1
|
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies. Hum Vaccin Immunother 2024; 20:2303799. [PMID: 38346926 PMCID: PMC10863374 DOI: 10.1080/21645515.2024.2303799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024] Open
Abstract
Efficacy of cancer immunotherapies relies on correct recognition of tumor antigens by lymphocytes, eliciting thus functional responses capable of eliminating tumor cells. Therefore, important efforts have been carried out in antigen identification, with the aim of understanding mechanisms of response to immunotherapy and to design safer and more efficient strategies. In addition to classical tumor-associated antigens identified during the last decades, implementation of next-generation sequencing methodologies is enabling the identification of neoantigens (neoAgs) arising from mutations, leading to the development of new neoAg-directed therapies. Moreover, there are numerous non-classical tumor antigens originated from other sources and identified by new methodologies. Here, we review the relevance of neoAgs in different immunotherapies and the results obtained by applying neoAg-based strategies. In addition, the different types of non-classical tumor antigens and the best approaches for their identification are described. This will help to increase the spectrum of targetable molecules useful in cancer immunotherapies.
Collapse
Affiliation(s)
- Belen Aparicio
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Patrick Theunissen
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| | - Puri Fortes
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
- DNA and RNA Medicine Division, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Spanish Network for Advanced Therapies (TERAV ISCIII), Spain
| | - Pablo Sarobe
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA) University of Navarra, Pamplona, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- CIBERehd, Pamplona, Spain
| |
Collapse
|
2
|
Soh WT, Roetschke HP, Cormican JA, Teo BF, Chiam NC, Raabe M, Pflanz R, Henneberg F, Becker S, Chari A, Liu H, Urlaub H, Liepe J, Mishto M. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat Commun 2024; 15:1147. [PMID: 38326304 PMCID: PMC10850103 DOI: 10.1038/s41467-024-45339-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.
Collapse
Affiliation(s)
- Wai Tuck Soh
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
| | - John A Cormican
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Bei Fang Teo
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Nyet Cheng Chiam
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Monika Raabe
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ralf Pflanz
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Fabian Henneberg
- Department of Structural Dynamics, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Ashwin Chari
- Research Group of Structural Biochemistry and Mechanisms, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Haiyan Liu
- Immunology Programme, Life Sciences Institute; Immunology Translational Research Program and Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
- Institute of Clinical Chemistry, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Juliane Liepe
- Research Group of Quantitative and Systems Biology, Max-Planck-Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany.
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, UK.
- Research Group of Molecular Immunology, Francis Crick Institute, NW1 1AT, London, UK.
| |
Collapse
|
3
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
4
|
Nagel R, Pataskar A, Champagne J, Agami R. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Cancer Res 2022; 82:3637-3649. [PMID: 35904353 PMCID: PMC9574376 DOI: 10.1158/0008-5472.can-22-1525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/07/2023]
Abstract
Immune-checkpoint blockade therapy has been successfully applied to many cancers, particularly tumors that harbor a high mutational burden and consequently express a high abundance of neoantigens. However, novel approaches are needed to improve the efficacy of immunotherapy for treating tumors that lack a high load of classic genetically derived neoantigens. Recent discoveries of broad classes of nongenetically encoded and inducible neoepitopes open up new avenues for therapeutic development to enhance sensitivity to immunotherapies. In this review, we discuss recent work on neoantigen discovery, with an emphasis on novel classes of noncanonical neoepitopes.
Collapse
Affiliation(s)
- Remco Nagel
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Julien Champagne
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Erasmus MC, Rotterdam University, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Gutman I, Gutman R, Sidney J, Chihab L, Mishto M, Liepe J, Chiem A, Greenbaum J, Yan Z, Sette A, Koşaloğlu-Yalçın Z, Peters B. Predicting the Success of Fmoc-Based Peptide Synthesis. ACS OMEGA 2022; 7:23771-23781. [PMID: 35847273 PMCID: PMC9280948 DOI: 10.1021/acsomega.2c02425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthetic peptides are commonly used in biomedical science for many applications in basic and translational research. While peptide synthesis is generally easy and reliable, the chemical nature of some amino acids as well as the many steps and chemical compounds involved can render the synthesis of some peptide sequences difficult. Identification of these problematic sequences and mitigation of issues they may present can be important for the reliable use of peptide reagents in several contexts. Here, we assembled a large dataset of peptides that were synthesized using standard Fmoc chemistry and whose identity was validated using mass spectrometry. We analyzed the mass spectra to identify errors in peptide syntheses and sought to develop a computational tool to predict the likelihood that any given peptide sequence would be synthesized accurately. Our model, named Peptide Synthesis Score (PepSySco), is able to predict the likelihood that a peptide will be successfully synthesized based on its amino acid sequence.
Collapse
Affiliation(s)
- Ilanit Gutman
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Ron Gutman
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - John Sidney
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Leila Chihab
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Michele Mishto
- Centre
for Inflammation Biology and Cancer Immunology (CIBCI) & Peter
Gorer Department of Immunobiology, King’s
College London, London SE1 1UL, U.K.
- Francis
Crick Institute, London NW1 1AT, U.K.
| | - Juliane Liepe
- Max-Planck-Institute
for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Anthony Chiem
- TC
Peptide Lab, San Diego, California 92121-4708, United States
| | - Jason Greenbaum
- Bioinformatics
Core Facility, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Zhen Yan
- Bioinformatics
Core Facility, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Alessandro Sette
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
- Department
of Medicine, University of California San
Diego, La Jolla, California 92037-1387, United States
| | - Zeynep Koşaloğlu-Yalçın
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
| | - Bjoern Peters
- Center
for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California 92037-1387, United States
- Department
of Medicine, University of California San
Diego, La Jolla, California 92037-1387, United States
| |
Collapse
|
6
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
7
|
Saab F, Hamelin DJ, Ma Q, Kovalchik KA, Sirois I, Faridi P, Li C, Purcell AW, Kubiniok P, Caron E. RHybridFinder: An R package to process immunopeptidomic data for putative hybrid peptide discovery. STAR Protoc 2021; 2:100875. [PMID: 34746858 PMCID: PMC8551247 DOI: 10.1016/j.xpro.2021.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Identification of proteasomal spliced peptides (PSPs) by mass spectrometry (MS) is not possible with traditional search engines. Here, we provide a protocol for running RHybridFinder (RHF), an R package for the computational inference of putative PSPs detected by MS. RHF extracts high confidence scored de novo sequenced peptides identified by PEAKS software. Those peptides are then matched to protein databases to infer cis- or trans-spliced major histocompatibility complex (MHC)-associated peptides. RHF is relatively fast and straightforward. PSPs have to be validated experimentally. For complete details on the use and execution of the original protocol, please refer to Faridi et al. (2018).
Collapse
Affiliation(s)
- Frederic Saab
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - David J Hamelin
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Qing Ma
- School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Pouya Faridi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Chen Li
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Anthony W Purcell
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada.,Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
8
|
Admon A. Are There Indeed Spliced Peptides in the Immunopeptidome? Mol Cell Proteomics 2021; 20:100099. [PMID: 34022431 PMCID: PMC8724635 DOI: 10.1016/j.mcpro.2021.100099] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/13/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
The claims that a large fraction of the immunopeptidome is composed of spliced major histocompatibility complex (MHC) peptides have stirred significant excitement and raised controversy. Here, I suggest that there are likely no spliced peptides in the immunopeptidome, and if they exist at all, they are extremely rare. I base this claim on both biochemical and bioinformatics considerations. First, as a reactant in normal proteolytic reactions, water will compete with transpeptidation, which has been suggested as the mechanism of peptide splicing. The high mobility and abundance of water in aqueous solutions renders transpeptidation very inefficient and therefore unlikely to occur. Second, new studies have refuted the bioinformatics assignments to spliced peptides of most of the immunopeptidome MS data, suggesting that the correct assignments are likely other canonical, noncanonical, and post-translationally modified peptides. Therefore, I call for rigorous experimental methodology using heavy stable isotope peptides spiking into the immunoaffinity-purified mixtures of natural MHC peptides and analysis by the highly reliable targeted MS, to claim that MHC peptides are indeed spliced. Peptide splicing was suggested to contribute to the immunopeptidome. I suggest that this idea should be reconsidered based on new evidences. Both biochemical and bioinformatics considerations argue against peptide splicing.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Specht G, Roetschke HP, Mansurkhodzhaev A, Henklein P, Textoris-Taube K, Urlaub H, Mishto M, Liepe J. Large database for the analysis and prediction of spliced and non-spliced peptide generation by proteasomes. Sci Data 2020; 7:146. [PMID: 32415162 PMCID: PMC7228940 DOI: 10.1038/s41597-020-0487-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
Proteasomes are the main producers of antigenic peptides presented to CD8+ T cells. They can cut proteins and release their fragments or recombine non-contiguous fragments thereby generating novel sequences, i.e. spliced peptides. Understanding which are the driving forces and the sequence preferences of both reactions can streamline target discovery in immunotherapies against cancer, infection and autoimmunity. Here, we present a large database of spliced and non-spliced peptides generated by proteasomes in vitro, which is available as simple CSV file and as a MySQL database. To generate the database, we performed in vitro digestions of 55 unique synthetic polypeptide substrates with different proteasome isoforms and experimental conditions. We measured the samples using three mass spectrometers, filtered and validated putative peptides, identified 22,333 peptide product sequences (15,028 spliced and 7,305 non-spliced product sequences). Our database and datasets have been deposited to the Mendeley (doi:10.17632/nr7cs764rc.1) and PRIDE (PXD016782) repositories. We anticipate that this unique database can be a valuable source for predictors of proteasome-catalyzed peptide hydrolysis and splicing, with various future translational applications.
Collapse
Affiliation(s)
- Gerd Specht
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Hanna P Roetschke
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | | | - Petra Henklein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany
| | - Kathrin Textoris-Taube
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Shared Facility for Mass Spectrometry, D-10117, Berlin, Germany
| | - Henning Urlaub
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany
| | - Michele Mishto
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, D-10117, Berlin, Germany.
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL, London, United Kingdom.
| | - Juliane Liepe
- Max-Planck-Institute for Biophysical Chemistry, 37077, Göttingen, Germany.
| |
Collapse
|
10
|
Boucau J, Le Gall S. Antigen processing and presentation in HIV infection. Mol Immunol 2019; 113:67-74. [PMID: 29636181 PMCID: PMC6174111 DOI: 10.1016/j.molimm.2018.03.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/09/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for immune recognition by T cells. In HIV infection, immune responses elicited during infection do not enable to clear infection and correlates of immune protection are not well defined. Here we review features of antigen processing and presentation specific to HIV, analyze how HIV has adapted to the antigen processing machinery and discuss how advances in biochemical and computational protein degradation analyses and in immunopeptidome definition may help identify targets for efficient immune clearance and vaccine immunogen design.
Collapse
Affiliation(s)
- Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, United States.
| |
Collapse
|
11
|
Vigneron N, Stroobant V, Ferrari V, Abi Habib J, Van den Eynde BJ. Production of spliced peptides by the proteasome. Mol Immunol 2019; 113:93-102. [DOI: 10.1016/j.molimm.2018.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/09/2018] [Accepted: 03/29/2018] [Indexed: 01/28/2023]
|
12
|
Kudriaeva AA, Belogurov AA. Proteasome: a Nanomachinery of Creative Destruction. BIOCHEMISTRY (MOSCOW) 2019; 84:S159-S192. [PMID: 31213201 DOI: 10.1134/s0006297919140104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the middle of the 20th century, it was postulated that degradation of intracellular proteins is a stochastic process. More than fifty years of intense studies have finally proven that protein degradation is a very complex and tightly regulated in time and space process that plays an incredibly important role in the vast majority of metabolic pathways. Degradation of more than a half of intracellular proteins is controlled by a hierarchically aligned and evolutionarily perfect system consisting of many components, the main ones being ubiquitin ligases and proteasomes, together referred to as the ubiquitin-proteasome system (UPS). The UPS includes more than 1000 individual components, and most of them are critical for the cell functioning and survival. In addition to the well-known signaling functions of ubiquitination, such as modification of substrates for proteasomal degradation and DNA repair, polyubiquitin (polyUb) chains are involved in other important cellular processes, e.g., cell cycle regulation, immunity, protein degradation in mitochondria, and even mRNA stability. This incredible variety of ubiquitination functions is related to the ubiquitin ability to form branching chains through the ε-amino group of any of seven lysine residues in its sequence. Deubiquitination is accomplished by proteins of the deubiquitinating enzyme family. The second main component of the UPS is proteasome, a multisubunit proteinase complex that, in addition to the degradation of functionally exhausted and damaged proteins, regulates many important cellular processes through controlled degradation of substrates, for example, transcription factors and cyclins. In addition to the ubiquitin-dependent-mediated degradation, there is also ubiquitin-independent degradation, when the proteolytic signal is either an intrinsic protein sequence or shuttle molecule. Protein hydrolysis is a critically important cellular function; therefore, any abnormalities in this process lead to systemic impairments further transforming into serious diseases, such as diabetes, malignant transformation, and neurodegenerative disorders (multiple sclerosis, Alzheimer's disease, Parkinson's disease, Creutzfeldt-Jakob disease and Huntington's disease). In this review, we discuss the mechanisms that orchestrate all components of the UPS, as well as the plurality of the fine-tuning pathways of proteasomal degradation.
Collapse
Affiliation(s)
- A A Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - A A Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia. .,Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
13
|
Rolfs Z, Solntsev SK, Shortreed MR, Frey BL, Smith LM. Global Identification of Post-Translationally Spliced Peptides with Neo-Fusion. J Proteome Res 2018; 18:349-358. [PMID: 30346791 DOI: 10.1021/acs.jproteome.8b00651] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Post-translationally spliced peptides have recently garnered significant interest as potential targets for cancer immunotherapy and as contributors to autoimmune diseases such as type 1 diabetes, yet feasible identification methods for spliced peptides have yet to be developed. Here we present Neo-Fusion, a search program for discovering spliced peptides in tandem mass spectrometry data. Neo-Fusion utilizes two separated ion database searches to identify the two halves of each spliced peptide, and then it infers the full spliced sequence. This strategy allows for the identification of spliced peptides without peptide length constraints, providing a broadly applicable tool suitable for identification of spliced peptides in a variety of systems, such as the HLA-I and HLA-II immunopeptidomes and in vitro digested protein samples obtained from organelles, cells, or tissues of interest. Using simulated spliced peptides to benchmark Neo-Fusion, 25% of all simulated spliced peptides were identified at a measured false-discovery rate of 5% for HLA-I. Neo-Fusion provides the research community with a powerful new tool to aid in the study of the prevalence and biological significance of post-translationally spliced peptides.
Collapse
Affiliation(s)
- Zach Rolfs
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Stefan K Solntsev
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael R Shortreed
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Brian L Frey
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Lloyd M Smith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
14
|
Woon AP, Purcell AW. The use of proteomics to understand antiviral immunity. Semin Cell Dev Biol 2018; 84:22-29. [PMID: 30449533 DOI: 10.1016/j.semcdb.2017.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 01/01/2023]
Abstract
Viruses are intracellular pathogens that cause a vast array of diseases, which are often severe and typified by high morbidity and mortality rates. Viral infections continue to be a global health burden and effective vaccines and therapeutics are constantly sought to prevent and treat these infections. The development of such treatments generally relies on understanding the mechanisms that underpin efficient host antiviral immune responses. This review summarises recent developments in our understanding of antiviral adaptive immunity and in particular, highlights the use of mass spectrometry to elucidate viral antigens and their processing and presentation to T cells and other immune effectors. These processed peptides serve as potential vaccine candidates or may facilitate clinical monitoring, diagnosis and immunotherapy of infectious diseases.
Collapse
Affiliation(s)
- Amanda P Woon
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
15
|
Thomaidou S, Zaldumbide A, Roep BO. Islet stress, degradation and autoimmunity. Diabetes Obes Metab 2018; 20 Suppl 2:88-94. [PMID: 30230178 PMCID: PMC6174957 DOI: 10.1111/dom.13387] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
β-cell destruction in type 1 diabetes (T1D) results from the effect of inflammation and autoimmunity. In response to inflammatory signals, islet cells engage adaptive mechanisms to restore and maintain cellular homeostasis. Among these mechanisms, the unfolded protein response (UPR) leads to a reduction of the general protein translation rate, increased production of endoplasmic reticulum chaperones and the initiation of degradation by activation of the ER associated degradation pathway (ERAD) in which newly synthetized proteins are ubiquitinylated and processed through the proteasome. This adaptive phase is also believed to play a critical role in the development of autoimmunity by the generation of neoantigens. While we have previously investigated the effect of stress on transcription, translation and post-translational events as possible source for neoantigens, the participation of the degradation machinery, yet crucial in the generation of antigenic peptides, remains to be investigated in the context of T1D pathology. In this review, we will describe the relation between the unfolded protein response and the Ubiquitin Proteasome System (UPS) and address the role of the cellular degradation machinery in the generation of antigens. Learning from tumour immunology, we propose how these processes may unmask β-cells by triggering the generation of aberrant peptides recognized by the immune cells.
Collapse
Affiliation(s)
- Sofia Thomaidou
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Bart O. Roep
- Department of Immunohematology and Blood bank Leiden University Medical CenterLeiden University Medical CenterLeidenThe Netherlands
- Department of Diabetes ImmunologyDiabetes & Metabolism Research Institute at the Beckman Research InstituteDuarteCalifornia
| |
Collapse
|
16
|
Mylonas R, Beer I, Iseli C, Chong C, Pak HS, Gfeller D, Coukos G, Xenarios I, Müller M, Bassani-Sternberg M. Estimating the Contribution of Proteasomal Spliced Peptides to the HLA-I Ligandome. Mol Cell Proteomics 2018; 17:2347-2357. [PMID: 30171158 PMCID: PMC6283289 DOI: 10.1074/mcp.ra118.000877] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
It has been reported that about 30% of the HLA-I ligands are produced by proteasomal splicing of two noncontiguous fragments of a parental protein. We report that the identification of many of those spliced peptides is ambiguous. With an alternative workflow, based on de novo sequencing and subsequent verification with multiple search tools, we estimate that the upper bound for the proportion of cis-spliced peptides is 2–6%. Nevertheless, the true contribution of spliced peptides to the ligandome may be much smaller. Spliced peptides are short protein fragments spliced together in the proteasome by peptide bond formation. True estimation of the contribution of proteasome-spliced peptides (PSPs) to the global human leukocyte antigen (HLA) ligandome is critical. A recent study suggested that PSPs contribute up to 30% of the HLA ligandome. We performed a thorough reanalysis of the reported results using multiple computational tools and various validation steps and concluded that only a fraction of the proposed PSPs passes the quality filters. To better estimate the actual number of PSPs, we present an alternative workflow. We performed de novo sequencing of the HLA-peptide spectra and discarded all de novo sequences found in the UniProt database. We checked whether the remaining de novo sequences could match spliced peptides from human proteins. The spliced sequences were appended to the UniProt fasta file, which was searched by two search tools at a false discovery rate (FDR) of 1%. We find that 2–6% of the HLA ligandome could be explained as spliced protein fragments. The majority of these potential PSPs have good peptide-spectrum match properties and are predicted to bind the respective HLA molecules. However, it remains to be shown how many of these potential PSPs actually originate from proteasomal splicing events.
Collapse
Affiliation(s)
- Roman Mylonas
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ilan Beer
- Adicet Bio Israel, Ltd., Technion City, 32000, Haifa, Israel
| | - Christian Iseli
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Chloe Chong
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Hui-Song Pak
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - David Gfeller
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland
| | - George Coukos
- Ludwig Cancer Research Center, University of Lausanne, 1066 Epalinges, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Ioannis Xenarios
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Markus Müller
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| | - Michal Bassani-Sternberg
- Vital-IT, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Creech AL, Ting YS, Goulding SP, Sauld JF, Barthelme D, Rooney MS, Addona TA, Abelin JG. The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction. Proteomics 2018; 18:e1700259. [PMID: 29314742 PMCID: PMC6033110 DOI: 10.1002/pmic.201700259] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/12/2017] [Indexed: 12/30/2022]
Abstract
A challenge in developing personalized cancer immunotherapies is the prediction of putative cancer-specific antigens. Currently, predictive algorithms are used to infer binding of peptides to human leukocyte antigen (HLA) heterodimers to aid in the selection of putative epitope targets. One drawback of current epitope prediction algorithms is that they are trained on datasets containing biochemical HLA-peptide binding data that may not completely capture the rules associated with endogenous processing and presentation. The field of MS has made great improvements in instrumentation speed and sensitivity, chromatographic resolution, and proteogenomic database search strategies to facilitate the identification of HLA-ligands from a variety of cell types and tumor tissues. As such, these advances have enabled MS profiling of HLA-binding peptides to be a tractable, orthogonal approach to lower throughput biochemical assays for generating comprehensive datasets to train epitope prediction algorithms. In this review, we will highlight the progress made in the field of HLA-ligand profiling enabled by MS and its impact on current and future epitope prediction strategies.
Collapse
|
18
|
Why do proteases mess up with antigen presentation by re-shuffling antigen sequences? Curr Opin Immunol 2018; 52:81-86. [PMID: 29723668 DOI: 10.1016/j.coi.2018.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
Abstract
The sequence of a large number of MHC-presented epitopes is not present as such in the original antigen because it has been re-shuffled by the proteasome or other proteases. Why do proteases throw a spanner in the works of our model of antigen tagging and immune recognition? We describe in this review what we know about the immunological relevance of post-translationally spliced epitopes and why proteases seem to have a second (dark) personality, which is keen to create new peptide bonds.
Collapse
|
19
|
Mannering SI, So M, Elso CM, Kay TWH. Shuffling peptides to create T-cell epitopes: does the immune system play cards? Immunol Cell Biol 2017; 96:34-40. [PMID: 29359347 DOI: 10.1111/imcb.1015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 11/27/2022]
Abstract
For a long time, immunologists have believed that classical CD4+ and CD8+ T cells recognize peptides (referred to as epitopes), derived from protein antigens presented by MHC/HLA class I or II. Over the past 10-15 years, it has become clear that epitopes recognized by CD8+, and more recently CD4+ T cells, can be formed by protein splicing. Here, we review the discovery of spliced epitopes recognized by tumor-specific human CD8+ T cells. We discuss how these epitopes are formed and some of the unusual variants that have been reported. Now, over a decade since the first report, evidence is emerging that spliced CD8+ T-cell epitopes are much more common, and potentially much more important, than previously imagined. Recent work has shown that epitopes recognized by CD4+ T cells can also be formed by protein splicing. We discuss the recent discovery of spliced CD4+ T-cell epitopes and their potential role as targets of autoimmune T-cell responses. Finally, we highlight some of the new questions raised from our growing appreciation of T-cell epitopes formed by peptide splicing.
Collapse
Affiliation(s)
- Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Michelle So
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Colleen M Elso
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| | - Thomas W H Kay
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Vic., Australia
| |
Collapse
|
20
|
Abstract
The rapid development of immunomodulatory cancer therapies has led to a concurrent increase in the application of informatics techniques to the analysis of tumors, the tumor microenvironment, and measures of systemic immunity. In this review, the use of tumors to gather genetic and expression data will first be explored. Next, techniques to assess tumor immunity are reviewed, including HLA status, predicted neoantigens, immune microenvironment deconvolution, and T-cell receptor sequencing. Attempts to integrate these data are in early stages of development and are discussed in this review. Finally, we review the application of these informatics strategies to therapy development, with a focus on vaccines, adoptive cell transfer, and checkpoint blockade therapies.
Collapse
Affiliation(s)
- J Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| | - A Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Adaptive Biotechnologies, Seattle, USA
| |
Collapse
|
21
|
Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ. Peptide splicing by the proteasome. J Biol Chem 2017; 292:21170-21179. [PMID: 29109146 DOI: 10.1074/jbc.r117.807560] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome is the major protease responsible for the production of antigenic peptides recognized by CD8+ cytolytic T cells (CTL). These peptides, generally 8-10 amino acids long, are presented at the cell surface by major histocompatibility complex (MHC) class I molecules. Originally, these peptides were believed to be solely derived from linear fragments of proteins, but this concept was challenged several years ago by the isolation of anti-tumor CTL that recognized spliced peptides, i.e. peptides composed of fragments distant in the parental protein. The splicing process was shown to occur in the proteasome through a transpeptidation reaction involving an acyl-enzyme intermediate. Here, we review the steps that led to the discovery of spliced peptides as well as the recent advances that uncover the unexpected importance of spliced peptides in the composition of the MHC class I repertoire.
Collapse
Affiliation(s)
- Nathalie Vigneron
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Violette Ferrari
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Vincent Stroobant
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Joanna Abi Habib
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Benoit J Van den Eynde
- From the Ludwig Institute for Cancer Research, .,the de Duve Institute, Université catholique de Louvain, and.,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), B-1200 Brussels, Belgium
| |
Collapse
|
22
|
Post-Translational Peptide Splicing and T Cell Responses. Trends Immunol 2017; 38:904-915. [PMID: 28830734 DOI: 10.1016/j.it.2017.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 12/21/2022]
Abstract
CD8+ T cell specificity depends on the recognition of MHC class I-epitope complexes at the cell surface. These epitopes are mainly produced via degradation of proteins by the proteasome, generating fragments of the original sequence. However, it is now clear that proteasomes can produce a significant portion of epitopes by reshuffling the antigen sequence, thus expanding the potential antigenic repertoire. MHC class I-restricted spliced epitopes have been described in tumors and infections, suggesting an unpredicted relevance of these peculiar peptides. We review current knowledge about proteasome-catalyzed peptide splicing (PCPS), the emerging rules governing this process, and the potential implications for our understanding and therapeutic use of CD8+ T cells, as well as mechanisms generating other non-canonical antigenic epitopes targeted by the T cell response.
Collapse
|
23
|
Liepe J, Marino F, Sidney J, Jeko A, Bunting DE, Sette A, Kloetzel PM, Stumpf MPH, Heck AJR, Mishto M. A large fraction of HLA class I ligands are proteasome-generated spliced peptides. Science 2016; 354:354-358. [PMID: 27846572 DOI: 10.1126/science.aaf4384] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 09/19/2016] [Indexed: 12/23/2022]
Abstract
The proteasome generates the epitopes presented on human leukocyte antigen (HLA) class I molecules that elicit CD8+ T cell responses. Reports of proteasome-generated spliced epitopes exist, but they have been regarded as rare events. Here, however, we show that the proteasome-generated spliced peptide pool accounts for one-third of the entire HLA class I immunopeptidome in terms of diversity and one-fourth in terms of abundance. This pool also represents a unique set of antigens, possessing particular and distinguishing features. We validated this observation using a range of complementary experimental and bioinformatics approaches, as well as multiple cell types. The widespread appearance and abundance of proteasome-catalyzed peptide splicing events has implications for immunobiology and autoimmunity theories and may provide a previously untapped source of epitopes for use in vaccines and cancer immunotherapy.
Collapse
Affiliation(s)
- Juliane Liepe
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | - Fabio Marino
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands.,Netherlands Proteomics Centre, CH Utrecht, Netherlands
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Anita Jeko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands.,Netherlands Proteomics Centre, CH Utrecht, Netherlands
| | - Daniel E Bunting
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Peter M Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.,Berlin Institute of Health, 10117 Berlin, Germany
| | - Michael P H Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, Netherlands.,Netherlands Proteomics Centre, CH Utrecht, Netherlands
| | - Michele Mishto
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany. .,Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
24
|
Purcell AW, Croft NP, Tscharke DC. Immunology by numbers: quantitation of antigen presentation completes the quantitative milieu of systems immunology! Curr Opin Immunol 2016; 40:88-95. [PMID: 27060633 DOI: 10.1016/j.coi.2016.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 10/22/2022]
Abstract
We review approaches to quantitate antigen presentation using a variety of biological and biochemical readouts and highlight the emerging role of mass spectrometry (MS) in defining and quantifying MHC-bound peptides presented at the cell surface. The combination of high mass accuracy in the determination of the molecular weight of the intact peptide of interest and its signature pattern of fragmentation during tandem MS provide an unambiguous and definitive identification. This is in contrast to the potential receptor cross-reactivity towards closely related peptides and variable dose responsiveness seen in biological readouts. In addition, we gaze into the not too distant future where big data approaches in MS can be accommodated to quantify whole immunopeptidomes both in vitro and in vivo.
Collapse
Affiliation(s)
- Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Nathan P Croft
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David C Tscharke
- The John Curtin School of Medical Research, ANU College of Medicine, Biology & Environment, Australian National University, Acton, ACT 2601, Australia.
| |
Collapse
|
25
|
Berkers CR, de Jong A, Schuurman KG, Linnemann C, Meiring HD, Janssen L, Neefjes JJ, Schumacher TNM, Rodenko B, Ovaa H. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules. THE JOURNAL OF IMMUNOLOGY 2015; 195:4085-95. [PMID: 26401003 DOI: 10.4049/jimmunol.1402455] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/24/2015] [Indexed: 11/19/2022]
Abstract
Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I-restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags.
Collapse
Affiliation(s)
- Celia R Berkers
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Annemieke de Jong
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Karianne G Schuurman
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Carsten Linnemann
- Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Hugo D Meiring
- Institute for Translational Vaccinology, 3721 MA Bilthoven, the Netherlands
| | - Lennert Janssen
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Jacques J Neefjes
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Ton N M Schumacher
- Division of Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; and
| | - Boris Rodenko
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands;
| |
Collapse
|