1
|
Gay L, Mezouar S, Cano C, Frohna P, Madakamutil L, Mège JL, Olive D. Role of Vγ9vδ2 T lymphocytes in infectious diseases. Front Immunol 2022; 13:928441. [PMID: 35924233 PMCID: PMC9340263 DOI: 10.3389/fimmu.2022.928441] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
The T cell receptor Vγ9Vδ2 T cells bridge innate and adaptive antimicrobial immunity in primates. These Vγ9Vδ2 T cells respond to phosphoantigens (pAgs) present in microbial or eukaryotic cells in a butyrophilin 3A1 (BTN3) and butyrophilin 2A1 (BTN2A1) dependent manner. In humans, the rapid expansion of circulating Vγ9Vδ2 T lymphocytes during several infections as well as their localization at the site of active disease demonstrates their important role in the immune response to infection. However, Vγ9Vδ2 T cell deficiencies have been observed in some infectious diseases such as active tuberculosis and chronic viral infections. In this review, we are providing an overview of the mechanisms of Vγ9Vδ2 T cell-mediated antimicrobial immunity. These cells kill infected cells mainly by releasing lytic mediators and pro-inflammatory cytokines and inducing target cell apoptosis. In addition, the release of chemokines and cytokines allows the recruitment and activation of immune cells, promoting the initiation of the adaptive immune response. Finaly, we also describe potential new therapeutic tools of Vγ9Vδ2 T cell-based immunotherapy that could be applied to emerging infections.
Collapse
Affiliation(s)
- Laetitia Gay
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- ImCheck Therapeutics, Marseille, France
| | - Soraya Mezouar
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
| | | | | | | | - Jean-Louis Mège
- Aix-Marseille Univ, Intitut Recherche pour le Développement (IRT), Assistance Publique Hôpitaux de Marseille (APHM), Microbe, Evolution, Phylogeny, Infection (MEPHI), Marseille, France
- Immunology Department, IHU-Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille, France
| | - Daniel Olive
- Centre pour la Recherche sur le Cancer de Marseille (CRCM), Inserm UMR1068, Centre national de la recherche scientifique (CNRS) UMR7258, Institut Paoli Calmettes, Marseille, France
| |
Collapse
|
2
|
Martini F, Champagne E. The Contribution of Human Herpes Viruses to γδ T Cell Mobilisation in Co-Infections. Viruses 2021; 13:v13122372. [PMID: 34960641 PMCID: PMC8704314 DOI: 10.3390/v13122372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
γδ T cells are activated in viral, bacterial and parasitic infections. Among viruses that promote γδ T cell mobilisation in humans, herpes viruses (HHVs) occupy a particular place since they infect the majority of the human population and persist indefinitely in the organism in a latent state. Thus, other infections should, in most instances, be considered co-infections, and the reactivation of HHV is a serious confounding factor in attributing γδ T cell alterations to a particular pathogen in human diseases. We review here the literature data on γδ T cell mobilisation in HHV infections and co-infections, and discuss the possible contribution of HHVs to γδ alterations observed in various infectious settings. As multiple infections seemingly mobilise overlapping γδ subsets, we also address the concept of possible cross-protection.
Collapse
|
3
|
Gaballa A, Alagrafi F, Uhlin M, Stikvoort A. Revisiting the Role of γδ T Cells in Anti-CMV Immune Response after Transplantation. Viruses 2021; 13:v13061031. [PMID: 34072610 PMCID: PMC8228273 DOI: 10.3390/v13061031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 01/15/2023] Open
Abstract
Gamma delta (γδ) T cells form an unconventional subset of T lymphocytes that express a T cell receptor (TCR) consisting of γ and δ chains. Unlike conventional αβ T cells, γδ T cells share the immune signature of both the innate and the adaptive immunity. These features allow γδ T cells to act in front-line defense against infections and tumors, rendering them an attractive target for immunotherapy. The role of γδ T cells in the immune response to cytomegalovirus (CMV) has been the focus of intense research for several years, particularly in the context of transplantation, as CMV reactivation remains a major cause of transplant-related morbidity and mortality. Therefore, a better understanding of the mechanisms that underlie CMV immune responses could enable the design of novel γδ T cell-based therapeutic approaches. In this regard, the advent of next-generation sequencing (NGS) and single-cell TCR sequencing have allowed in-depth characterization of CMV-induced TCR repertoire changes. In this review, we try to shed light on recent findings addressing the adaptive role of γδ T cells in CMV immunosurveillance and revisit CMV-induced TCR reshaping in the era of NGS. Finally, we will demonstrate the favorable and unfavorable effects of CMV reactive γδ T cells post-transplantation.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Biochemistry and Molecular Biology, National Liver Institute, Menoufia University, Shebin Elkom 51132, Egypt
- Correspondence: ; Tel.: +46-858-580-000
| | - Faisal Alagrafi
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
- Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, 141 52 Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, 141 52 Stockholm, Sweden
| | - Arwen Stikvoort
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden; (F.A.); (M.U.); (A.S.)
| |
Collapse
|
4
|
Caron J, Ridgley LA, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era. Front Immunol 2021; 12:666983. [PMID: 33854516 PMCID: PMC8039298 DOI: 10.3389/fimmu.2021.666983] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus causing COVID-19 poses a global health challenge. There is remarkable progress in vaccine technology in response to this threat, but their design often overlooks the innate arm of immunity. Gamma Delta (γδ) T cells are a subset of T cells with unique features that gives them a key role in the innate immune response to a variety of homeostatic alterations, from cancer to microbial infections. In the context of viral infection, a growing body of evidence shows that γδ T cells are particularly equipped for early virus detection, which triggers their subsequent activation, expansion and the fast deployment of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment and activation of other immune cells and mobilization of a trained immunity memory program. As such, γδ T cells represent an attractive target to stimulate for a rapid and effective resolution of viral infections. Here, we review the known aspects of γδ T cells that make them crucial component of the immune response to viruses, and the ways that their antiviral potential can be harnessed to prevent or treat viral infection.
Collapse
Affiliation(s)
- Jonathan Caron
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Laura Alice Ridgley
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| | - Mark Bodman-Smith
- Infection and Immunity Research Institute, St. George's University of London, London, United Kingdom
| |
Collapse
|
5
|
Djaoud Z, Guethlein LA, Horowitz A, Azzi T, Nemat-Gorgani N, Olive D, Nadal D, Norman PJ, Münz C, Parham P. Two alternate strategies for innate immunity to Epstein-Barr virus: One using NK cells and the other NK cells and γδ T cells. J Exp Med 2017; 214:1827-1841. [PMID: 28468758 PMCID: PMC5460997 DOI: 10.1084/jem.20161017] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 02/02/2017] [Accepted: 03/28/2017] [Indexed: 01/24/2023] Open
Abstract
Djaoud et al. show that Epstein–Barr virus infection triggers two types of human innate immune response, one mediated by the combination of NK cells and γδ T cells and the other committed to a strong NK cell response with little involvement of γδ T cells. Most humans become infected with Epstein–Barr virus (EBV), which then persists for life. Infrequently, EBV infection causes infectious mononucleosis (IM) or Burkitt lymphoma (BL). Type I EBV infection, particularly type I BL, stimulates strong responses of innate immune cells. Humans respond to EBV in two alternative ways. Of 24 individuals studied, 13 made strong NK and γδ T cell responses, whereas 11 made feeble γδ T cell responses but stronger NK cell responses. The difference does not correlate with sex, HLA type, or previous exposure to EBV or cytomegalovirus. Cohorts of EBV+ children and pediatric IM patients include both group 1 individuals, with high numbers of γδ T cells, and group 2 individuals, with low numbers. The even balance of groups 1 and 2 in the human population points to both forms of innate immune response to EBV having benefit for human survival. Correlating these distinctive responses with the progress of EBV infection might facilitate the management of EBV-mediated disease.
Collapse
Affiliation(s)
- Zakia Djaoud
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305 .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Amir Horowitz
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Tarik Azzi
- Experimental Infectious Disease and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, 8032 Zurich, Switzerland
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel Olive
- Team Immunity and Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut National de la Santé et de la Recherche Médicale, U1068; Centre National de la Recherche Scientifique, UMR7258, Institut Paoli-Calmettes; Aix-Marseille University, UM 105, 13284 Marseille, France
| | - David Nadal
- Experimental Infectious Disease and Cancer Research, Children's Research Center, University Children's Hospital of Zurich, 8032 Zurich, Switzerland
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zurich, 8006 Zurich, Switzerland
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305 .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|