven, Belgium; Biomedical Laboratory Technology, Life Sciences & Chemistry, Thomas More Kempen, Geel, Belgium
| | - Willy Poppe
- Department of Obstetrics-Gynaecology, UZ Gasthuisberg Herestraat, Leuven, Belgium
| | - Nancy Boeckx
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mary Slatter
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | | | - George Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thomas Tousseyn
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Translational Cell and Tissue Research, Catholic University Leuven, Leuven, Belgium
| | - Helena Flipts
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Anniek Corveleyn
- Department of Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Daan Dierickx
- Laboratory for Experimental Hematology, KU Leuven, Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology and Immunology, Childhood Immunology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Onnis A, Finetti F, Baldari CT. Vesicular Trafficking to the Immune Synapse: How to Assemble Receptor-Tailored Pathways from a Basic Building Set. Front Immunol 2016; 7:50. [PMID: 26913036 PMCID: PMC4753310 DOI: 10.3389/fimmu.2016.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
The signals that orchestrate T-cell activation are coordinated within a highly organized interface with the antigen-presenting cell (APC), known as the immune synapse (IS). IS assembly depends on T-cell antigen receptor engagement by a specific peptide antigen-major histocompatibility complex ligand. This primary event leads to polarized trafficking of receptors and signaling mediators associated with recycling endosomes to the cellular interface, which contributes to IS assembly as well as signal termination and favors information transfer from T cells to APCs. Here, we will review recent advances on the vesicular pathways implicated in IS assembly and maintenance, focusing on the spatiotemporal regulation of the traffic of specific receptors by Rab GTPases. Based on accumulating evidence that the IS is a functional homolog of the primary cilium, which coordinates several central signaling pathways in ciliated cells, we will also discuss the similarities in the mechanisms regulating vesicular trafficking to these specialized membrane domains.
Collapse
Affiliation(s)
- Anna Onnis
- Department of Life Sciences, University of Siena , Siena , Italy
| | | | - Cosima T Baldari
- Department of Life Sciences, University of Siena , Siena , Italy
| |
Collapse
|
25
|
Núñez-Andrade N, Iborra S, Trullo A, Moreno-Gonzalo O, Calvo E, Catalán E, Menasche G, Sancho D, Vázquez J, Yao TP, Martín-Cófreces NB, Sánchez-Madrid F. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes. J Cell Sci 2016; 129:1305-1311. [PMID: 26869226 DOI: 10.1242/jcs.180885] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics, including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4(+)T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8(+)T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6(-/-)CD8(+)T cells to Rag1(-/-)mice demonstrated specific impairment in CD8(+)T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin-1-dynactin-mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFN)γ production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs.
Collapse
Affiliation(s)
- Norman Núñez-Andrade
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| | - Salvador Iborra
- Immunobiology of inflammation, Fundación CNIC, Madrid, 28029 Spain
| | - Antonio Trullo
- Microscopy and Dynamic Imaging Unit, Fundación CNIC, Madrid, 28029 Spain.,Spettroscopia biomedica in fluorescenza dinamica, Center of Experimental Imaging, Ospedale San Raffaele, Milan, 20132, Italy
| | - Olga Moreno-Gonzalo
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| | | | - Elena Catalán
- Dept. Biochemistry and Molecular and Cell Biology, Universidad de Zaragoza, 500009, Spain
| | - Gaël Menasche
- Laboratory of Normal and Pathological Homeostasis of the Immune System, INSERM Unité Mixte de Recherche 1163, Paris France
| | - David Sancho
- Immunobiology of inflammation, Fundación CNIC, Madrid, 28029 Spain
| | | | - Tso-Pang Yao
- Departments of Pharmacology and Cancer Biology Duke University, Medical Center, Durham, North Carolina 27710, U.S
| | - Noa Beatriz Martín-Cófreces
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, UAM, IIS-IP. Madrid, 28006 Spain.,Laboratory of Intercellular communication, Fundación CNIC, Madrid, 28029 Spain
| |
Collapse
|
26
|
Mellado M, Martínez-Muñoz L, Cascio G, Lucas P, Pablos JL, Rodríguez-Frade JM. T Cell Migration in Rheumatoid Arthritis. Front Immunol 2015; 6:384. [PMID: 26284069 PMCID: PMC4515597 DOI: 10.3389/fimmu.2015.00384] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 12/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation in joints, associated with synovial hyperplasia and with bone and cartilage destruction. Although the primacy of T cell-related events early in the disease continues to be debated, there is strong evidence that autoantigen recognition by specific T cells is crucial to the pathophysiology of rheumatoid synovitis. In addition, T cells are key components of the immune cell infiltrate detected in the joints of RA patients. Initial analysis of the cytokines released into the synovial membrane showed an imbalance, with a predominance of proinflammatory mediators, indicating a deleterious effect of Th1 T cells. There is nonetheless evidence that Th17 cells also play an important role in RA. T cells migrate from the bloodstream to the synovial tissue via their interactions with the endothelial cells that line synovial postcapillary venules. At this stage, selectins, integrins, and chemokines have a central role in blood cell invasion of synovial tissue, and therefore in the intensity of the inflammatory response. In this review, we will focus on the mechanisms involved in T cell attraction to the joint, the proteins involved in their extravasation from blood vessels, and the signaling pathways activated. Knowledge of these processes will lead to a better understanding of the mechanism by which the systemic immune response causes local joint disorders and will help to provide a molecular basis for therapeutic strategies.
Collapse
Affiliation(s)
- Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Laura Martínez-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Graciela Cascio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| | - José L Pablos
- Grupo de Enfermedades Inflamatorias y Autoinmunes, Instituto de Investigación Sanitaria Hospital , Madrid , Spain
| | - José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones , Madrid , Spain
| |
Collapse
|