1
|
Kim J, Bose D, Araínga M, Haque MR, Fennessey CM, Caddell RA, Thomas Y, Ferrell DE, Ali S, Grody E, Goyal Y, Cicala C, Arthos J, Keele BF, Vaccari M, Lorenzo-Redondo R, Hope TJ, Villinger F, Martinelli E. TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo. Nat Commun 2024; 15:1348. [PMID: 38355731 PMCID: PMC10867093 DOI: 10.1038/s41467-024-45555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal properties of in vivo TGF-β blockade, decrease viral reservoirs and stimulate immune responses. Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a 64Cu-DOTA-F(ab')2-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells characterized by a progressive downregulation in TCF1. In summary, we demonstrate that galunisertib, a clinical stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Muhammad R Haque
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rachel A Caddell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| | - Yanique Thomas
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Douglas E Ferrell
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Syed Ali
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Emanuelle Grody
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, USA
| | - Thomas J Hope
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Elena Martinelli
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Kime J, Bose D, Arainga M, Haque MR, Fennessey CM, Caddell RA, Thomas Y, Ferrell DE, Ali S, Grody E, Goyal Y, Cicala C, Arthos J, Keele BF, Vaccari M, Lorenzo-Redondo R, Hope TJ, Villinger FJ, Marinelli E. TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556422. [PMID: 38014094 PMCID: PMC10680555 DOI: 10.1101/2023.09.05.556422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of the anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirmed the latency reversal properties of in vivo TGF-β blockade, decreased viral reservoirs and stimulated immune responses. Eight SIV-infected macaques on suppressive ART were treated with 4 2-week cycles of galunisertib. ART was discontinued 3 weeks after the last dose, and macaques euthanized 6 weeks after ART-interruption(ATI). One macaque did not rebound, while the remaining rebounded between week 2 and 6 post-ATI. Galunisertib led to viral reactivation as indicated by plasma viral load and immunoPET/CT with the 64Cu-DOTA-F(ab')2-p7D3-probe. Half to 1 Log decrease in cell-associated (CA-)SIV DNA was detected in lymph nodes, gut and PBMC, while intact pro-virus in PBMC decreased by 3-fold. No systemic increase in inflammatory cytokines was observed. High-dimensions cytometry, bulk and single-cell RNAseq revealed a shift toward an effector phenotype in T and NK cells. In summary, we demonstrated that galunisertib, a clinical stage TGFβ inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
Collapse
|
3
|
Zhang X, Zhou Z. The Mechanism of bnAb Production and Its Application in Mutable Virus Broad-Spectrum Vaccines: Inspiration from HIV-1 Broad Neutralization Research. Vaccines (Basel) 2023; 11:1143. [PMID: 37514959 PMCID: PMC10384589 DOI: 10.3390/vaccines11071143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Elite controllers among HIV-1-infected individuals have demonstrated a stronger ability to control the viral load in their bodies. Scientists have isolated antibodies with strong neutralizing ability from these individuals, which can neutralize HIV-1 variations; these are known as broadly neutralizing antibodies. The nucleic acid of some viruses will constantly mutate during replication (such as SARS-CoV-2), which will reduce the protective ability of the corresponding vaccines. The immune escape caused by this mutation is the most severe challenge faced by humans in the battle against the virus. Therefore, developing broad-spectrum vaccines that can induce broadly neutralizing antibodies against various viruses and their mutated strains is the best way to combat virus mutations. Exploring the mechanism by which the human immune system produces broadly neutralizing antibodies and its induction strategies is crucial in the design process of broad-spectrum vaccines.
Collapse
Affiliation(s)
- Xinyu Zhang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, No. 31 Huatuo Street, Daxing District, Beijing 102629, China
- College of Life Science, Jilin University, Changchun 130012, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
4
|
Lu L, Sun J, Su H, Luo S, Chen J, Qiu S, Chi Y, Lin J, Xu X, Zheng D. Antitumor CD8 T cell responses in glioma patients are effectively suppressed by T follicular regulatory cells. Exp Cell Res 2021; 407:112808. [PMID: 34508744 DOI: 10.1016/j.yexcr.2021.112808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Regulatory T (Treg) cells are thought to contribute to tumor pathogenesis by suppressing tumor immunosurveillance and antitumor immunity. T follicular regulatory (Tfr) cells are a recently characterized Treg subset that expresses both the Treg transcription factor (TF) Foxp3 and the T follicular helper (Tfh) TF Bcl-6. The role of Tfr cells in glioma patients remains unclear. In this study, we found that the level of Tfr cells, identified as Foxp3+Bcl-6+ CD4 T cells, was significantly elevated in tumor-infiltrating CD4 T cells from resected glioma tumors. Both Tfr cells and Treg cells significantly suppressed the proliferation and the cytotoxic capacity of CD8 T cells toward glioma tumor cells, and the suppression was positively associated with the proportion of Tfr cells and Treg cells, respectively. Tfr and Treg cells from glioma tumor samples demonstrated higher suppression potency than those from healthy blood samples and glioma blood samples. Interestingly, canonical CXCR5- Treg cells could suppress both CXCR5+ and CXCR5- CD8 T cells, albeit with stronger potency toward CXCR5- CD8 T cells. However, Tfr cells presented much higher suppression potency toward CXCR5+ CD8 T cells, whereas CXCR5+ CD8 T cells are a potent CD8 T cell subset previously described to have antiviral and antitumor roles. Overall, these data indicate that Tfr cells are enriched in glioma tumors and have suppressive capacity toward CD8 T cell-mediated effector functions.
Collapse
Affiliation(s)
- Lenian Lu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Jie Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Hang Su
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Shi Luo
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Jianmin Chen
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Shengcong Qiu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Yajie Chi
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Jiye Lin
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China
| | - Xiaobing Xu
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China.
| | - Dahai Zheng
- Department of Neurosurgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Sunde), Foshan, Guangdong, China.
| |
Collapse
|
5
|
O’Neil TR, Hu K, Truong NR, Arshad S, Shacklett BL, Cunningham AL, Nasr N. The Role of Tissue Resident Memory CD4 T Cells in Herpes Simplex Viral and HIV Infection. Viruses 2021; 13:359. [PMID: 33668777 PMCID: PMC7996247 DOI: 10.3390/v13030359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue-resident memory T cells (TRM) were first described in 2009. While initially the major focus was on CD8+ TRM, there has recently been increased interest in defining the phenotype and the role of CD4+ TRM in diseases. Circulating CD4+ T cells seed CD4+ TRM, but there also appears to be an equilibrium between CD4+ TRM and blood CD4+ T cells. CD4+ TRM are more mobile than CD8+ TRM, usually localized deeper within the dermis/lamina propria and yet may exhibit synergy with CD8+ TRM in disease control. This has been demonstrated in herpes simplex infections in mice. In human recurrent herpes infections, both CD4+ and CD8+ TRM persisting between lesions may control asymptomatic shedding through interferon-gamma secretion, although this has been more clearly shown for CD8+ T cells. The exact role of the CD4+/CD8+ TRM axis in the trigeminal ganglia and/or cornea in controlling recurrent herpetic keratitis is unknown. In HIV, CD4+ TRM have now been shown to be a major target for productive and latent infection in the cervix. In HSV and HIV co-infections, CD4+ TRM persisting in the dermis support HIV replication. Further understanding of the role of CD4+ TRM and their induction by vaccines may help control sexual transmission by both viruses.
Collapse
Affiliation(s)
- Thomas R. O’Neil
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kevin Hu
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Sana Arshad
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
| | - Najla Nasr
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW 2145, Australia; (T.R.O.); (K.H.); (N.R.T.); (S.A.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2000, Australia
| |
Collapse
|
6
|
Zhao S, Xu W, Tu B, Hong WG, Zhang Z, Chen WW, Zhao M. Alterations of the frequency and functions of follicular regulatory T cells and related mechanisms in HIV infection. J Infect 2020; 81:776-784. [PMID: 32956725 DOI: 10.1016/j.jinf.2020.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus (HIV) infection impairs both cellular and humoral immune system. Follicular regulatory T (Tfr) cells are a recently characterised subset of CD4+T cells. Tfr also exerts an immunosuppressive effect on humoral immune system through interaction with follicular helper T (Tfh) cells, but the role of Tfr in HIV infection needs to be further elucidated. 20 treatment-naïve and 20 antiretroviral therapy (ART)-treated HIV-infected individuals were enrolled for cross-sectional study and nine complete responders (CRs) and eight immune non-responders (INRs) after ART were collected for retrospective cohort study. Tfr phenotypes, cytokine secretions, and apoptosis of those subjects were evaluated by flow cytometry. HIV DNA was measured by reverse transcription-quantitative PCR (RT-qPCR). Significantly increased circulating Tfr was observed in chronic HIV+ patients and the imbalance between Tfr and Tfh17 was associated with CD4+T counts. In addition, an elevated proportion of Tfr was associated with immune reconstruction failure of patients after ART. The IL-10 and CTLA-4 expressions of Tfr cells were up-regulated in treatment-naïve HIV+ patients. Ex vivo experiments showed IL-10 and CTLA-4 expressed by Tfr inhibited IL-21 secretion of Tfh. Tfr harboured a comparable HIV-1 DNA level with Tfh in HIV+ patients. Compared to Tfr of HCs, Tfr cells of HIV+ patients were more insensitive to CD95 and IFN-α induced apoptosis, had a higher proliferation rate, and had more stem-like T cell (Tscm) phenotype. The anti-apoptosis feature, higher proliferation rate, and Tscm-like features of Tfr in HIV+ patients, led to the expansion of Tfr which in turn resulted in dysfunction of Tfh. Tfr cells were also involved in immune reconstruction failure and latent infection of HIV. Tfr cells were a novel, and potentially therapeutic, target for the cure of HIV infection, especially for HIV vaccine development and HIV reservoir elimination.
Collapse
Affiliation(s)
- Shuang Zhao
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Xu
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China
| | - Bo Tu
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China
| | - Wei-Guo Hong
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China
| | - Zheng Zhang
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China; Institute of Hepatology, Shenzhen 3rd People's Hospital, NO. 29, Bulan Road, Shenzhen City, Guangdong 518100, China.
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China.
| | - Min Zhao
- Treatment and Research Center for Infectious Disease, The Fifth Medical Center of PLA General Hospital, NO. 100, Xisihuan Road, FengTai District, Beijing 100039, China.
| |
Collapse
|
7
|
Expression of CD40L by the ALVAC-Simian Immunodeficiency Virus Vector Abrogates T Cell Responses in Macaques. J Virol 2020; 94:JVI.01933-19. [PMID: 31896599 DOI: 10.1128/jvi.01933-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Immunization with recombinant ALVAC/gp120 alum vaccine provided modest protection from human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) acquisition in humans and macaques. Vaccine-mediated protection was associated with the elicitation of IgG against the envelope V2 loop and of envelope-specific CD4+ T cell responses. We hypothesized that the simultaneous expression of the costimulatory molecule CD40L (CD154) by the ALVAC-HIV vector could increase both protective humoral and cellular responses. We engineered an ALVAC-SIV coexpressing CD40L with SIVmac251 (ALVAC-SIV/CD40L) gag, pol, and env genes. We compared its immunogenicity in macaques with that of a canonical ALVAC-SIV, with both given as a vector-prime/gp120 in alum boost strategy. The ALVAC-SIV/CD40L was superior to the ALVAC-SIV regimen in inducing binding and tier 1 neutralizing antibodies against the gp120. The increase in humoral responses was associated with the expression of the membrane-bound form of the CD40L by CD4+ T cells in lymph nodes. Unexpectedly, the ALVAC-SIV/CD40L vector had a blunting effect on CD4+ Th1 helper responses and instead favored the induction of myeloid-derived suppressor cells, the immune-suppressive interleukin-10 (IL-10) cytokine, and the down-modulatory tryptophan catabolism. Ultimately, this strategy failed to protect macaques from SIV acquisition. Taken together, these results underlie the importance of balanced vaccine-induced activating versus suppressive immune responses in affording protection from HIV.IMPORTANCE CD40-CD40 ligand (CD40L) interaction is crucial for inducing effective cytotoxic and humoral responses against pathogens. Because of its immunomodulatory function, CD40L has been used to enhance immune responses to vaccines, including candidate vaccines for HIV. The only successful vaccine ever tested in humans utilized a strategy combining canarypox virus-based vector (ALVAC) together with an envelope protein (gp120) adjuvanted in alum. This strategy showed limited efficacy in preventing HIV-1/SIV acquisition in humans and macaques. In both species, protection was associated with vaccine-induced antibodies against the HIV envelope and CD4+ T cell responses, including type 1 antiviral responses. In this study, we tested whether augmenting CD40L expression by coexpressing it with the ALVAC vector could increase the protective immune responses. Although coexpression of CD40L did increase humoral responses, it blunted type 1 CD4+ T cell responses against the SIV envelope protein and failed to protect macaques from viral infection.
Collapse
|
8
|
Huang Y, Chen Z, Wang H, Ba X, Shen P, Lin W, Wang Y, Qin K, Huang Y, Tu S. Follicular regulatory T cells: a novel target for immunotherapy? Clin Transl Immunology 2020; 9:e1106. [PMID: 32082569 PMCID: PMC7019198 DOI: 10.1002/cti2.1106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 12/15/2022] Open
Abstract
High‐affinity antibodies are produced during multiple processes in germinal centres (GCs), where follicular helper T (Tfh) cells interact closely with B cells to support B‐cell survival, differentiation and proliferation. Recent studies have revealed that a specialised subset of regulatory T cells, follicular regulatory T (Tfr) cells, especially fine‐tune Tfh cells and GC B cells, ultimately regulating GC reactions. Alterations in frequencies or function of Tfr cells may result in multiple autoantibody‐mediated or autoantibody‐associated diseases. This review discusses recent insights into the physiology and pathology of Tfr cells, with a special emphasis on their potential roles in human diseases. Discrepancies are common among studies, reflecting the limited understanding of Tfr cells. Further exploration of the mechanisms of Tfr cells in these diseases and thus targeting Tfr cells may help reinstate immune homeostasis and provide novel immunotherapy.
Collapse
Affiliation(s)
- Yao Huang
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Hui Wang
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xin Ba
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Pan Shen
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Shenghao Tu
- Institute of Integrated Traditional Chinese and Western Medicine Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
9
|
Martinov T, Swanson LA, Breed ER, Tucker CG, Dwyer AJ, Johnson JK, Mitchell JS, Sahli NL, Wilson JC, Singh LM, Hogquist KA, Spanier JA, Fife BT. Programmed Death-1 Restrains the Germinal Center in Type 1 Diabetes. THE JOURNAL OF IMMUNOLOGY 2019; 203:844-852. [PMID: 31324724 DOI: 10.4049/jimmunol.1801535] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/18/2019] [Indexed: 01/22/2023]
Abstract
Programmed death-1 (PD-1) inhibits T and B cell function upon ligand binding. PD-1 blockade revolutionized cancer treatment, and although numerous patients respond, some develop autoimmune-like symptoms or overt autoimmunity characterized by autoantibody production. PD-1 inhibition accelerates autoimmunity in mice, but its role in regulating germinal centers (GC) is controversial. To address the role of PD-1 in the GC reaction in type 1 diabetes, we used tetramers to phenotype insulin-specific CD4+ T and B cells in NOD mice. PD-1 or PD-L1 deficiency, and PD-1 but not PD-L2 blockade, unleashed insulin-specific T follicular helper CD4+ T cells and enhanced their survival. This was concomitant with an increase in GC B cells and augmented insulin autoantibody production. The effect of PD-1 blockade on the GC was reduced when mice were treated with a mAb targeting the insulin peptide:MHC class II complex. This work provides an explanation for autoimmune side effects following PD-1 pathway inhibition and suggests that targeting the self-peptide:MHC class II complex might limit autoimmunity arising from checkpoint blockade.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Linnea A Swanson
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Elise R Breed
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Christopher G Tucker
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Alexander J Dwyer
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Jenna K Johnson
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Jason S Mitchell
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Nathanael L Sahli
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Joseph C Wilson
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Lovejot M Singh
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Kristin A Hogquist
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Justin A Spanier
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455; and
| |
Collapse
|
10
|
Pardi N, LaBranche CC, Ferrari G, Cain DW, Tombácz I, Parks RJ, Muramatsu H, Mui BL, Tam YK, Karikó K, Polacino P, Barbosa CJ, Madden TD, Hope MJ, Haynes BF, Montefiori DC, Hu SL, Weissman D. Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 15:36-47. [PMID: 30974332 PMCID: PMC6454128 DOI: 10.1016/j.omtn.2019.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/10/2023]
Abstract
Despite the enormous effort in the development of effective vaccines against HIV-1, no vaccine candidate has elicited broadly neutralizing antibodies in humans. Thus, generation of more effective anti-HIV vaccines is critically needed. Here we characterize the immune responses induced by nucleoside-modified and purified mRNA-lipid nanoparticle (mRNA-LNP) vaccines encoding the clade C transmitted/founder HIV-1 envelope (Env) 1086C. Intradermal vaccination with nucleoside-modified 1086C Env mRNA-LNPs elicited high levels of gp120-specific antibodies in rabbits and rhesus macaques. Antibodies generated in rabbits neutralized a tier 1 virus, but no tier 2 neutralization activity could be measured. Importantly, three of six non-human primates developed antibodies that neutralized the autologous tier 2 strain. Despite stable anti-gp120 immunoglobulin G (IgG) levels, tier 2 neutralization titers started to drop 4 weeks after booster immunizations. Serum from both immunized rabbits and non-human primates demonstrated antibody-dependent cellular cytotoxicity activity. Collectively, these results are supportive of continued development of nucleoside-modified and purified mRNA-LNP vaccines for HIV. Optimization of Env immunogens and vaccination protocols are needed to increase antibody neutralization breadth and durability.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Katalin Karikó
- BioNTech RNA Pharmaceuticals, An der Goldgrube 12, 55131 Mainz, Germany
| | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. J Virol 2019; 93:JVI.01687-18. [PMID: 30463978 DOI: 10.1128/jvi.01687-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.
Collapse
|
12
|
Curtis AD, Jensen K, Van Rompay KK, Amara RR, Kozlowski PA, De Paris K. A simultaneous oral and intramuscular prime/sublingual boost with a DNA/Modified Vaccinia Ankara viral vector-based vaccine induces simian immunodeficiency virus-specific systemic and mucosal immune responses in juvenile rhesus macaques. J Med Primatol 2018; 47:288-297. [PMID: 30204253 PMCID: PMC6158111 DOI: 10.1111/jmp.12372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND A pediatric vaccine to prevent breast milk transmission of human immunodeficiency virus (HIV) may generate greater immune responses at viral entry sites if given by an oral route. METHODS We compared immune responses induced in juvenile macaques by prime/boosting with simian immunodeficiency virus (SIV)-expressing DNA/modified vaccinia Ankara virus (MVA) by the intramuscular route (IM), the oral (O)/tonsillar routes (T), the O/sublingual (SL) routes, and O+IM/SL routes. RESULTS O/T or O/SL immunization generated SIV-specific T cells in mucosal tissues but failed to induce SIV-specific IgA in saliva or stool or IgG in plasma. IM/IM or O+IM/SL generated humoral and cellular responses to SIV. IM/IM generated greater frequencies of TFH in spleen, but O+IM/SL animals had higher avidity plasma IgG and more often demonstrated mucosal IgA responses. CONCLUSION These results suggest that codelivery of HIV DNA/MVA vaccines by the oral and IM routes might be optimal for generating both systemic and mucosal antibodies.
Collapse
Affiliation(s)
- Alan D. Curtis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kara Jensen
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Koen K.A. Van Rompay
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Rama R. Amara
- Yerkes National Primate Research Center and Emory University, Atlanta, GA, 30322, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
13
|
Moysi E, Petrovas C, Koup RA. The role of follicular helper CD4 T cells in the development of HIV-1 specific broadly neutralizing antibody responses. Retrovirology 2018; 15:54. [PMID: 30081906 PMCID: PMC6080353 DOI: 10.1186/s12977-018-0437-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/28/2018] [Indexed: 01/23/2023] Open
Abstract
The induction of HIV-1-specific antibodies that can neutralize a broad number of isolates is a major goal of HIV-1 vaccination strategies. However, to date no candidate HIV-1 vaccine has successfully elicited broadly neutralizing antibodies of sufficient quality and breadth for protection. In this review, we focus on the role of follicular helper CD4 T-cells (Tfh) in the development of such cross-reactive protective antibodies. We discuss germinal center (GC) formation and the dynamics of Tfh and GC B cells during HIV-1/SIV infection and vaccination. Finally, we consider future directions for the study of Tfh and offer perspective on factors that could be modulated to enhance Tfh function in the context of prophylactic vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| | | | - Richard A Koup
- Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, USA
| |
Collapse
|
14
|
Velu V, Mylvaganam G, Ibegbu C, Amara RR. Tfh1 Cells in Germinal Centers During Chronic HIV/SIV Infection. Front Immunol 2018; 9:1272. [PMID: 29928280 PMCID: PMC5997779 DOI: 10.3389/fimmu.2018.01272] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper CD4 cells (Tfh) are essential for the development and maintenance of germinal center (GC) reactions, a critical process that promotes the generation of long-lived high affinity humoral immunity. It is becoming increasingly evident that GC-Tfh cells are heterogeneous in nature with some cellular characteristics associated with a Th1, Th2, and Th17 phenotype. Emerging studies suggest that GC-Tfh cells are directed to differentiate into distinct phenotypes during chronic HIV/SIV infection and these changes in GC-Tfh cells can greatly impact the B cell response and subclass of antibodies generated. Studies in HIV-infected humans have shown that certain Tfh phenotypes are associated with the generation of broadly neutralizing antibody responses. Moreover, the susceptibility of particular GC-Tfh subsets to HIV infection within the secondary lymphoid sites can also impact GC-Tfh/B cell interactions. In this review, we discuss the recent advances that show Tfh heterogeneity during chronic HIV/SIV infection. In particular, we will discuss the dynamics of GC-Tfh cells, their altered differentiation state and function, and their impact on B cell responses during HIV/SIV infection. In addition, we will also discuss the potential role of a recently described novel subset of follicular homing CXCR5+ CD8 T cells (Tfc) and their importance in contributing to control of chronic HIV/SIV infection. A better understanding of the mechanistic role of follicular homing CD4 and CD8 T cells during HIV/SIV infection will aid in the design of vaccines and therapeutic strategies to prevent and treat HIV/AIDS.
Collapse
Affiliation(s)
- Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Geetha Mylvaganam
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Harvard, Cambridge, MA, United States
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Rama Rao Amara
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
15
|
Greczmiel U, Oxenius A. The Janus Face of Follicular T Helper Cells in Chronic Viral Infections. Front Immunol 2018; 9:1162. [PMID: 29887868 PMCID: PMC5982684 DOI: 10.3389/fimmu.2018.01162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Chronic infections with non-cytopathic viruses constitutively expose virus-specific adaptive immune cells to cognate antigen, requiring their numeric and functional adaptation. Virus-specific CD8 T cells are compromised by various means in their effector functions, collectively termed T cell exhaustion. Alike CD8 T cells, virus-specific CD4 Th1 cell responses are gradually downregulated but instead, follicular T helper (TFH) cell differentiation and maintenance is strongly promoted during chronic infection. Thereby, the immune system promotes antibody responses, which bear less immune-pathological risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on TFH cells contributes to tolerance of the chronic infection and is pivotal for the continued maturation and adaptation of the antibody response, leading eventually to the emergence of virus-neutralizing antibodies, which possess the potential to control the established chronic infection. However, sustained high levels of TFH cells can also result in a less stringent B cell selection process in active germinal center reactions, leading to the activation of virus-unspecific B cells, including self-reactive B cells, and to hypergammaglobulinemia. This dispersal of B cell help comes at the expense of a stringently selected virus-specific antibody response, thereby contributing to its delayed maturation. Here, we discuss these opposing facets of TFH cells in chronic viral infections.
Collapse
Affiliation(s)
- Ute Greczmiel
- Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | | |
Collapse
|
16
|
Kleinman AJ, Sivanandham R, Pandrea I, Chougnet CA, Apetrei C. Regulatory T Cells As Potential Targets for HIV Cure Research. Front Immunol 2018; 9:734. [PMID: 29706961 PMCID: PMC5908895 DOI: 10.3389/fimmu.2018.00734] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022] Open
Abstract
T regulatory cells (Tregs) are a key component of the immune system, which maintain a delicate balance between overactive responses and immunosuppression. As such, Treg deficiencies are linked to autoimmune disorders and alter the immune control of pathogens. In HIV infection, Tregs play major roles, both beneficial and detrimental. They regulate the immune system such that inflammation and spread of virus through activated T cells is suppressed. However, suppression of immune activation also limits viral clearance and promotes reservoir formation. Tregs can be directly targeted by HIV, thereby harboring a fraction of the viral reservoir. The vital role of Tregs in the pathogenesis and control of HIV makes them a subject of interest for manipulation in the search of an HIV cure. Here, we discuss the origin and generation, homeostasis, and functions of Tregs, particularly their roles and effects in HIV infection. We also present various Treg manipulation strategies, including Treg depletion techniques and interventions that alter Treg function, which may be used in different cure strategies, to simultaneously boost HIV-specific immune responses and induce reactivation of the latent virus.
Collapse
Affiliation(s)
- Adam J Kleinman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ranjit Sivanandham
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Claire A Chougnet
- Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital, Cincinnati University, Cincinnati, OH, United States
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Fan W, Demers AJ, Wan Y, Li Q. Altered Ratio of T Follicular Helper Cells to T Follicular Regulatory Cells Correlates with Autoreactive Antibody Response in Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018; 200:3180-3187. [PMID: 29610141 DOI: 10.4049/jimmunol.1701288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 03/04/2018] [Indexed: 01/10/2023]
Abstract
Individuals with chronic HIV-1 infection have an increased prevalence of autoreactive Abs. Many of the isolated HIV broadly neutralizing Abs from these individuals are also autoreactive. However, the underlying mechanism(s) that produce these autoreactive broadly neutralizing Abs remains largely unknown. The highly regulated coordination among B cells, T follicular helper (TFH) cells, and T follicular regulatory (TFR) cells in germinal centers (GCs) of peripheral lymphatic tissues (LTs) is essential for defense against pathogens while also restricting autoreactive responses. We hypothesized that an altered ratio of TFH/TFR cells in the GC contributes to the increased prevalence of autoreactive Abs in chronic HIV infection. We tested this hypothesis using a rhesus macaque (RM) SIV model. We measured the frequency of TFH cells, TFR cells, and GC B cells in LTs and anti-dsDNA and anti-phospholipid Abs from Indian RMs, with and without SIV infection. We found that the frequency of anti-dsDNA and anti-phospholipid Abs was much higher in chronically infected RMs (83.3% [5/6] and 66.7% [4/6]) than in acutely infected RMs (33.3% [2/6] and 18.6% [1/6]) and uninfected RMs (0% [0/6] and 18.6% [1/6]). The increased ratio of TFH/TFR cells in SIV infection correlated with anti-dsDNA and anti-phospholipid autoreactive Ab levels, whereas the frequency of TFR cells alone did not correlate with the levels of autoreactive Abs. Our results provide direct evidence that the ratio of TFH/TFR cells in LTs is critical for regulating autoreactive Ab production in chronic SIV infection and possibly, by extension, in chronic HIV-1 infection.
Collapse
Affiliation(s)
- Wenjin Fan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Andrew James Demers
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Yanmin Wan
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Qingsheng Li
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583; and School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
18
|
Abstract
Germinal centers (GCs) are organized lymphoid tissue microstructures where B cells proliferate and differentiate into memory B cells and plasma cells. A few distinctive subsets of highly specialized T cells gain access to the GCs by expressing the B cell zone–homing C-X-C chemokine receptor type 5 (CXCR5) while losing the T cell zone–homing chemokine receptor CCR7. Help from T cells is critical to induce B cell proliferation and somatic hyper mutation and to limit GC reactions. CD4+ T follicular helper (TFH) cells required for the formation of GCs and for the generation of long-lived, high-affinity B cells. Regulatory CD4+ (TFR) and CD8+ T cells co-localize with TFH cells and keep their expansion in check, thus limiting GC reactions. A cytotoxic CXCR5pos CD8+ T cell subset has been described in GCs in humans: although low in number, GC CD8+ T cells can expand rapidly during certain viral infections. Because these subsets find their home in secondary lymphoid tissues (lymph nodes and spleen) that are difficult to obtain in humans, GC–homing T cells have been extensively studied in mice. Nevertheless, significant limitations in using this model, such as evolutionary divergences between mice and humans and the lack of an optimal mouse model for certain human diseases, have prompted investigators to characterize GC–homing T cells in macaques instead. This review will focus on discoveries made in macaques, particularly in the non-human primate models of simian immunodeficiency virus and simian–human immunodeficiency virus infection. Indeed, experimental studies in these models have allowed researchers to gain insight into the relative role of follicular T cell subsets in HIV progression, virus persistence, and specific B cell responses induced by HIV vaccines. These discoveries have prompted the testing of novel approaches aimed to manipulate follicular T cells to increase the efficacy of HIV vaccines and to eliminate HIV reservoirs.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
19
|
Abstract
Tight regulation of immune responses is not only critical for preventing autoimmune diseases but also for preventing immunopathological damage during infections in which overactive immune responses may be more harmful for the host than the pathogen itself. Regulatory T cells (Tregs) play a critical role in this regulation, which was discovered using the Friend retrovirus (FV) mouse model. Subsequent FV studies revealed basic biological information about Tregs, including their suppressive activity on effector cells as well as the molecular mechanisms of virus-induced Treg expansion. Treg suppression not only limits immunopathology but also prevents complete elimination of pathogens contributing to chronic infections. Therefore, Tregs play a complex role in the pathogenesis of persistent retroviral infections. New therapeutic concepts to reactivate effector T-cell responses in chronic viral infections by manipulating Tregs also came from work with the FV model. This knowledge initiated many studies to characterize the role of Tregs in HIV pathogenesis in humans, where a complex picture is emerging. On one hand, Tregs suppress HIV-specific effector T-cell responses and are themselves targets of infection, but on the other hand, Tregs suppress HIV-induced immune hyperactivation and thus slow the infection of conventional CD4+ T cells and limit immunopathology. In this review, the basic findings from the FV mouse model are put into perspective with clinical and basic research from HIV studies. In addition, the few Treg studies performed in the simian immunodeficiency virus (SIV) monkey model will also be discussed. The review provides a comprehensive picture of the diverse role of Tregs in different retroviral infections and possible therapeutic approaches to treat retroviral chronicity and pathogenesis by manipulating Treg responses. Regulatory T cells (Tregs) play a very complex role in retroviral infections, and the balance of beneficial versus detrimental effects from Tregs can change between the acute and chronic phase of infection. Therefore, the development of therapeutics to treat chronic retroviral infections via modulation of Tregs requires detailed information regarding both the positive and negative contributions of Tregs in a particular phase of a specific infection. Here, we review the molecular mechanisms that initiate and control Treg responses in retroviral infections as well as the target cells that are functionally manipulated by Tregs. Basic findings from the Friend retrovirus mouse model that initiated this area of research are put into perspective with clinical and basic research from HIV studies. The targeted manipulation of Treg responses holds a bright future for enhancing immune responses to infections, vaccine responses, and for cure or functional cure of chronic retroviral infections.
Collapse
Affiliation(s)
- Kim J. Hasenkrug
- Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, United States of America
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| |
Collapse
|
20
|
Borrow P, Moody MA. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies. Immunol Rev 2017; 275:62-78. [PMID: 28133804 PMCID: PMC5299500 DOI: 10.1111/imr.12504] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Induction of broadly neutralizing antibodies (bnAbs) capable of inhibiting infection with diverse variants of human immunodeficiency virus type 1 (HIV‐1) is a key, as‐yet‐unachieved goal of prophylactic HIV‐1 vaccine strategies. However, some HIV‐infected individuals develop bnAbs after approximately 2‐4 years of infection, enabling analysis of features of these antibodies and the immunological environment that enables their induction. Distinct subsets of CD4+ T cells play opposing roles in the regulation of humoral responses: T follicular helper (Tfh) cells support germinal center formation and provide help for affinity maturation and the development of memory B cells and plasma cells, while regulatory CD4+ (Treg) cells including T follicular regulatory (Tfr) cells inhibit the germinal center reaction to limit autoantibody production. BnAbs exhibit high somatic mutation frequencies, long third heavy‐chain complementarity determining regions, and/or autoreactivity, suggesting that bnAb generation is likely to be highly dependent on the activity of CD4+ Tfh cells, and may be constrained by host tolerance controls. This review discusses what is known about the immunological environment during HIV‐1 infection, in particular alterations in CD4+ Tfh, Treg, and Tfr populations and autoantibody generation, and how this is related to bnAb development, and considers the implications for HIV‐1 vaccine design.
Collapse
Affiliation(s)
- Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - M Anthony Moody
- Duke University Human Vaccine Institute and Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
21
|
Havenar-Daughton C, Lee JH, Crotty S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol Rev 2017; 275:49-61. [PMID: 28133798 DOI: 10.1111/imr.12512] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of HIV bnAbs may be one of the greatest feats of the human immune system and our best hope of finally creating an HIV vaccine. The striking amount of somatic hypermutation in HIV bnAbs led to the hypothesis that T follicular helper (Tfh) cells and germinal centers (GC) play a critical role in the ability of the immune system to generate these uncommon antibodies. In this review, we first summarize what is known about the immunological process of HIV bnAb development, the challenges of eliciting bnAbs via immunizations, and the putative central roles of Tfh cells and GC in the generation of HIV bnAbs. Next, we explore factors that have impeded our understanding of the GC and Tfh-cell processes involved in bnAb generation, including the difficulty of quantifying antigen-specific GC Tfh cells and the difficulty of tracking GC in human and non-human primate vaccine studies. Finally, we discuss antibody immunodominance pertaining to neutralizing antibody generation and the GC response, propose models to explain the negative effects of immunodominance on neutralizing antibody generation, and consider means of optimizing Tfh and GC responses to potentially overcome these problems.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Jeong Hyun Lee
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
22
|
Follicular Regulatory T Cells Are Highly Permissive to R5-Tropic HIV-1. J Virol 2017; 91:JVI.00430-17. [PMID: 28615202 DOI: 10.1128/jvi.00430-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/02/2017] [Indexed: 12/22/2022] Open
Abstract
Follicular regulatory T (TFR) cells are a subset of CD4+ T cells in secondary lymphoid follicles. TFR cells were previously included in the follicular helper T (TFH) cell subset, which consists of cells that are highly permissive to HIV-1. The permissivity of TFR cells to HIV-1 is unknown. We find that TFR cells are more permissive than TFH cells to R5-tropic HIV-1 ex vivo TFR cells expressed more CCR5 and CD4 and supported higher frequencies of viral fusion. Differences in Ki67 expression correlated with HIV-1 replication. Inhibiting cellular proliferation reduced Ki67 expression and HIV-1 replication. Lymph node cells from untreated HIV-infected individuals revealed that TFR cells harbored the highest concentrations of HIV-1 RNA and highest levels of Ki67 expression. These data demonstrate that TFR cells are highly permissive to R5-tropic HIV-1 both ex vivo and in vivo This is likely related to elevated CCR5 levels combined with a heightened proliferative state and suggests that TFR cells contribute to persistent R5-tropic HIV-1 replication in vivoIMPORTANCE In chronic, untreated HIV-1 infection, viral replication is concentrated in secondary lymphoid follicles. Within secondary lymphoid follicles, follicular helper T (TFH) cells have previously been shown to be highly permissive to HIV-1. Recently, another subset of T cells in secondary lymphoid follicles was described, follicular regulatory T (TFR) cells. These cells share some phenotypic characteristics with TFH cells, and studies that showed that TFH cells are highly permissive to HIV-1 included TFR cells in their definition of TFH cells. The permissivity of TFR cells to HIV-1 has not previously been described. Here, we show that TFR cells are highly permissive to HIV-1 both ex vivo and in vivo The expression of Ki67, a marker of proliferative capacity, is predictive of expression of viral proteins, and downregulating Ki67 leads to concurrent decreases in expression of viral proteins. Our study provides new insight into HIV-1 replication and a potential new cell type to target for future treatment.
Collapse
|
23
|
Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology 2017; 151:137-145. [PMID: 28231392 DOI: 10.1111/imm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells are essential for B-cell differentiation and the subsequent antibody responses. Their numbers and functions are altered during human and simian immunodeficiency virus (HIV/SIV) infections. In lymphoid tissues, Tfh cells are present in germinal centre, where they are the main source of replicative HIV-1 and represent a major reservoir. Paradoxically, Tfh cell numbers are increased in chronically infected individuals. Understanding the fate of Tfh cells in the course of HIV-1 infection is essential for the design of efficient strategies toward a protective HIV vaccine or a cure. The purpose of this review is to summarize the recent advance in our understanding of Tfh cell dynamics during HIV/SIV infection. In particular, to explore the possible causes of their expansion in lymphoid tissues by discussing the impact of HIV-1 infection on dendritic cells, to identify the molecular players rendering Tfh cells highly susceptible to HIV-1 infection, and to consider the contribution of regulatory follicular T cells in shaping Tfh cell functions.
Collapse
Affiliation(s)
- Nicolas Ruffin
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Lylia Hani
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| | - Nabila Seddiki
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| |
Collapse
|
24
|
Miles B, Miller SM, Connick E. CD4 T Follicular Helper and Regulatory Cell Dynamics and Function in HIV Infection. Front Immunol 2016; 7:659. [PMID: 28082992 PMCID: PMC5187376 DOI: 10.3389/fimmu.2016.00659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
T follicular helper cells (TFH) are a specialized subset of CD4 T cells that reside in B cell follicles and promote B cell maturation into plasma cells and long-lived memory B cells. During chronic infection prior to the development of AIDS, HIV-1 (HIV) replication is largely concentrated in TFH. Paradoxically, TFH numbers are increased in early and midstages of disease, thereby promoting HIV replication and disease progression. Despite increased TFH numbers, numerous defects in humoral immunity are detected in HIV-infected individuals, including dysregulation of B cell maturation, impaired somatic hypermutation, and low quality of antibody production despite hypergammaglobulinemia. Clinically, these defects are manifested by increased vulnerability to bacterial infections and impaired vaccine responses, neither of which is fully reversed by antiretroviral therapy (ART). Deficits in TFH function, including reduced HIV-specific IL-21 production and low levels of co-stimulatory receptor expression, have been linked to these immune impairments. Impairments in TFH likely contribute as well to the ability of HIV to persist and evade humoral immunity, particularly the inability to develop broadly neutralizing antibodies. In addition to direct infection of TFH, other mechanisms that have been linked to TFH deficits in HIV infection include upregulation of PD-L1 on germinal center B cells and augmented follicular regulatory T cell responses. Challenges to development of strategies to enhance TFH function in HIV infection include lack of an established phenotype for memory TFH as well as limited understanding of the relationship between peripheral TFH and lymphoid tissue TFH. Interventions to augment TFH function in HIV-infected individuals could enhance immune reconstitution during ART and potentially augment cure strategies.
Collapse
Affiliation(s)
- Brodie Miles
- Division of Infectious Diseases, University of Colorado Denver , Aurora, CO , USA
| | - Shannon M Miller
- Department of Immunology, University of Colorado Denver , Aurora, CO , USA
| | - Elizabeth Connick
- Division of Infectious Diseases, Department of Medicine, University of Arizona , Tucson, AZ , USA
| |
Collapse
|
25
|
Wang X, Ziani W, Xu H. Changes in Follicular CD4+ T Helper Cells as a Marker for Evaluating Disease Progression in the Competition between HIV and Host Immunity. Front Immunol 2016; 7:474. [PMID: 27843442 PMCID: PMC5087249 DOI: 10.3389/fimmu.2016.00474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022] Open
Abstract
Follicular CD4+ T helper (TFH) cells interact with B cells in follicular germinal centers and play a prominent role in promoting effective humoral immune responses to pathogens, providing help for B cell development and antibody affinity maturation. Recent studies indicate TFH cells are expanded in HIV/SIV chronic infection, or depleted in terminal stages of disease, yet relatively maintained in elite controllers when compared with uninfected controls. A better understanding of the mechanisms behind these immunologic abnormalities may lead to more effective vaccination and therapeutic strategies. Here, we review recent findings of TFH cells in HIV/SIV infection and discuss the correlation of changes and function of TFH cells with host immunity. Dysregulation or depletion of CD4+ TFH cells likely plays a major role in the inability of HIV-infected patients to mount effective immune responses.
Collapse
Affiliation(s)
- Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine , Covington, LA , USA
| | - Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine , Covington, LA , USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine , Covington, LA , USA
| |
Collapse
|
26
|
Velu V, Mylvaganam GH, Gangadhara S, Hong JJ, Iyer SS, Gumber S, Ibegbu CC, Villinger F, Amara RR. Induction of Th1-Biased T Follicular Helper (Tfh) Cells in Lymphoid Tissues during Chronic Simian Immunodeficiency Virus Infection Defines Functionally Distinct Germinal Center Tfh Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:1832-42. [PMID: 27481845 PMCID: PMC4992610 DOI: 10.4049/jimmunol.1600143] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022]
Abstract
Chronic HIV infection is associated with accumulation of germinal center (GC) T follicular helper (Tfh) cells in the lymphoid tissue. The GC Tfh cells can be heterogeneous based on the expression of chemokine receptors associated with T helper lineages, such as CXCR3 (Th1), CCR4 (Th2), and CCR6 (Th17). However, the heterogeneous nature of GC Tfh cells in the lymphoid tissue and its association with viral persistence and Ab production during chronic SIV/HIV infection are not known. To address this, we characterized the expression of CXCR3, CCR4, and CCR6 on GC Tfh cells in lymph nodes following SIVmac251 infection in rhesus macaques. In SIV-naive rhesus macaques, only a small fraction of GC Tfh cells expressed CXCR3, CCR4, and CCR6. However, during chronic SIV infection, the majority of GC Tfh cells expressed CXCR3, whereas the proportion of CCR4(+) cells did not change, and CCR6(+) cells decreased. CXCR3(+), but not CXCR3(-), GC Tfh cells produced IFN-γ (Th1 cytokine) and IL-21 (Tfh cytokine), whereas both subsets expressed CD40L following stimulation. Immunohistochemistry analysis demonstrated an accumulation of CD4(+)IFN-γ(+) T cells within the hyperplastic follicles during chronic SIV infection. CXCR3(+) GC Tfh cells also expressed higher levels of ICOS, CCR5, and α4β7 and contained more copies of SIV DNA compared with CXCR3(-) GC Tfh cells. However, CXCR3(+) and CXCR3(-) GC Tfh cells delivered help to B cells in vitro for production of IgG. These data demonstrate that chronic SIV infection promotes expansion of Th1-biased GC Tfh cells, which are phenotypically and functionally distinct from conventional GC Tfh cells and contribute to hypergammaglobulinemia and viral reservoirs.
Collapse
Affiliation(s)
- Vijayakumar Velu
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Geetha Hanna Mylvaganam
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Sailaja Gangadhara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Jung Joo Hong
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea 363-883
| | - Smita S Iyer
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Sanjeev Gumber
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322
| | - Chris C Ibegbu
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322; and
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322; New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322; and
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The introduction of effective antiretroviral therapy (ART) has transformed HIV infection from a deadly to a chronic infection. Despite its successes in reducing mortality, ART fails to cure HIV allowing HIV to persist in vivo. HIV persistence under ART is thought to be mediated by a combination of latent infection of long-lived cells, homeostatic proliferation of latently infected cells, anatomic sanctuaries, and low-level virus replication. To understand the contribution of specific cell types and anatomic sites to virus persistence in vivo animal models are necessary. RECENT FINDINGS The advancements in ART and our understanding of animal models have facilitated the development of models of HIV persistence in nonhuman primates and mice. Simian immunodeficiency virus (SIV) or simian/HIV infection (SHIV) of rhesus and pigtail macaques followed by effective ART represents the most faithful animal model of HIV persistence. HIV infection of humanized mice also provides a useful model for answering specific questions regarding virus persistence in a uniquely mutable system. SUMMARY In this review, we describe the most recent findings using animal models of HIV persistence. We will first describe the important aspects of HIV infection that SIV/SHIV infection of nonhuman primates are able to recapitulate, then we will discuss some recent studies that have used these models to understand viral persistence.
Collapse
|
28
|
Affiliation(s)
- Peter T. Sage
- Department of Microbiology and Immunobiology; Harvard Medical School; Boston MA USA
- Evergrande Center for Immunologic Diseases; Harvard Medical School and Brigham and Women's Hospital; Boston MA USA
| | - Arlene H. Sharpe
- Department of Microbiology and Immunobiology; Harvard Medical School; Boston MA USA
- Evergrande Center for Immunologic Diseases; Harvard Medical School and Brigham and Women's Hospital; Boston MA USA
- Department of Pathology; Brigham and Women's Hospital; Boston MA USA
| |
Collapse
|
29
|
Miles B, Connick E. TFH in HIV Latency and as Sources of Replication-Competent Virus. Trends Microbiol 2016; 24:338-344. [PMID: 26947191 DOI: 10.1016/j.tim.2016.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 11/16/2022]
Abstract
During untreated disease, HIV replication is concentrated within T follicular helper cells (TFH). Heightened permissiveness, the presence of highly infectious virions on follicular dendritic cells (FDCs), low frequencies of virus-specific cytotoxic T lymphocytes (CTLs) in B cell follicles, expansions in TFH, and TFH dysfunction, all likely promote replication in TFH. Limited data suggest that memory TFH play a role in the latent or subclinical reservoir of HIV during antiretroviral therapy (ART), potentially for many of the same reasons. A better understanding of the role of memory TFH and FDC-bound virions in promoting recrudescent viremia in the setting of ART cessation is essential. Studies that target follicular virus reservoirs are needed to determine their role in HIV latency and to suggest successful cure strategies.
Collapse
Affiliation(s)
- Brodie Miles
- Division of Infectious Diseases, University of Colorado Denver, Aurora CO 80045, USA
| | - Elizabeth Connick
- Division of Infectious Diseases, University of Colorado Denver, Aurora CO 80045, USA.
| |
Collapse
|
30
|
Vargas-Inchaustegui DA, Demers A, Shaw JM, Kang G, Ball D, Tuero I, Musich T, Mohanram V, Demberg T, Karpova TS, Li Q, Robert-Guroff M. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2016; 196:1700-10. [PMID: 26773147 DOI: 10.4049/jimmunol.1502137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/10/2015] [Indexed: 12/24/2022]
Abstract
Measurement of Ag-specific T follicular helper (TFH) cell activity in rhesus macaques has not previously been reported. Given that rhesus macaques are the animal model of choice for evaluating protective efficacy of HIV/SIV vaccine candidates and that TFH cells play a pivotal role in aiding B cell maturation, quantifying vaccine induction of HIV/SIV-specific TFH cells would greatly benefit vaccine development. In this study, we quantified SIV Env-specific IL-21-producing TFH cells for the first time, to our knowledge, in a nonhuman primate vaccine study. Macaques were primed twice mucosally with adenovirus 5 host range mutant recombinants encoding SIV Env, Rev, Gag, and Nef followed by two i.m. boosts with monomeric SIV gp120 or oligomeric SIV gp140 proteins. At 2 wk after the second protein boost, we obtained lymph node biopsy specimens and quantified the frequency of total and SIV Env-specific IL-21(+) TFH cells and total germinal center B cells, the size and number of germinal centers, and the frequency of SIV-specific Ab-secreting cells in B cell zones. Multiple correlation analyses established the importance of TFH for development of B cell responses in systemic and mucosally localized compartments, including blood, bone marrow, and rectum. Our results suggest that the SIV-specific TFH cells, initially induced by replicating adenovirus-recombinant priming, are long lived. The multiple correlations of SIV Env-specific TFH cells with systemic and mucosal SIV-specific B cell responses indicate that this cell population should be further investigated in HIV vaccine development as a novel correlate of immunity.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| | - Andrew Demers
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and
| | - Julia M Shaw
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Guobin Kang
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and
| | - David Ball
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Iskra Tuero
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thomas Musich
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Venkatramanan Mohanram
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Thorsten Demberg
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tatiana S Karpova
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583; and
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
31
|
Chowdhury A, Del Rio Estrada PM, Del Rio PME, Tharp GK, Trible RP, Amara RR, Chahroudi A, Reyes-Teran G, Bosinger SE, Silvestri G. Decreased T Follicular Regulatory Cell/T Follicular Helper Cell (TFH) in Simian Immunodeficiency Virus-Infected Rhesus Macaques May Contribute to Accumulation of TFH in Chronic Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3237-47. [PMID: 26297764 PMCID: PMC4575868 DOI: 10.4049/jimmunol.1402701] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/13/2015] [Indexed: 01/12/2023]
Abstract
T follicular helper cells (TFH) are critical for the development and maintenance of germinal center (GC) and humoral immune responses. During chronic HIV/SIV infection, TFH accumulate, possibly as a result of Ag persistence. The HIV/SIV-associated TFH expansion may also reflect lack of regulation by suppressive follicular regulatory CD4(+) T cells (TFR). TFR are natural regulatory T cells (TREG) that migrate into the follicle and, similar to TFH, upregulate CXCR5, Bcl-6, and PD1. In this study, we identified TFR as CD4(+)CD25(+)FOXP3(+)CXCR5(+)PD1(hi)Bcl-6(+) within lymph nodes of rhesus macaques (RM) and confirmed their localization within the GC by immunohistochemistry. RNA sequencing showed that TFR exhibit a distinct transcriptional profile with shared features of both TFH and TREG, including intermediate expression of FOXP3, Bcl-6, PRDM1, IL-10, and IL-21. In healthy, SIV-uninfected RM, we observed a negative correlation between frequencies of TFR and both TFH and GC B cells, as well as levels of CD4(+) T cell proliferation. Post SIV infection, the TFR/TFH ratio was reduced with no change in the frequency of TREG or TFR within the total CD4(+) T cell pool. Finally, we examined whether higher levels of direct virus infection of TFR were responsible for their relative depletion post SIV infection. We found that TFH, TFR, and TREG sorted from SIV-infected RM harbor comparable levels of cell-associated viral DNA. Our data suggest that TFR may contribute to the regulation and proliferation of TFH and GC B cells in vivo and that a decreased TFR/TFH ratio in chronic SIV infection may lead to unchecked expansion of both TFH and GC B cells.
Collapse
Affiliation(s)
- Ankita Chowdhury
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Perla Mariana Del Rio Estrada
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Perla Maria Estrada Del Rio
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Greg K Tharp
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Ronald P Trible
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Rama R Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Ann Chahroudi
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30329
| | - Gustavo Reyes-Teran
- Departamento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas," Tlapan, Sección XVI, 14080 City of Mexico Federal District, Mexico; and
| | - Steven E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA30329;
| |
Collapse
|