1
|
Shan Q, Qiu J, Dong Z, Xu X, Zhang S, Ma J, Liu S. Lung Immune Cell Niches and the Discovery of New Cell Subtypes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405490. [PMID: 39401416 PMCID: PMC11615829 DOI: 10.1002/advs.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Indexed: 12/06/2024]
Abstract
Immune cells in the lungs are important for maintaining lung function. The importance of immune cells in defending against lung diseases and infections is increasingly recognized. However, a primary knowledge gaps in current studies of lung immune cells is the understanding of their subtypes and functional heterogeneity. Increasing evidence supports the existence of novel immune cell subtypes that engage in the complex crosstalk between lung-resident immune cells, recruited immune cells, and epithelial cells. Therefore, further studies on how immune cells respond to perturbations in the pulmonary microenvironment are warranted. This review explores the processes behind the formation of the immune cell niche during lung development, and the characteristics and cell interaction modes of several major lung-resident immune cells. It indicates that distinct lung microenvironments or inflammatory niches can mediate the formation of different cell subtypes. These findings summarize and clarify paths to identify new cell subtypes that originate from resident progenitor cells and recruited peripheral cells, which are remodeled by the pulmonary microenvironment. The development of new techniques combining transcriptome analysis and location information is essential for identifying new immune cell subtypes and their relative immune niches, as well as for uncovering the molecular mechanisms of immune cell-mediated lung homeostasis.
Collapse
Affiliation(s)
- Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- Dongguan Key Laboratory of Environmental MedicineSchool of Public HealthGuangdong Medical UniversityDongguan523808P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shuping Zhang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
- School of Environmental SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
2
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Goode E, Marczylo E. A scoping review: What are the cellular mechanisms that drive the allergic inflammatory response to fungal allergens in the lung epithelium? Clin Transl Allergy 2023; 13:e12252. [PMID: 37357550 PMCID: PMC10234180 DOI: 10.1002/clt2.12252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 06/27/2023] Open
Abstract
Allergic airway disease (AAD) is a collective term for respiratory disorders that can be exacerbated upon exposure to airborne allergens. The contribution of fungal allergens to AAD has become well established over recent years. We conducted a comprehensive review of the literature using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to better understand the mechanisms involved in the allergic response to fungi in airway epithelia, identify knowledge gaps and make recommendations for future research. The search resulted in 61 studies for final analysis. Despite heterogeneity in the models and methods used, we identified major pathways involved in fungal allergy. These included the activation of protease-activated receptor 2, the EGFR pathway, adenosine triphosphate and purinergic receptor-dependent release of IL33, and oxidative stress, which drove mucin expression and goblet cell metaplasia, Th2 cytokine production, reduced barrier integrity, eosinophil recruitment, and airway hyperresponsiveness. However, there were several knowledge gaps and therefore we recommend future research should focus on the use of more physiologically relevant methods to directly compare key allergenic fungal species, clarify specific mechanisms of fungal allergy, and assess the fungal allergy in disease models. This will inform disease management and future interventions, ultimately reducing the burden of disease.
Collapse
Affiliation(s)
| | - Emma Marczylo
- Toxicology DepartmentUK Health Security AgencyChiltonUK
| |
Collapse
|
4
|
Wu JC, Wang XJ, Zhu JH, Huang XY, Liu M, Qiao Z, Zhang Y, Sun Y, Wang ZY, Zhan P, Zhang T, Hu HL, Liu H, Tang W, Yi F. GPR97 deficiency ameliorates renal interstitial fibrosis in mouse hypertensive nephropathy. Acta Pharmacol Sin 2023; 44:1206-1216. [PMID: 36635422 PMCID: PMC10203364 DOI: 10.1038/s41401-022-01041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
Hypertensive nephropathy (HTN) ranks as the second-leading cause of end-stage renal disease (ESRD). Accumulating evidence suggests that persistent hypertension injures tubular cells, leading to tubulointerstitial fibrosis (TIF), which is involved in the pathogenesis of HTN. G protein-coupled receptors (GPCRs) are implicated in many important pathological and physiological processes and act as important drug targets. In this study, we explored the intrarenal mechanisms underlying hypertension-associated TIF, and particularly, the potential role of GPR97, a member of the adhesion GPCR subfamily, in TIF. A deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mouse model was used. We revealed a significantly upregulated expression of GPR97 in the kidneys, especially in renal tubules, of the hypertensive mice and 10 patients with biopsy-proven hypertensive kidney injury. GPR97-/- mice showed markedly elevated blood pressure, which was comparable to that of wild-type mice following DOCA/salt treatment, but dramatically ameliorated renal injury and TIF. In NRK-52E cells, we demonstrated that knockdown of GPR97 suppressed the activation of TGF-β signaling by disturbing small GTPase RhoA-mediated cytoskeletal reorganization, thus inhibiting clathrin-mediated endocytosis of TGF-β receptors and subsequent Smad activation. Collectively, this study demonstrates that GPR97 contributes to hypertension-associated TIF at least in part by facilitating TGF-β signaling, suggesting that GPR97 is a pivotal intrarenal factor for TIF progression under hypertensive conditions, and therapeutic strategies targeting GPR97 may improve the outcomes of patients with HTN.
Collapse
Affiliation(s)
- Ji-Chao Wu
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xiao-Jie Wang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jing-Han Zhu
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Xue-Ying Huang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Min Liu
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhe Qiao
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yan Zhang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Yu Sun
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zi-Ying Wang
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, 250012, China
| | - Hui-Li Hu
- Department of Systems Biomedicine and Research Center of Stem Cell and Regenerative Medicine, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250012, China
| | - Wei Tang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| | - Fan Yi
- The Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
5
|
Gui Z, Zhang Y, Zhang A, Xia W, Jia Z. CARMA3: A potential therapeutic target in non-cancer diseases. Front Immunol 2022; 13:1057980. [PMID: 36618379 PMCID: PMC9815110 DOI: 10.3389/fimmu.2022.1057980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Caspase recruitment domain and membrane-associated guanylate kinase-like protein 3 (CARMA3) is a scaffold protein widely expressed in non-hematopoietic cells. It is encoded by the caspase recruitment domain protein 10 (CARD10) gene. CARMA3 can form a CARMA3-BCL10-MALT1 complex by recruiting B cell lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), thereby activating nuclear factor-κB (NF-κB), a key transcription factor that involves in various biological responses. CARMA3 mediates different receptors-dependent signaling pathways, including G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). Inappropriate expression and activation of GPCRs and/or RTKs/CARMA3 signaling lead to the pathogenesis of human diseases. Emerging studies have reported that CARMA3 mediates the development of various types of cancers. Moreover, CARMA3 and its partners participate in human non-cancer diseases, including atherogenesis, abdominal aortic aneurysm, asthma, pulmonary fibrosis, liver fibrosis, insulin resistance, inflammatory bowel disease, and psoriasis. Here we provide a review on its structure, regulation, and molecular function, and further highlight recent findings in human non-cancerous diseases, which will provide a novel therapeutic target.
Collapse
Affiliation(s)
- Zhen Gui
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China,Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| | - Zhanjun Jia
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China,*Correspondence: Zhanjun Jia, ; Weiwei Xia,
| |
Collapse
|
6
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
7
|
Cheng L, Wei Z, Yang Z, Lu R, Yang M, Yu M, Yang N, Li S, Gao M, Zhao X, Lin X. Carma3 Protects from Liver Injury by Preserving Mitochondrial Integrity in Liver Sinusoidal Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 2022; 209:456-464. [DOI: 10.4049/jimmunol.2101195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/19/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Carma3 is an intracellular scaffolding protein that can form complex with Bcl10 and Malt1 to mediate G protein–coupled receptor– or growth factor receptor–induced NF-κB activation. However, the in vivo function of Carma3 has remained elusive. Here, by establishing a Con A–induced autoimmune hepatitis model, we show that liver injury is exacerbated in Carma3−/− mice. Surprisingly, we find that the Carma3 expression level is higher in liver sinusoidal endothelial cells (LSECs) than in hepatocytes in the liver. In Carma3−/− mice, Con A treatment induces more LSEC damage, accompanied by severer coagulation. In vitro we find that Carma3 localizes at mitochondria and Con A treatment can trigger more mitochondrial damage and cell death in Carma3-deficient LSECs. Taken together, our data uncover an unrecognized role of Carma3 in maintaining LSEC integrity, and these results may extend novel strategies to prevent liver injury from toxic insults.
Collapse
Affiliation(s)
- Liqing Cheng
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zhanqi Wei
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Zaopeng Yang
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Renlin Lu
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ming Yang
- ‡Tsinghua Changgung Hospital, Beijing, China; and
| | - Muchun Yu
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Naixue Yang
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Shulin Li
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
- §Tsinghua University School of Life Sciences, Beijing, China
| | - Mingyi Gao
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
- §Tsinghua University School of Life Sciences, Beijing, China
| | - Xueqiang Zhao
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| | - Xin Lin
- *Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
- †Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
8
|
Wu Y, Qi Y, Qiu Z, Chen W. Deficiency of CARMA3 attenuates the development of bleomycin induced pulmonary fibrosis. Biochem Biophys Res Commun 2021; 581:81-88. [PMID: 34656852 DOI: 10.1016/j.bbrc.2021.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pulmonary fibrosis (PF) has attracted more and more attention due to its irreversibility and high mortality rate. Currently, there is no effective treatment option is available to reverse the disease. Caspase recruitment domain-containing membrane-associated guanylate kinase protein (CARMA3) has been recognized as a proinflammatory molecule involved in many lung diseases, such as Allergic airway inflammation and lung cancer. Bleomycin (Bleo), as an alkaline sugar peptide antibiotics, is often used as a first-line anti-tumor agent. Its toxic effect is to induce pulmonary fibrosis (PF) and its clinical symptoms, so it has been widely used in the construction of pulmonary fibrosis model. METHODS Wild type mice (WT, n = 20) and CARMA3 knockout mice (CARMA3-KO, n = 20) were generated and injected with bleomycin or saline via trachea. The severity of fibrosis was evaluated by fibrosis markers and lung histological morphology. Furthermore, the amount of alveolar epithelial cells and inflammation in lung tissue were examined. Finally, epithelial-mesenchymal transition was further investigated. RESULTS We found CARMA3 expression in the mice alveolar epithelial cells. And compared with WT mice, CARMA3-KO mice showed reduced deposition of collagen fibers, inflammation and destruction of alveolar epithelial cells in lung tissue. In addition, after bleomycin induction, the expressions of proinflammatory factors and collagen-related factors in CARMA3-KO mice were much lower than those in WT mice. The epithelial-mesenchymal transformation phenotype was also improved in CARMA3-KO mice compared to WT mice. CONCLUSION Our Results shows that CARMA3 plays an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. CARMA3 could alleviate the fibrosis by improving inflammation, deposition of collagen and damage of alveolar epithelial cells, which revealed that CARMA3 may be a potential target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yunzhang Wu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yongchao Qi
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhibing Qiu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Alfano DN, Klei LR, Klei HB, Trotta M, Gough PJ, Foley KP, Bertin J, Sumpter TL, Lucas PC, McAllister-Lucas LM. MALT1 Protease Plays a Dual Role in the Allergic Response by Acting in Both Mast Cells and Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2337-2348. [PMID: 32213560 DOI: 10.4049/jimmunol.1900281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 02/21/2020] [Indexed: 01/26/2023]
Abstract
The signaling protein MALT1 plays a key role in promoting NF-κB activation in Ag-stimulated lymphocytes. In this capacity, MALT1 has two functions, acting as a scaffolding protein and as a substrate-specific protease. MALT1 is also required for NF-κB-dependent induction of proinflammatory cytokines after FcεR1 stimulation in mast cells, implicating a role in allergy. Because MALT1 remains understudied in this context, we sought to investigate how MALT1 proteolytic activity contributes to the overall allergic response. We compared bone marrow-derived mast cells from MALT1 knockout (MALT1-/-) and MALT1 protease-deficient (MALTPD/PD) mice to wild-type cells. We found that MALT1-/- and MALT1PD/PD mast cells are equally impaired in cytokine production following FcεRI stimulation, indicating that MALT1 scaffolding activity is insufficient to drive the cytokine response and that MALT1 protease activity is essential. In addition to cytokine production, acute mast cell degranulation is a critical component of allergic response. Intriguingly, whereas degranulation is MALT1-independent, MALT1PD/PD mice are protected from vascular edema induced by either passive cutaneous anaphylaxis or direct challenge with histamine, a major granule component. This suggests a role for MALT1 protease activity in endothelial cells targeted by mast cell-derived vasoactive substances. Indeed, we find that in human endothelial cells, MALT1 protease is activated following histamine treatment and is required for histamine-induced permeability. We thus propose a dual role for MALT1 protease in allergic response, mediating 1) IgE-dependent mast cell cytokine production, and 2) histamine-induced endothelial permeability. This dual role indicates that therapeutic inhibitors of MALT1 protease could work synergistically to control IgE-mediated allergic disease.
Collapse
Affiliation(s)
- Danielle N Alfano
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Linda R Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Hanna B Klei
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Matthew Trotta
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Peter J Gough
- Pattern Recognition Receptor Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19406
| | - Kevin P Foley
- Pattern Recognition Receptor Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19406
| | - John Bertin
- Pattern Recognition Receptor Discovery Performance Unit, GlaxoSmithKline, Collegeville, PA 19406
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224; and .,Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Linda M McAllister-Lucas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224; .,Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
10
|
Yang DH, Guo T, Yuan ZZ, Lei C, Ding SZ, Yang YF, Tan ZP, Luo H. Mutant CARD10 in a family with progressive immunodeficiency and autoimmunity. Cell Mol Immunol 2020; 17:782-784. [PMID: 32238915 DOI: 10.1038/s41423-020-0423-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dan-Hui Yang
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Ting Guo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Zhuang-Zhuang Yuan
- School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Cheng Lei
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Shui-Zi Ding
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China
| | - Yi-Feng Yang
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhi-Ping Tan
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Hong Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China. .,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
11
|
Han Y, Chen L, Liu H, Jin Z, Wu Y, Wu Y, Li W, Ying S, Chen Z, Shen H, Yan F. Airway Epithelial cGAS Is Critical for Induction of Experimental Allergic Airway Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 204:1437-1447. [PMID: 32034061 DOI: 10.4049/jimmunol.1900869] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022]
Abstract
DNA damage could lead to the accumulation of cytosolic DNA, and the cytosolic DNA-sensing pathway has been implicated in multiple inflammatory diseases. However, the role of cytosolic DNA-sensing pathway in asthma pathogenesis is still unclear. This article explored the role of airway epithelial cyclic GMP-AMP synthase (cGAS), the major sensor of cytosolic dsDNA, in asthma pathogenesis. Cytosolic dsDNA accumulation in airway epithelial cells (ECs) was detected in the setting of allergic inflammation both in vitro and in vivo. Mice with cGAS deletion in airway ECs were used for OVA- or house dust mite (HDM)-induced allergic airway inflammation. Additionally, the effects of cGAS knockdown on IL-33-induced GM-CSF production and the mechanisms by which IL-33 induced cytosolic dsDNA accumulation in human bronchial epithelial (HBE) cells were explored. Increased accumulation of cytosolic dsDNA was observed in airway epithelium of OVA- or HDM-challenged mice and in HBE cells treated with IL-33. Deletion of cGAS in the airway ECs of mice significantly attenuated the allergic airway inflammation induced by OVA or HDM. Mechanistically, cGAS participates in promoting TH2 immunity likely via regulating the production of airway epithelial GM-CSF. Furthermore, Mito-TEMPO could reduce IL-33-induced cytoplasmic dsDNA accumulation in HBE cells possibly through suppressing the release of mitochondrial DNA into the cytosol. In conclusion, airway epithelial cGAS plays an important role via sensing the cytosolic dsDNA in asthma pathogenesis and could serve as a promising therapeutic target against allergic airway inflammation.
Collapse
Affiliation(s)
- Yinling Han
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Lin Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Huiwen Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Zhangchu Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and .,State Key Lab of Respiratory Disease, Guangzhou, Guangdong 510120, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| |
Collapse
|
12
|
Hou H, Li WX, Cui X, Zhou DC, Zhang B, Geng XP. CARMA3/NF-κB signaling contributes to tumorigenesis of hepatocellular carcinoma and is inhibited by sodium aescinate. World J Gastroenterol 2019; 25:5483-5493. [PMID: 31576094 PMCID: PMC6767988 DOI: 10.3748/wjg.v25.i36.5483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/13/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary hepatocellular carcinoma (HCC) is a very malignant tumor in the world. CARMA3 plays an oncogenic role in the pathogenesis of various tumors. However, the function of CARMA3 in HCC has not been fully clarified.
AIM To study the biological function of CAEMA3 in HCC.
METHODS Tissue microarray slides including tissues form 100 HCC patients were applied to access the expression of CARMA3 in HCC and its clinical relevance. Knockdown and overexpression of CARMA3 were conducted with plasmid transfection. MTT, colony formation, and apoptosis assays were performed to check the biological activity of cells.
RESULTS Higher expression of CARMA3 in HCC was relevant to poor prognostic survival (P < 0.05). Down-regulation of CARMA3 inhibited proliferation and colony formation and induced apoptosis in HCC cell lines, while increasing its expression promoted tumorigenesis. We also found that sodium aescinate (SA), a natural herb extract, exerted anti-proliferation effects in HCC cells by suppressing the CARMA3/nuclear factor kappa-B (NF-κB) pathway.
CONCLUSION Overexpression of CARMA3 in HCC tissues correlates with a poor prognosis in HCC patients. CARMA3 acts pro-tumorigenic effects partly through activation of CARMA3/NF-κB. SA inhibits HCC growth by targeting CARMA3/NF-κB.
Collapse
Affiliation(s)
- Hui Hou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Wei-Xiang Li
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiao Cui
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Da-Chen Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Bin Zhang
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiao-Ping Geng
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
13
|
Jin S, Zhou R, Guan X, Zhou J, Liu J. Identification of novel key lncRNAs involved in periodontitis by weighted gene co‐expression network analysis. J Periodontal Res 2019; 55:96-106. [PMID: 31512745 DOI: 10.1111/jre.12693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/21/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Su‐Han Jin
- Department of Orthodontics Affiliated Stomatological Hospital of Zunyi Medical University Zunyi China
| | - Rui‐Hao Zhou
- Department of Anaesthesiology West China Hospital, Sichuan University Chengdu China
| | - Xiao‐Yan Guan
- Department of Orthodontics Affiliated Stomatological Hospital of Zunyi Medical University Zunyi China
| | - Jian‐Guo Zhou
- Department of Oncology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Jian‐Guo Liu
- School of Stomatology Zunyi Medical University Zunyi China
- Special Key Laboratory of Oral Diseases Research Higher Education Institution Zunyi China
| |
Collapse
|
14
|
Causton B, Pardo-Saganta A, Gillis J, Discipio K, Kooistra T, Rajagopal J, Xavier RJ, Cho JL, Medoff BD. CARMA3 Mediates Allergic Lung Inflammation in Response to Alternaria alternata. Am J Respir Cell Mol Biol 2019; 59:684-694. [PMID: 29958012 DOI: 10.1165/rcmb.2017-0181oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The airway epithelial cell (AEC) response to allergens helps initiate and propagate allergic inflammation in asthma. CARMA3 is a scaffold protein that mediates G protein-coupled receptor-induced NF-κB activation in airway epithelium. In this study, we demonstrate that mice with CARMA3-deficient AECs have reduced airway inflammation, as well as reduced type 2 cytokine levels in response to Alternaria alternata. These mice also have reduced production of IL-33 and IL-25, and reduced numbers of innate lymphoid cells in the lung. We also show that CARMA3-deficient human AECs have decreased production of proasthmatic mediators in response to A. alternata. Finally, we show that CARMA3 interacts with inositol 1,4,5-trisphosphate receptors in AECs, and that inhibition of CARMA3 signaling reduces A. alternata-induced intracellular calcium release. In conclusion, we show that CARMA3 signaling in AECs helps mediate A. alternata-induced allergic airway inflammation, and that CARMA3 is an important signaling molecule for type 2 immune responses in the lung.
Collapse
Affiliation(s)
- Benjamin Causton
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Ana Pardo-Saganta
- 1 Division of Pulmonary and Critical Care Medicine.,4 Center for Computational and Integrative Biology, and
| | - Jacob Gillis
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Katherine Discipio
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Tristan Kooistra
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Jayaraj Rajagopal
- 1 Division of Pulmonary and Critical Care Medicine.,4 Center for Computational and Integrative Biology, and
| | - Ramnik J Xavier
- 5 Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and.,2 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Josalyn L Cho
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| | - Benjamin D Medoff
- 1 Division of Pulmonary and Critical Care Medicine.,3 Center for Regenerative Medicine
| |
Collapse
|
15
|
Zhang S, Lin X. CARMA3: Scaffold Protein Involved in NF-κB Signaling. Front Immunol 2019; 10:176. [PMID: 30814996 PMCID: PMC6381293 DOI: 10.3389/fimmu.2019.00176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Scaffold proteins are defined as pivotal molecules that connect upstream receptors to specific effector molecules. Caspase recruitment domain protein 10 (CARD10) gene encodes a scaffold protein CARMA3, belongs to the family of CARD and membrane-associated guanylate kinase-like protein (CARMA). During the past decade, investigating the function of CARMA3 has revealed that it forms a complex with BCL10 and MALT1 to mediate different receptors-dependent signaling, including GPCR and EGFR, leading to activation of the transcription factor NF-κB. More recently, CARMA3 and its partners are also reported to be involved in antiviral innate immune response and DNA damage response. In this review, we summarize the biology of CARMA3 in multiple receptor-induced NF-κB signaling. Especially, we focus on discussing the function of CARMA3 in regulating NF-κB activation and antiviral IFN signaling in the context of recent progress in the field.
Collapse
Affiliation(s)
| | - Xin Lin
- Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
16
|
Verhoef PA, Ingram JL. When It Comes to Alternaria, Instant CARMA’s Gonna Get You. Am J Respir Cell Mol Biol 2018; 59:657-658. [DOI: 10.1165/rcmb.2018-0186ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Philip A. Verhoef
- Department of Medicine
- Department of PediatricsUniversity of ChicagoChicago, Illinois
| | - Jennifer L. Ingram
- Department of MedicineDepartment of Surgeryand
- Department of PathologyDuke UniversityDurham, North Carolina
| |
Collapse
|
17
|
Ruland J, Hartjes L. CARD–BCL-10–MALT1 signalling in protective and pathological immunity. Nat Rev Immunol 2018; 19:118-134. [DOI: 10.1038/s41577-018-0087-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Juilland M, Thome M. Holding All the CARDs: How MALT1 Controls CARMA/CARD-Dependent Signaling. Front Immunol 2018; 9:1927. [PMID: 30214442 PMCID: PMC6125328 DOI: 10.3389/fimmu.2018.01927] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023] Open
Abstract
The scaffold proteins CARMA1-3 (encoded by the genes CARD11, -14 and -10) and CARD9 play major roles in signaling downstream of receptors with immunoreceptor tyrosine activation motifs (ITAMs), G-protein coupled receptors (GPCR) and receptor tyrosine kinases (RTK). These receptors trigger the formation of oligomeric CARMA/CARD-BCL10-MALT1 (CBM) complexes via kinases of the PKC family. The CBM in turn regulates gene expression by the activation of NF-κB and AP-1 transcription factors and controls transcript stability. The paracaspase MALT1 is the only CBM component having an enzymatic (proteolytic) activity and has therefore recently gained attention as a potential drug target. Here we review recent advances in the understanding of the molecular function of the protease MALT1 and summarize how MALT1 scaffold and protease function contribute to the transmission of CBM signals. Finally, we will highlight how dysregulation of MALT1 function can cause pathologies such as immunodeficiency, autoimmunity, psoriasis, and cancer.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
19
|
McAuley JR, Freeman TJ, Ekambaram P, Lucas PC, McAllister-Lucas LM. CARMA3 Is a Critical Mediator of G Protein-Coupled Receptor and Receptor Tyrosine Kinase-Driven Solid Tumor Pathogenesis. Front Immunol 2018; 9:1887. [PMID: 30158935 PMCID: PMC6104486 DOI: 10.3389/fimmu.2018.01887] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
Abstract
The CARMA–Bcl10–MALT1 (CBM) signalosome is an intracellular protein complex composed of a CARMA scaffolding protein, the Bcl10 linker protein, and the MALT1 protease. This complex was first recognized because the genes encoding its components are targeted by mutation and chromosomal translocation in lymphoid malignancy. We now know that the CBM signalosome plays a critical role in normal lymphocyte function by mediating antigen receptor-dependent activation of the pro-inflammatory, pro-survival NF-κB transcription factor, and that deregulation of this signaling complex promotes B-cell lymphomagenesis. More recently, we and others have demonstrated that a CBM signalosome also operates in cells outside of the immune system, including in several solid tumors. While CARMA1 (also referred to as CARD11) is expressed primarily within lymphoid tissues, the related scaffolding protein, CARMA3 (CARD10), is more widely expressed and participates in a CARMA3-containing CBM complex in a variety of cell types. The CARMA3-containing CBM complex operates downstream of specific G protein-coupled receptors (GPCRs) and/or growth factor receptor tyrosine kinases (RTKs). Since inappropriate expression and activation of GPCRs and/or RTKs underlies the pathogenesis of several solid tumors, there is now great interest in elucidating the contribution of CARMA3-mediated cellular signaling in these malignancies. Here, we summarize the key discoveries leading to our current understanding of the role of CARMA3 in solid tumor biology and highlight the current gaps in our knowledge.
Collapse
Affiliation(s)
- J Randall McAuley
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Tanner J Freeman
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Prasanna Ekambaram
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Peter C Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Linda M McAllister-Lucas
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
20
|
Fang W, Wang Z, Li Q, Wang X, Zhang Y, Sun Y, Tang W, Ma C, Sun J, Li N, Yi F. Gpr97 Exacerbates AKI by Mediating Sema3A Signaling. J Am Soc Nephrol 2018. [PMID: 29531097 DOI: 10.1681/asn.2017080932] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background G protein-coupled receptors (GPCRs) participate in a variety of physiologic functions, and several GPCRs have critical physiologic and pathophysiologic roles in the regulation of renal function. We investigated the role of Gpr97, a newly identified member of the adhesion GPCR family, in AKI.Methods AKI was induced by ischemia-reperfusion or cisplatin treatment in Gpr97-deficient mice. We assessed renal injury in these models and in patients with acute tubular necrosis by histologic examination, and we conducted microarray analysis and in vitro assays to determine the molecular mechanisms of Gpr97 function.Results Gpr97 was upregulated in the kidneys from mice with AKI and patients with biopsy-proven acute tubular necrosis compared with healthy controls. In AKI models, Gpr97-deficient mice had significantly less renal injury and inflammation than wild-type mice. Gpr97 deficiency also attenuated the AKI-induced expression of semaphorin 3A (Sema3A), a potential early diagnostic biomarker of renal injury. In NRK-52E cells subjected to oxygen-glucose deprivation, siRNA-mediated knockdown of Gpr97 further increased the expression of survivin and phosphorylated STAT3 and reduced toll-like receptor 4 expression. Cotreatment with recombinant murine Sema3A protein counteracted these effects. Finally, additional in vivo and in vitro studies, including electrophoretic mobility shift assays and luciferase reporter assays, showed that Gpr97 deficiency attenuates ischemia-reperfusion-induced expression of the RNA-binding protein human antigen R, which post-transcriptionally regulates Sema3A expression.Conclusions Gpr97 is an important mediator of AKI, and pharmacologic targeting of Gpr97-mediated Sema3A signaling at multiple levels may provide a novel approach for the treatment of AKI.
Collapse
Affiliation(s)
| | | | | | | | | | - Yu Sun
- Departments of Pharmacology
| | | | | | - Jinpeng Sun
- Biochemistry and Molecular Biology, The Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, and
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
| | - Fan Yi
- Departments of Pharmacology, .,The State Key Laboratory of Microbial Technology, Shandong University, Jinan, China; and
| |
Collapse
|
21
|
Bao Z, Zhang P, Yao Y, Lu G, Tong Z, Yan B, Tu L, Yang G, Zhou J. Deguelin Attenuates Allergic Airway Inflammation via Inhibition of NF-κb Pathway in Mice. Int J Biol Sci 2017; 13:492-504. [PMID: 28529457 PMCID: PMC5436569 DOI: 10.7150/ijbs.17238] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 01/10/2023] Open
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling, resulting in a substantial economic burden on both patients and society. Deguelin, a constituent of the Leguminosae family, exhibits anti-proliferative and anti-inflammatory activities in cancer mice models via inhibiting phosphatidylinositol 3-kinases and the NF-κB pathway. We demonstrated that deguelin effectively reduced OVA-induced inflammatory cell recruitment, decreased lung tissue inflammation and mucus production, suppressed airway hyperresponsiveness, and inhibited serum immunoglobulin and Th2 cytokine levels in a dose-dependent manner in asthmatic mice. In addition, we found that deguelin reduced inflammatory gene expressions both in vivo and in vitro, which were closely associated with activation of the NF-κB signaling pathway. Thus, we further explored the underlying mechanisms of deguelin in normal human bronchial epithelial cells (BEAS-2B). Our results suggested that deguelin inhibited NF-κB binding activity by enhancing the ability of IκBα to maintain NF-κB in an inactive form in the cytoplasm and preventing the TNF-α induced translocation of p65 to the nucleus. In conclusion, our research indicates that deguelin attenuates allergic airway inflammation via inhibition of NF-κB pathway in mice model and may act as a potential therapeutic agent for patients with allergic airway inflammation.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pei Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongkai Tong
- Department of Respiratory Diseases, Ningbo No.2 hospital, Ningbo, China
| | - Bing Yan
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingfang Tu
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guangdie Yang
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Patel S, Meher B. A review on emerging frontiers of house dust mite and cockroach allergy research. Allergol Immunopathol (Madr) 2016; 44:580-593. [PMID: 26994963 DOI: 10.1016/j.aller.2015.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 11/16/2015] [Indexed: 12/28/2022]
Abstract
Currently, mankind is afflicted with diversified health issues, allergies being a common, yet little understood malady. Allergies, the outcome of a baffled immune system encompasses myriad allergens and causes an array of health consequences, ranging from transient to recurrent and mild to fatal. Indoor allergy is a serious hypersensitivity in genetically-predisposed people, triggered by ingestion, inhalation or mere contact of allergens, of which mite and cockroaches are one of the most-represented constituents. Arduous to eliminate, these aeroallergens pose constant health challenges, mostly manifested as respiratory and dermatological inflammations, leading to further aggravations if unrestrained. Recent times have seen an unprecedented endeavour to understand the conformation of these allergens, their immune manipulative ploys and other underlying causes of pathogenesis, most importantly therapies. Yet a large section of vulnerable people is ignorant of these innocuous-looking immune irritants, prevailing around them, and continues to suffer. This review aims to expedite this field by a concise, informative account of seminal findings in the past few years, with particular emphasis on leading frontiers like genome-wide association studies (GWAS), epitope mapping, metabolomics etc. Drawbacks linked to current approaches and solutions to overcome them have been proposed.
Collapse
|
23
|
Jaworski M, Thome M. The paracaspase MALT1: biological function and potential for therapeutic inhibition. Cell Mol Life Sci 2016; 73:459-73. [PMID: 26507244 PMCID: PMC4713714 DOI: 10.1007/s00018-015-2059-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/29/2015] [Indexed: 02/07/2023]
Abstract
The paracaspase MALT1 has a central role in the activation of lymphocytes and other immune cells including myeloid cells, mast cells and NK cells. MALT1 activity is required not only for the immune response, but also for the development of natural Treg cells that keep the immune response in check. Exaggerated MALT1 activity has been associated with the development of lymphoid malignancies, and recently developed MALT1 inhibitors show promising anti-tumor effects in xenograft models of diffuse large B cell lymphoma. In this review, we provide an overview of the present understanding of MALT1's function, and discuss possibilities for its therapeutic targeting based on recently developed inhibitors and animal models.
Collapse
Affiliation(s)
- Maike Jaworski
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, 1066, Epalinges, Switzerland.
| |
Collapse
|