1
|
Anghelescu GDC, Mernea M, Mihăilescu DF. Mapping O- and N-Glycosylation in Transmembrane and Interface Regions of Proteins: Insights from a Database Search Study. Int J Mol Sci 2025; 26:327. [PMID: 39796186 PMCID: PMC11720221 DOI: 10.3390/ijms26010327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Glycosylation is a critical post-translational modification that influences protein folding, stability and function. While extensively studied in extracellular and intracellular regions, glycosylation within transmembrane (TM) regions and at membrane interfaces remains poorly understood. This study aimed to map O- and N-glycosylation sites in these regions using a comprehensive database search and structural validation where possible. Extensive database searches revealed glycosylation sites in a range of membrane proteins. Only the sites falling in the TM regions and at the membrane interface (according to Uniprot annotations) were retained. The location of these sites was confirmed based on available 3D structures. We identified 32 O-glycosylation sites and 7 N-glycosylation sites in the TM domains of 29 proteins. O-GlcNAc sites validated as located within TM regions presented side chains either oriented toward the lipid bilayer or buried within the protein. N-glycosylation sites predicted in protein TM regions were largely confined to interface or extracellular domains. The results obtained here highlight the occurrence of glycosylation in TM regions of proteins and at membrane interfaces. This dataset provides a valuable foundation for the further exploration of structural and functional roles of glycosylation in membrane-associated regions.
Collapse
Affiliation(s)
- Giorgiana Diana Carmen Anghelescu
- Doctoral School in Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| | - Maria Mernea
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| | - Dan Florin Mihăilescu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independenței Str., 050095 Bucharest, Romania;
| |
Collapse
|
2
|
Lu Y, Su Y, Wang N, Li D, Zhang H, Xu H. Identification of O-glycosylation related genes and subtypes in ulcerative colitis based on machine learning. PLoS One 2024; 19:e0311495. [PMID: 39739658 DOI: 10.1371/journal.pone.0311495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/17/2024] [Indexed: 01/02/2025] Open
Abstract
Ulcerative colitis (UC) is an immune-related inflammatory bowel disease, with its underlying mechanisms being a central area of clinical research. O-GlcNAcylation plays a critical role in regulating immunity progression and the occurrence of inflammatory diseases and tumors. Yet, the mechanism of O-GlcNAc-associated colitis remains to be elucidated. To this end, the transcriptional and clinical data of GSE75214 and GSE92415 from the GEO database was hereby examined, and genes MUC1, ADAMTS1, GXYLT2, and SEMA5A were found to be significantly related to O-GlcNAcylation using machine learning methods. Based on the four hub genes, two UC subtypes were built. Notably, subtype B might be prone to developing colitis-associated colorectal cancer (CAC). This study delved into the role of intestinal glycosylation changes, especially the O-GlcNAcylation, and forged a foundation for further research on the occurrence and development of UC. Overall, understanding the role of O-GlcNAcylation in UC could have significant implications for diagnosis and treatment, offering valuable insights into the disease's progression.
Collapse
Affiliation(s)
- Yue Lu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Su
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Nan Wang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongyue Li
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huichao Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongyu Xu
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Dyachenko EI, Bel’skaya LV. Transmembrane Amino Acid Transporters in Shaping the Metabolic Profile of Breast Cancer Cell Lines: The Focus on Molecular Biological Subtype. Curr Issues Mol Biol 2024; 47:4. [PMID: 39852119 PMCID: PMC11763447 DOI: 10.3390/cimb47010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Amino acid metabolism in breast cancer cells is unique for each molecular biological subtype of breast cancer. In this review, the features of breast cancer cell metabolism are considered in terms of changes in the amino acid composition due to the activity of transmembrane amino acid transporters. In addition to the main signaling pathway PI3K/Akt/mTOR, the activity of the oncogene c-Myc, HIF, p53, GATA2, NF-kB and MAT2A have a direct effect on the amino acid metabolism of cancer cells, their growth and proliferation, as well as the maintenance of homeostatic equilibrium. A distinctive feature of luminal subtypes of breast cancer from TNBC is the ability to perform gluconeogenesis. Breast cancers with a positive expression of the HER2 receptor, in contrast to TNBC and luminal A subtype, have a distinctive active synthesis and consumption of fatty acids. It is interesting to note that amino acid transporters exhibit their activity depending on the pH level inside the cell. In the most aggressive forms of breast cancer or with the gradual progression of the disease, pH will also change, which will directly affect the metabolism of amino acids. Using the cell lines presented in this review, we can trace the characteristic features inherent in each of the molecular biological subtypes of breast cancer and develop the most optimal therapeutic targets.
Collapse
Affiliation(s)
| | - Lyudmila V. Bel’skaya
- Biochemistry Research Laboratory, Omsk State Pedagogical University, 644099 Omsk, Russia;
| |
Collapse
|
4
|
Very N, Staels B, Eeckhoute J. Increased O-GlcNAcylation connects metabolic to transcriptional reprogramming during pathophysiological cell activation. Trends Cell Biol 2024; 34:988-991. [PMID: 39516052 DOI: 10.1016/j.tcb.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Increased protein O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) has emerged as a hallmark of mammalian cell activation, contributing to Warburg-like metabolic rewiring allowing the acquisition of new functionalities. Recent advances indicate that O-GlcNAcylation promotes the activity of transcriptional regulators driving gene expression reprogramming. This may offer new therapeutic opportunities in a broad spectrum of pathological conditions.
Collapse
Affiliation(s)
- Ninon Very
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| | - Bart Staels
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Jérôme Eeckhoute
- Université Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France.
| |
Collapse
|
5
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024; 124:12918-13019. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
6
|
Galletta F, Gambadauro A, Foti Randazzese S, Passanisi S, Sinatra V, Caminiti L, Zirilli G, Manti S. Pathophysiology of Congenital High Production of IgE and Its Consequences: A Narrative Review Uncovering a Neglected Setting of Disorders. Life (Basel) 2024; 14:1329. [PMID: 39459629 PMCID: PMC11509725 DOI: 10.3390/life14101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Elevated serum IgE levels serve as a critical marker for uncovering hidden immunological disorders, particularly inborn errors of immunity (IEIs), which are often misdiagnosed as common allergic conditions. IgE, while typically associated with allergic diseases, plays a significant role in immune defense, especially against parasitic infections. However, extremely high levels of IgE can indicate more severe conditions, such as Hyper-IgE syndromes (HIES) and disorders with similar features, including Omenn syndrome, Wiskott-Aldrich syndrome, and IPEX syndrome. Novel insights into the genetic mutations responsible for these conditions highlight their impact on immune regulation and the resulting clinical features, including recurrent infections, eczema, and elevated IgE. This narrative review uniquely integrates recent advances in the genetic understanding of IEIs and discusses how these findings impact both diagnosis and treatment. Additionally, emerging therapeutic strategies, such as hematopoietic stem cell transplantation (HSCT) and gene therapies, are explored, underscoring the potential for personalized treatment approaches. Emphasizing the need for precise diagnosis and tailored interventions aims to enhance patient outcomes and improve the quality of care for those with elevated IgE levels and associated immunological disorders.
Collapse
Affiliation(s)
| | | | | | - Stefano Passanisi
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| | | | | | | | - Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age ‘Gaetano Barresi’, University of Messina, 98124 Messina, Italy; (F.G.); (A.G.); (S.F.R.); (V.S.); (L.C.); (G.Z.)
| |
Collapse
|
7
|
Ramakrishnan P. O-GlcNAcylation and immune cell signaling: A review of known and a preview of unknown. J Biol Chem 2024; 300:107349. [PMID: 38718861 PMCID: PMC11180344 DOI: 10.1016/j.jbc.2024.107349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 06/06/2024] Open
Abstract
The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.
Collapse
Affiliation(s)
- Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA; University Hospitals-Cleveland Medical Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
8
|
Guo N, Luo Q, Zheng Q, Yang S, Zhang S. Current status and progress of research on the ADP-dependent glucokinase gene. Front Oncol 2024; 14:1358904. [PMID: 38590647 PMCID: PMC10999526 DOI: 10.3389/fonc.2024.1358904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 04/10/2024] Open
Abstract
ADP-dependent glucokinase (ADPGK) produces glucose-6-phosphate with adenosine diphosphate (ADP) as the phosphate group donor, in contrast to ATP-dependent hexokinases (HKs). Originally found in archaea, ADPGK is involved in glycolysis. However, its biological function in most eukaryotic organisms is still unclear, and the molecular mechanism of action requires further investigation. This paper provides a concise overview of ADPGK's origin, biological function and clinical application. It aims to furnish scientific information for the diagnosis and treatment of human metabolic diseases, neurological disorders, and malignant tumours, and to suggest new strategies for the development of targeted drugs.
Collapse
Affiliation(s)
- Ningjing Guo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qiong Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qixian Zheng
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Sheng Yang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Suyun Zhang
- Department of Internal Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
9
|
Pascoal C, Francisco R, Mexia P, Pereira BL, Granjo P, Coelho H, Barbosa M, dos Reis Ferreira V, Videira PA. Revisiting the immunopathology of congenital disorders of glycosylation: an updated review. Front Immunol 2024; 15:1350101. [PMID: 38550576 PMCID: PMC10972870 DOI: 10.3389/fimmu.2024.1350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.
Collapse
Affiliation(s)
- Carlota Pascoal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Rita Francisco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Patrícia Mexia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Beatriz Luís Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Pedro Granjo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Mariana Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Vanessa dos Reis Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Paula Alexandra Videira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| |
Collapse
|
10
|
Kawano I, Bazila B, Ježek P, Dlasková A. Mitochondrial Dynamics and Cristae Shape Changes During Metabolic Reprogramming. Antioxid Redox Signal 2023; 39:684-707. [PMID: 37212238 DOI: 10.1089/ars.2023.0268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Significance: The architecture of the mitochondrial network and cristae critically impact cell differentiation and identity. Cells undergoing metabolic reprogramming to aerobic glycolysis (Warburg effect), such as immune cells, stem cells, and cancer cells, go through controlled modifications in mitochondrial architecture, which is critical for achieving the resulting cellular phenotype. Recent Advances: Recent studies in immunometabolism have shown that the manipulation of mitochondrial network dynamics and cristae shape directly affects T cell phenotype and macrophage polarization through altering energy metabolism. Similar manipulations also alter the specific metabolic phenotypes that accompany somatic reprogramming, stem cell differentiation, and cancer cells. The modulation of oxidative phosphorylation activity, accompanied by changes in metabolite signaling, reactive oxygen species generation, and adenosine triphosphate levels, is the shared underlying mechanism. Critical Issues: The plasticity of mitochondrial architecture is particularly vital for metabolic reprogramming. Consequently, failure to adapt the appropriate mitochondrial morphology often compromises the differentiation and identity of the cell. Immune, stem, and tumor cells exhibit striking similarities in their coordination of mitochondrial morphology with metabolic pathways. However, although many general unifying principles can be observed, their validity is not absolute, and the mechanistic links thus need to be further explored. Future Directions: Better knowledge of the molecular mechanisms involved and their relationships to both mitochondrial network and cristae morphology will not only further deepen our understanding of energy metabolism but may also contribute to improved therapeutic manipulation of cell viability, differentiation, proliferation, and identity in many different cell types. Antioxid. Redox Signal. 39, 684-707.
Collapse
Affiliation(s)
- Ippei Kawano
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bazila Bazila
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Ježek
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Laboratory of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Lobel GP, Jiang Y, Simon MC. Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chem Biol 2023; 30:1015-1032. [PMID: 37703882 PMCID: PMC10528750 DOI: 10.1016/j.chembiol.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Over the last two decades, the rapidly expanding field of tumor metabolism has enhanced our knowledge of the impact of nutrient availability on metabolic reprogramming in cancer. Apart from established roles in cancer cells themselves, various nutrients, metabolic enzymes, and stress responses are key to the activities of tumor microenvironmental immune, fibroblastic, endothelial, and other cell types that support malignant transformation. In this article, we review our current understanding of how nutrient availability affects metabolic pathways and responses in both cancer and "stromal" cells, by dissecting major examples and their regulation of cellular activity. Understanding the relationship of nutrient availability to cellular behaviors in the tumor ecosystem will broaden the horizon of exploiting novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Graham P Lobel
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Cai H, Xiong W, Zhu H, Wang Q, Liu S, Lu Z. Protein O-GlcNAcylation in multiple immune cells and its therapeutic potential. Front Immunol 2023; 14:1209970. [PMID: 37675125 PMCID: PMC10477433 DOI: 10.3389/fimmu.2023.1209970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
O-GlcNAcylation is a post-translational modification of proteins that involves the addition of O-GlcNAc to serine or threonine residues of nuclear or cytoplasmic proteins, catalyzed by O-GlcNAc transferase (OGT). This modification is highly dynamic and can be reversed by O-GlcNAcase (OGA). O-GlcNAcylation is widespread in the immune system, which engages in multiple physiologic and pathophysiologic processes. There is substantial evidence indicating that both the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation are critically involved in regulating immune cell function. However, the precise role of O-GlcNAcylation in the immune system needs to be adequately elucidated. This review offers a thorough synopsis of the present research on protein O-GlcNAcylation, accentuating the molecular mechanisms that control immune cells' growth, maturation, and performance via this PTM.
Collapse
Affiliation(s)
- Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Wei Xiong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Qiongxin Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Zeber-Lubecka N, Suchta K, Kulecka M, Kluska A, Piątkowska M, Dabrowski MJ, Jankowska K, Grymowicz M, Smolarczyk R, Hennig EE. Exome sequencing to explore the possibility of predicting genetic susceptibility to the joint occurrence of polycystic ovary syndrome and Hashimoto's thyroiditis. Front Immunol 2023; 14:1193293. [PMID: 37545519 PMCID: PMC10397507 DOI: 10.3389/fimmu.2023.1193293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
A large body of evidence indicates that women with polycystic ovary syndrome (PCOS) have a higher risk of developing Hashimoto's thyroiditis (HT) than healthy individuals. Given the strong genetic impact on both diseases, common predisposing genetic factors are possibly involved but are not fully understood. Here, we performed whole-exome sequencing (WES) for 250 women with sporadic PCOS, HT, combined PCOS and HT (PCOS+HT), and healthy controls to explore the genetic background of the joint occurrence of PCOS and HT. Based on relevant comparative analyses, multivariate logistic regression prediction modeling, and the most informative feature selection using the Monte Carlo feature selection and interdependency discovery algorithm, 77 variants were selected for further validation by TaqMan genotyping in a group of 533 patients. In the allele frequency test, variants in RAB6A, GBP3, and FNDC7 genes were found to significantly (padjusted < 0.05) differentiated the PCOS+HT and PCOS groups, variant in HIF3A differentiated the PCOS+HT and HT groups, whereas variants in CDK20 and CCDC71 differentiated the PCOS+HT and both single disorder groups. TaqMan genotyping data were used to create final prediction models, which differentiated between PCOS+HT and PCOS or HT with a prediction accuracy of AUC = 0.78. Using a 70% cutoff of the prediction score improved the model parameters, increasing the AUC value to 0.87. In summary, we demonstrated the polygenic burden of both PCOS and HT, and many common and intersecting signaling pathways and biological processes whose disorders mutually predispose patients to the development of both diseases.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Katarzyna Suchta
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Katarzyna Jankowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Monika Grymowicz
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Roman Smolarczyk
- Department of Gynaecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
14
|
Paneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel) 2023; 14:genes14040933. [PMID: 37107691 PMCID: PMC10138107 DOI: 10.3390/genes14040933] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The hexosamine biosynthesis pathway (HBP) produces uridine diphosphate-N-acetyl glucosamine, UDP-GlcNAc, which is a key metabolite that is used for N- or O-linked glycosylation, a co- or post-translational modification, respectively, that modulates protein activity and expression. The production of hexosamines can occur via de novo or salvage mechanisms that are catalyzed by metabolic enzymes. Nutrients including glutamine, glucose, acetyl-CoA, and UTP are utilized by the HBP. Together with availability of these nutrients, signaling molecules that respond to environmental signals, such as mTOR, AMPK, and stress-regulated transcription factors, modulate the HBP. This review discusses the regulation of GFAT, the key enzyme of the de novo HBP, as well as other metabolic enzymes that catalyze the reactions to produce UDP-GlcNAc. We also examine the contribution of the salvage mechanisms in the HBP and how dietary supplementation of the salvage metabolites glucosamine and N-acetylglucosamine could reprogram metabolism and have therapeutic potential. We elaborate on how UDP-GlcNAc is utilized for N-glycosylation of membrane and secretory proteins and how the HBP is reprogrammed during nutrient fluctuations to maintain proteostasis. We also consider how O-GlcNAcylation is coupled to nutrient availability and how this modification modulates cell signaling. We summarize how deregulation of protein N-glycosylation and O-GlcNAcylation can lead to diseases including cancer, diabetes, immunodeficiencies, and congenital disorders of glycosylation. We review the current pharmacological strategies to inhibit GFAT and other enzymes involved in the HBP or glycosylation and how engineered prodrugs could have better therapeutic efficacy for the treatment of diseases related to HBP deregulation.
Collapse
Affiliation(s)
- Alysta Paneque
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Harvey Fortus
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Julia Zheng
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Guy Werlen
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
15
|
Saha A, Fernández-Tejada A. Chemical biology tools to interrogate the roles of O-GlcNAc in immunity. Front Immunol 2023; 13:1089824. [PMID: 36776401 PMCID: PMC9910173 DOI: 10.3389/fimmu.2022.1089824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of proteins is an essential and dynamic post-translational modification in mammalian cells that is regulated by the action of two enzymes. O-GlcNAc transferase (OGT) incorporates this monosaccharide on serine/threonine residues, whereas O-GlcNAcase (OGA) removes it. This modification is found on thousands of intracellular proteins involved in vital cellular processes, both under physiological and pathological conditions. Aberrant expression of O-GlcNAc has been implicated in diseases such as Alzheimer, diabetes, and cancer, and growing evidence over the last decade has also revealed key implications of O-GlcNAcylation in immunity. While some key signaling pathways involving O-GlcNAcylation in immune cells have been discovered, a complete mechanistic understanding of how O-GlcNAcylated proteins function in the immune system remains elusive, partly because of the difficulties in mapping and quantifying O-GlcNAc sites. In this minireview, we discuss recent progress on chemical biology tools and approaches to investigate the role of O-GlcNAcylation in immune cells, with the intention of encouraging further research and developments in chemical glycoimmunology that can advance our understanding of O-GlcNAc in immunity.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Biscay, Spain
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Biscay, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain,*Correspondence: Alberto Fernández-Tejada,
| |
Collapse
|
16
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
17
|
Burns MWN, Kohler JJ. Engineering Glyco‐Enzymes for Substrate Identification and Targeting. Isr J Chem 2022. [DOI: 10.1002/ijch.202200093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mary W. N. Burns
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| | - Jennifer J. Kohler
- Department of Biochemistry UT Southwestern Medical Center Dallas TX 75390 USA
| |
Collapse
|
18
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
19
|
Liu Y, Nelson ZM, Reda A, Fehl C. Spatiotemporal Proximity Labeling Tools to Track GlcNAc Sugar-Modified Functional Protein Hubs during Cellular Signaling. ACS Chem Biol 2022; 17:2153-2164. [PMID: 35819414 DOI: 10.1021/acschembio.2c00282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental mechanism that all eukaryotic cells use to adapt to their environment is dynamic protein modification with monosaccharide sugars. In humans, O-linked N-acetylglucosamine (O-GlcNAc) is rapidly added to and removed from diverse protein sites as a response to fluctuating nutrient levels, stressors, and signaling cues. Two aspects remain challenging for tracking functional O-GlcNAc events with chemical strategies: spatial control over subcellular locations and time control during labeling. The objective of this study was to create intracellular proximity labeling tools to identify functional changes in O-GlcNAc patterns with spatiotemporal control. We developed a labeling strategy based on the TurboID proximity labeling system for rapid protein biotin conjugation directed to O-GlcNAc protein modifications inside cells, a set of tools called "GlycoID." Localized variants to the nucleus and cytosol, nuc-GlycoID and cyt-GlycoID, labeled O-GlcNAc proteins and their interactomes in subcellular space. Labeling during insulin and serum stimulation revealed functional changes in O-GlcNAc proteins as soon as 30 min following signal initiation. We demonstrated using proteomic analysis that the GlycoID strategy captured O-GlcNAcylated "activity hubs" consisting of O-GlcNAc proteins and their associated protein-protein interactions. The ability to follow changes in O-GlcNAc hubs during physiological events such as insulin signaling allows these tools to determine the mechanisms of glycobiological cell regulation. Our functional O-GlcNAc data sets in human cells will be a valuable resource for O-GlcNAc-driven mechanisms.
Collapse
Affiliation(s)
- Yimin Liu
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zachary M Nelson
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Ali Reda
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
20
|
Feinberg D, Ramakrishnan P, Wong DP, Asthana A, Parameswaran R. Inhibition of O-GlcNAcylation Decreases the Cytotoxic Function of Natural Killer Cells. Front Immunol 2022; 13:841299. [PMID: 35479087 PMCID: PMC9036377 DOI: 10.3389/fimmu.2022.841299] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Natural killer (NK) cells mediate killing of malignant and virus-infected cells, a property that is explored as a cell therapy approach in the clinic. Various cell intrinsic and extrinsic factors affect NK cell cytotoxic function, and an improved understanding of the mechanism regulating NK cell function is necessary to accomplish better success with NK cell therapeutics. Here, we explored the role of O-GlcNAcylation, a previously unexplored molecular mechanism regulating NK cell function. O-GlcNAcylation is a post-translational modification mediated by O-GlcNAc transferase (OGT) that adds the monosaccharide N-acetylglucosamine to serine and threonine residues on intracellular proteins and O-GlcNAcase (OGA) that removes the sugar. We found that stimulation of NK cells with the cytokines interleukin-2 (IL-2) and IL-15 results in enhanced O-GlcNAcylation of several cellular proteins. Chemical inhibition of O-GlcNAcylation using OSMI-1 was associated with a decreased expression of NK cell receptors (NKG2D, NKG2A, NKp44), cytokines [tumor necrosis factor (TNF)-α, interferon (IFN-γ)], granulysin, soluble Fas ligand, perforin, and granzyme B in NK cells. Importantly, inhibition of O-GlcNAcylation inhibited NK cell cytotoxicity against cancer cells. However, increases in O-GlcNAcylation following OGA inhibition using an OGA inhibitor or shRNA-mediated suppression did not alter NK cell cytotoxicity. Finally, we found that NK cells pretreated with OSMI-1 to inhibit O-GlcNAcylation showed compromised cytotoxic activity against tumor cells in vivo in a lymphoma xenograft mouse model. Overall, this study provides the seminal insight into the role of O-GlcNAcylation in regulating NK cell cytotoxic function.
Collapse
Affiliation(s)
- Daniel Feinberg
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Parameswaran Ramakrishnan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Derek P Wong
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Abhishek Asthana
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Reshmi Parameswaran
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
21
|
Hyper IgE syndromes: A clinical approach. Clin Immunol 2022; 237:108988. [DOI: 10.1016/j.clim.2022.108988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
|
22
|
dos Passos Junior RR, Bomfim GF, Giachini FR, Tostes RC, Lima VV. O-Linked β-N-Acetylglucosamine Modification: Linking Hypertension and the Immune System. Front Immunol 2022; 13:852115. [PMID: 35371030 PMCID: PMC8967968 DOI: 10.3389/fimmu.2022.852115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
The O-linked β-N-acetylglucosamine modification (O-GlcNAcylation) of proteins dynamically regulates protein function, localization, stability, and interactions. This post-translational modification is intimately linked to cardiovascular disease, including hypertension. An increasing number of studies suggest that components of innate and adaptive immunity, active players in the pathophysiology of hypertension, are targets for O-GlcNAcylation. In this review, we highlight the potential roles of O-GlcNAcylation in the immune system and discuss how those immune targets of O-GlcNAcylation may contribute to arterial hypertension.
Collapse
Affiliation(s)
- Rinaldo Rodrigues dos Passos Junior
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | | | - Fernanda R. Giachini
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
- *Correspondence: Victor Vitorino Lima,
| |
Collapse
|
23
|
Dong H, Liu Z, Wen H. Protein O-GlcNAcylation Regulates Innate Immune Cell Function. Front Immunol 2022; 13:805018. [PMID: 35185892 PMCID: PMC8850411 DOI: 10.3389/fimmu.2022.805018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Metabolite-mediated protein posttranslational modifications (PTM) represent highly evolutionarily conserved mechanisms by which metabolic networks participate in fine-tuning diverse cellular biological activities. Modification of proteins with the metabolite UDP-N-acetylglucosamine (UDP-GlcNAc), known as protein O-GlcNAcylation, is one well-defined form of PTM that is catalyzed by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Previous studies have discovered critical roles of protein O-GlcNAcylation in many fundamental biological activities via modifying numerous nuclear and cytoplasmic proteins. A common mechanism by which O-GlcNAc affects protein function is through the cross-regulation between protein O-GlcNAcylation and phosphorylation. This is of particular importance to innate immune cell functions due to the essential role of protein phosphorylation in regulating many aspects of innate immune signaling. Indeed, as an integral component of cellular metabolic network, profound alteration in protein O-GlcNAcylation has been documented following the activation of innate immune cells. Accumulating evidence suggests that O-GlcNAcylation of proteins involved in the NF-κB pathway and other inflammation-associated signaling pathways plays an essential role in regulating the functionality of innate immune cells. Here, we summarize recent studies focusing on the role of protein O-GlcNAcylation in regulating the NF-κB pathway, other innate immune signaling responses and its disease relevance.
Collapse
Affiliation(s)
- Hong Dong
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH, United States
| | - Zihao Liu
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH, United States
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Infectious Disease Institute, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States.,Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
24
|
Merlo LM, Peng W, DuHadaway JB, Montgomery JD, Prendergast GC, Muller AJ, Mandik-Nayak L. The Immunomodulatory Enzyme IDO2 Mediates Autoimmune Arthritis through a Nonenzymatic Mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:571-581. [PMID: 34965962 PMCID: PMC8770583 DOI: 10.4049/jimmunol.2100705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
IDO2 is one of two closely related tryptophan catabolizing enzymes induced under inflammatory conditions. In contrast to the immunoregulatory role defined for IDO1 in cancer models, IDO2 has a proinflammatory function in models of autoimmunity and contact hypersensitivity. In humans, two common single-nucleotide polymorphisms have been identified that severely impair IDO2 enzymatic function, such that <25% of individuals express IDO2 with full catalytic potential. This, together with IDO2's relatively weak enzymatic activity, suggests that IDO2 may have a role outside of its function in tryptophan catabolism. To determine whether the enzymatic activity of IDO2 is required for its proinflammatory function, we used newly generated catalytically inactive IDO2 knock-in mice together with established models of contact hypersensitivity and autoimmune arthritis. Contact hypersensitivity was attenuated in catalytically inactive IDO2 knock-in mice. In contrast, induction of autoimmune arthritis was unaffected by the absence of IDO2 enzymatic activity. In pursuing this nonenzymatic IDO2 function, we identified GAPDH, Runx1, RANbp10, and Mgea5 as IDO2-binding proteins that do not interact with IDO1, implicating them as potential mediators of IDO2-specific function. Taken together, our findings identify a novel function for IDO2, independent of its tryptophan catabolizing activity, and suggest that this nonenzymatic function could involve multiple signaling pathways. These data show that the enzymatic activity of IDO2 is required only for some inflammatory immune responses and provide, to our knowledge, the first evidence of a nonenzymatic role for IDO2 in mediating autoimmune disease.
Collapse
Affiliation(s)
| | - Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, PA
| | | | | | - George C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, PA,Department of Pathology, Anatomy, and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | | |
Collapse
|
25
|
O-GlcNAcylation regulation of cellular signaling in cancer. Cell Signal 2022; 90:110201. [PMID: 34800629 PMCID: PMC8712408 DOI: 10.1016/j.cellsig.2021.110201] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
O-GlcNAcylation is a post-translational modification occurring on serine/threonine residues of nuclear and cytoplasmic proteins, mediated by the enzymes OGT and OGA which catalyze the addition or removal of the UDP-GlcNAc moieties, respectively. Structural changes brought by this modification lead to alternations of protein stability, protein-protein interactions, and phosphorylation. Importantly, O-GlcNAcylation is a nutrient sensor by coupling nutrient sensing with cellular signaling. Elevated levels of OGT and O-GlcNAc have been reported in a variety of cancers and has been linked to regulation of multiple cancer signaling pathways. In this review, we discuss the most recent findings on the role of O-GlcNAcylation as a metabolic sensor in signaling pathways and immune response in cancer.
Collapse
|
26
|
Evaluation of blood cell viability rate, gene expression, and O-GlcNAcylation profiles as indicative signatures for fungal stimulation of salmonid cell models. Mol Immunol 2021; 142:120-129. [PMID: 34979452 DOI: 10.1016/j.molimm.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
Fungal diseases of fish are a significant economic problem in aquaculture. Using high-throughput expression analysis, we identified potential transcript markers in primary head kidney and secondary embryonic cells from salmonid fish after stimulation with the inactivated fungi Mucor hiemalis and Fusarium aveneacium and with purified fungal molecular patterns. The transcript levels of most of the 45 selected genes were altered in head-kidney cells after 24 h of stimulation with fungal antigens. Stimulation with the inactivated fungus M. hiemalis induced the most pronounced transcriptional changes, including the pathogen receptor-encoding genes CLEC18A and TLR22, the cytokine-encoding genes IL6 and TNF, and the gene encoding the antimicrobial peptide LEAP2. In parallel, we analyzed the total GlcNAcylation status of embryonic salmonid cells with or without stimulation with inactivated fungi. O-GlcNAcylation modulates gene expression, intracellular protein, and signal activity, but we detected no significant differences after a 3-h stimulation. A pathway analysis tool identified the "apoptosis of leukocytes" based on the expression profile 24 h after fungal stimulation. Fluorescence microscopy combined with flow cytometry revealed apoptosis in 50 % of head-kidney leukocytes after 3 h stimulation with M. hiemalis, but this level decreased by > 5% after 24 h of stimulation. The number of apoptotic cells significantly increased in all blood cells after a 3-h stimulation with fungal molecular patterns compared to unstimulated controls. This in vitro approach identified transcript-based parameters that were strongly modulated by fungal infections of salmonid fish.
Collapse
|
27
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
28
|
Han C, Ge M, Ho PC, Zhang L. Fueling T-cell Antitumor Immunity: Amino Acid Metabolism Revisited. Cancer Immunol Res 2021; 9:1373-1382. [PMID: 34716193 DOI: 10.1158/2326-6066.cir-21-0459] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
T cells are the key players in eliminating malignant tumors. Adoptive transfer of tumor antigen-specific T cells and immune checkpoint blockade has yielded durable antitumor responses in the clinic, but not all patients respond initially and some that do respond eventually have tumor progression. Thus, new approaches to enhance the utility of immunotherapy are needed. T-cell activation and differentiation status are tightly controlled at the transcriptional, epigenetic, and metabolic levels. Amino acids are involved in multiple steps of T-cell antitumor immunity, including T-cell activation, proliferation, effector function, memory formation as well as functional exhaustion. In this review, we briefly discuss how amino acid metabolism is linked to T-cell fate decisions and summarize how amino acid deprivation or accumulation of certain amino acid metabolites within the tumor microenvironment diminishes T-cell functionality. Furthermore, we discuss potential strategies for immunotherapy via modulating amino acid metabolism either in T cells intrinsically or extrinsically to achieve therapeutic efficacy.
Collapse
Affiliation(s)
- Chenfeng Han
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Minmin Ge
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland. .,Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Lianjun Zhang
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. .,Suzhou Institute of Systems Medicine, Suzhou, China
| |
Collapse
|
29
|
Abstract
Mucin-domain glycoproteins comprise a class of proteins whose densely O-glycosylated mucin domains adopt a secondary structure with unique biophysical and biochemical properties. The canonical family of mucins is well-known to be involved in various diseases, especially cancer. Despite this, very little is known about the site-specific molecular structures and biological activities of mucins, in part because they are extremely challenging to study by mass spectrometry (MS). Here, we summarize recent advancements toward this goal, with a particular focus on mucin-domain glycoproteins as opposed to general O-glycoproteins. We summarize proteolytic digestion techniques, enrichment strategies, MS fragmentation, and intact analysis, as well as new bioinformatic platforms. In particular, we highlight mucin directed technologies such as mucin-selective proteases, tunable mucin platforms, and a mucinomics strategy to enrich mucin-domain glycoproteins from complex samples. Finally, we provide examples of targeted mucin-domain glycoproteomics that combine these techniques in comprehensive site-specific analyses of proteins. Overall, this Review summarizes the methods, challenges, and new opportunities associated with studying enigmatic mucin domains.
Collapse
Affiliation(s)
- Valentina Rangel-Angarita
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| | - Stacy A. Malaker
- Department of Chemistry, Yale University, 275 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
30
|
Zhu Q, Yi W. Chemistry-Assisted Proteomic Profiling of O-GlcNAcylation. Front Chem 2021; 9:702260. [PMID: 34249870 PMCID: PMC8267408 DOI: 10.3389/fchem.2021.702260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
The modification on proteins with O-linked N-acetyl-β-D-glucosamine (O-GlcNAcylation) is essential for normal cell physiology. Dysregulation of O-GlcNAcylation leads to many human diseases, such as cancer, diabetes and neurodegenerative diseases. Recently, the functional role of O-GlcNAcylation in different physiological states has been elucidated due to the booming detection technologies. Chemical approaches for the enrichment of O-GlcNAcylated proteins combined with mass spectrometry-based proteomics enable the profiling of protein O-GlcNAcylation in a system-wide level. In this review, we summarize recent progresses on the enrichment and proteomic profiling of protein O-GlcNAcylation.
Collapse
Affiliation(s)
| | - Wen Yi
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Sudhakar P, Verstockt B, Cremer J, Verstockt S, Sabino J, Ferrante M, Vermeire S. Understanding the Molecular Drivers of Disease Heterogeneity in Crohn's Disease Using Multi-omic Data Integration and Network Analysis. Inflamm Bowel Dis 2021; 27:870-886. [PMID: 33313682 PMCID: PMC8128416 DOI: 10.1093/ibd/izaa281] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Crohn's disease (CD), a form of inflammatory bowel disease (IBD), is characterized by heterogeneity along multiple clinical axes, which in turn impacts disease progression and treatment modalities. Using advanced data integration approaches and systems biology tools, we studied the contribution of CD susceptibility variants and gene expression in distinct peripheral immune cell subsets (CD14+ monocytes and CD4+ T cells) to relevant clinical traits. Our analyses revealed that most clinical traits capturing CD heterogeneity could be associated with CD14+ and CD4+ gene expression rather than disease susceptibility variants. By disentangling the sources of variation, we identified molecular features that could potentially be driving the heterogeneity of various clinical traits of CD patients. Further downstream analyses identified contextual hub proteins such as genes encoding barrier functions, antimicrobial peptides, chemokines, and their receptors, which are either targeted by drugs used in CD or other inflammatory diseases or are relevant to the biological functions implicated in disease pathology. These hubs could be used as cell type-specific targets to treat specific subtypes of CD patients in a more individualized approach based on the underlying biology driving their disease subtypes. Our study highlights the importance of data integration and systems approaches to investigate complex and heterogeneous diseases such as IBD.
Collapse
Affiliation(s)
- Padhmanand Sudhakar
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - Bram Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Jonathan Cremer
- Department of Microbiology and Immunology, Laboratory of Clinical Immunology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sare Verstockt
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
| | - João Sabino
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID)
- University Hospitals Leuven, Department of Gastroenterology and Hepatology
| |
Collapse
|
32
|
Lam C, Low JY, Tran PT, Wang H. The hexosamine biosynthetic pathway and cancer: Current knowledge and future therapeutic strategies. Cancer Lett 2021; 503:11-18. [PMID: 33484754 DOI: 10.1016/j.canlet.2021.01.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/28/2022]
Abstract
The hexosamine biosynthetic pathway (HBP) is a glucose metabolism pathway that results in the synthesis of a nucleotide sugar UDP-GlcNAc, which is subsequently used for the post-translational modification (O-GlcNAcylation) of intracellular proteins that regulate nutrient sensing and stress response. The HBP is carried out by a series of enzymes, many of which have been extensively implicated in cancer pathophysiology. Increasing evidence suggests that elevated activation of the HBP may act as a cancer biomarker. Inhibition of HBP enzymes could suppress tumor cell growth, modulate the immune response, reduce resistance, and sensitize tumor cells to conventional cancer therapy. Therefore, targeting the HBP may serve as a novel strategy for treating cancer patients. Here, we review the current findings on the significance of HBP enzymes in various cancers and discuss future approaches for exploiting HBP inhibition for cancer treatment.
Collapse
Affiliation(s)
- Christine Lam
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Jin-Yih Low
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
33
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
34
|
Qiang A, Slawson C, Fields PE. The Role of O-GlcNAcylation in Immune Cell Activation. Front Endocrinol (Lausanne) 2021; 12:596617. [PMID: 33986724 PMCID: PMC8112354 DOI: 10.3389/fendo.2021.596617] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/08/2021] [Indexed: 01/15/2023] Open
Abstract
O-GlcNAcylation is a dynamic post-translational modification where the sugar, O-linked β-N-acetylglucosamine (O-GlcNAc) is added to or removed from various cytoplasmic, nuclear, and mitochondrial proteins. This modification is regulated by only two enzymes: O-GlcNAc transferase (OGT), which adds O-GlcNAc, and O-GlcNAcase (OGA), which removes the sugar from proteins. O-GlcNAcylation is integral to maintaining normal cellular function, especially in processes such as nutrient sensing, metabolism, transcription, and growth and development of the cell. Aberrant O-GlcNAcylation has been associated with a number of pathological conditions, including, neurodegenerative diseases, cancer, diabetes, and obesity. However, the role of O-GlcNAcylation in immune cell growth/proliferation, or other immune responses, is currently incompletely understood. In this review, we highlight the effects of O-GlcNAcylation on certain cells of the immune system, especially those involved in pro-inflammatory responses associated with diabetes and obesity.
Collapse
Affiliation(s)
- Amy Qiang
- Pathology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Chad Slawson
- Biochemistry, University of Kansas Medical Center, Kansas City, KS, United States
| | - Patrick E. Fields
- Pathology, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Patrick E. Fields,
| |
Collapse
|
35
|
Gómez-Henao W, Tenorio EP, Sanchez FRC, Mendoza MC, Ledezma RL, Zenteno E. Relevance of glycans in the interaction between T lymphocyte and the antigen presenting cell. Int Rev Immunol 2020; 40:274-288. [PMID: 33205679 DOI: 10.1080/08830185.2020.1845331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The immunological synapse promotes receptors and ligands interaction in the contact interface between the T lymphocyte and the antigen presenting cell; glycosylation of the proteins involved in this biological process favors regulation of molecular interactions and development of the T lymphocyte effector response. Glycans in the immunological synapse influence cellular and molecular processes such as folding, expression, and structural stability of proteins, they also mediate ligand-receptor interaction and propagation of the intracellular signaling or inhibition of uncontrolled cellular activation that could lead to the development of autoimmunity, among others. It has been suggested that altered glycosylation of proteins that participate in the immunological synapse affects the signaling processes and cell proliferation, as well as exacerbation of the effector mechanisms of T cells that trigger systemic damage and autoimmunity. Understanding the role of glycans in the immune response has allowed for advances in the development of immunotherapies in different fields through the controlled and specific activation of the immune response. This review describes the structural and biological aspects of glycans associated with some molecules present in the immunological synapse, providing information that allows understanding the function of glycosylation in the interaction between the T lymphocyte and the antigen-presenting cell, as well as its impact on signaling and development regulation of T lymphocytes effector response.
Collapse
Affiliation(s)
- Wilton Gómez-Henao
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico.,Cell Growth, Tissue Repair and Regeneration (CRRET), CNRS ERL 9215, Université Paris Est Créteil (UPEC), Créteil, France
| | - Eda Patricia Tenorio
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | | | - Miguel Cuéllar Mendoza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Ricardo Lascurain Ledezma
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacan; Mexico
| |
Collapse
|
36
|
Al-Mukh H, Baudoin L, Bouaboud A, Sanchez-Salgado JL, Maraqa N, Khair M, Pagesy P, Bismuth G, Niedergang F, Issad T. Lipopolysaccharide Induces GFAT2 Expression to Promote O-Linked β- N-Acetylglucosaminylation and Attenuate Inflammation in Macrophages. THE JOURNAL OF IMMUNOLOGY 2020; 205:2499-2510. [PMID: 32978282 DOI: 10.4049/jimmunol.2000345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022]
Abstract
Glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAcylation) is a reversible posttranslational modification that regulates the activity of intracellular proteins according to glucose availability and its metabolism through the hexosamine biosynthesis pathway. This modification has been involved in the regulation of various immune cell types, including macrophages. However, little is known concerning the mechanisms that regulate the protein O-GlcNAcylation level in these cells. In the present work, we demonstrate that LPS treatment induces a marked increase in protein O-GlcNAcylation in RAW264.7 cells, bone marrow-derived and peritoneal mouse macrophages, as well as human monocyte-derived macrophages. Targeted deletion of OGT in macrophages resulted in an increased effect of LPS on NOS2 expression and cytokine production, suggesting that O-GlcNAcylation may restrain inflammatory processes induced by LPS. The effect of LPS on protein O-GlcNAcylation in macrophages was associated with an increased expression and activity of glutamine fructose 6-phosphate amidotransferase (GFAT), the enzyme that catalyzes the rate-limiting step of the hexosamine biosynthesis pathway. More specifically, we observed that LPS potently stimulated GFAT2 isoform mRNA and protein expression. Genetic or pharmacological inhibition of FoxO1 impaired the LPS effect on GFAT2 expression, suggesting a FoxO1-dependent mechanism. We conclude that GFAT2 should be considered a new LPS-inducible gene involved in regulation of protein O-GlcNAcylation, which permits limited exacerbation of inflammation upon macrophage activation.
Collapse
Affiliation(s)
- Hasanain Al-Mukh
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Léa Baudoin
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | | | - Nabih Maraqa
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Mostafa Khair
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Patrick Pagesy
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | - Georges Bismuth
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| | | | - Tarik Issad
- Université de Paris, Institut Cochin, CNRS, INSERM, F-75014 Paris, France
| |
Collapse
|
37
|
Estevez A, Zhu D, Blankenship C, Jiang J. Molecular Interrogation to Crack the Case of O-GlcNAc. Chemistry 2020; 26:12086-12100. [PMID: 32207184 PMCID: PMC7724648 DOI: 10.1002/chem.202000155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/28/2020] [Indexed: 12/25/2022]
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) modification, termed O-GlcNAcylation, is an essential and dynamic post-translational modification in cells. O-GlcNAc transferase (OGT) installs this modification on serine and threonine residues, whereas O-GlcNAcase (OGA) hydrolyzes it. O-GlcNAc modifications are found on thousands of intracellular proteins involved in diverse biological processes. Dysregulation of O-GlcNAcylation and O-GlcNAc cycling enzymes has been detected in many diseases, including cancer, diabetes, cardiovascular and neurodegenerative diseases. Here, recent advances in the development of molecular tools to investigate OGT and OGA functions and substrate recognition are discussed. New chemical approaches to study O-GlcNAc dynamics and its potential roles in the immune system are also highlighted. It is hoped that this minireview will encourage more research in these areas to advance the understanding of O-GlcNAc in biology and diseases.
Collapse
Affiliation(s)
- Arielis Estevez
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Dongsheng Zhu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Connor Blankenship
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
38
|
Affiliation(s)
- Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
39
|
Quik M, Hokke CH, Everts B. The role of O-GlcNAcylation in immunity against infections. Immunology 2020; 161:175-185. [PMID: 32740921 PMCID: PMC7576884 DOI: 10.1111/imm.13245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Mounting an effective immune response is crucial for the host to protect itself against invading pathogens. It is now well appreciated that reprogramming of core metabolic pathways in immune cells is a key requirement for their activation and function during infections. The role of several ancillary metabolic pathways in shaping immune cell function is less well understood. One such pathway, for which interest has recently been growing, is the hexosamine biosynthesis pathway (HBP) that generates uridine diphosphate N‐acetylglucosamine (UDP‐GlcNAc), the donor substrate for a specific form of glycosylation termed O‐GlcNAcylation. O‐GlcNAc is an intracellular post‐translational modification that alters the functional properties of the modified proteins, in particular transcription factors and epigenetic regulators. An increasing number of studies suggest a central role for the HBP and O‐GlcNAcylation in dictating immune cell function, including the response to different pathogens. We here discuss the most recent insights regarding O‐GlcNAcylation and immunity, and explore whether targeting of O‐GlcNAcylation could hold promise as a therapeutic approach to modulate immune responses to infections.
Collapse
Affiliation(s)
- Marjolein Quik
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Cornelis H Hokke
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
40
|
Tan ZW, Fei G, Paulo JA, Bellaousov S, Martin SES, Duveau DY, Thomas CJ, Gygi SP, Boutz PL, Walker S. O-GlcNAc regulates gene expression by controlling detained intron splicing. Nucleic Acids Res 2020; 48:5656-5669. [PMID: 32329777 PMCID: PMC7261177 DOI: 10.1093/nar/gkaa263] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022] Open
Abstract
Intron detention in precursor RNAs serves to regulate expression of a substantial fraction of genes in eukaryotic genomes. How detained intron (DI) splicing is controlled is poorly understood. Here, we show that a ubiquitous post-translational modification called O-GlcNAc, which is thought to integrate signaling pathways as nutrient conditions fluctuate, controls detained intron splicing. Using specific inhibitors of the enzyme that installs O-GlcNAc (O-GlcNAc transferase, or OGT) and the enzyme that removes O-GlcNAc (O-GlcNAcase, or OGA), we first show that O-GlcNAc regulates splicing of the highly conserved detained introns in OGT and OGA to control mRNA abundance in order to buffer O-GlcNAc changes. We show that OGT and OGA represent two distinct paradigms for how DI splicing can control gene expression. We also show that when DI splicing of the O-GlcNAc-cycling genes fails to restore O-GlcNAc homeostasis, there is a global change in detained intron levels. Strikingly, almost all detained introns are spliced more efficiently when O-GlcNAc levels are low, yet other alternative splicing pathways change minimally. Our results demonstrate that O-GlcNAc controls detained intron splicing to tune system-wide gene expression, providing a means to couple nutrient conditions to the cell's transcriptional regime.
Collapse
Affiliation(s)
- Zhi-Wei Tan
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - George Fei
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sara E S Martin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Damien Y Duveau
- National Institutes of Health Chemical Genomics Center, Rockville, MD 20850, USA
| | - Craig J Thomas
- National Institutes of Health Chemical Genomics Center, Rockville, MD 20850, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Paul L Boutz
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.,Center for Biomedical Informatics, University of Rochester, Rochester, NY 14642, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020; 32:154-175. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Amino acids are fundamental building blocks supporting life. Their role in protein synthesis is well defined, but they contribute to a host of other intracellular metabolic pathways, including ATP generation, nucleotide synthesis, and redox balance, to support cellular and organismal function. Immune cells critically depend on such pathways to acquire energy and biomass and to reprogram their metabolism upon activation to support growth, proliferation, and effector functions. Amino acid metabolism plays a key role in this metabolic rewiring, and it supports various immune cell functions beyond increased protein synthesis. Here, we review the mechanisms by which amino acid metabolism promotes immune cell function, and how these processes could be targeted to improve immunity in pathological conditions.
Collapse
Affiliation(s)
- Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
42
|
Dierschke SK, Toro AL, Miller WP, Sunilkumar S, Dennis MD. Diabetes enhances translation of Cd40 mRNA in murine retinal Müller glia via a 4E-BP1/2-dependent mechanism. J Biol Chem 2020; 295:10831-10841. [PMID: 32475820 DOI: 10.1074/jbc.ra120.013711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Indexed: 11/06/2022] Open
Abstract
Activation of the immune costimulatory molecule cluster of differentiation 40 (CD40) in Müller glia has been implicated in the initiation of diabetes-induced retinal inflammation. Results from previous studies support that CD40 protein expression is elevated in Müller glia of diabetic mice; however, the mechanisms responsible for this increase have not been explored. Here, we evaluated the hypothesis that diabetes augments translation of the Cd40 mRNA. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation and increased Cd40 mRNA translation. TMG administration also promoted Cd40 mRNA association with Müller cell-specific ribosomes isolated from the retina of RiboTag mice. Similar effects on O-GlcNAcylation and Cd40 mRNA translation were also observed in the retina of a mouse model of type 1 diabetes. In cultured cells, TMG promoted sequestration of the cap-binding protein eIF4E (eukaryotic translation in initiation factor 4E) by 4E-BP1 (eIF4E-binding protein 1) and enhanced cap-independent Cd40 mRNA translation as assessed by a bicistronic reporter that contained the 5'-UTR of the Cd40 mRNA. Ablation of 4E-BP1/2 prevented the increase in Cd40 mRNA translation in TMG-exposed cells, and expression of a 4E-BP1 variant that constitutively sequesters eIF4E promoted reporter activity. Extending on the cell culture results, we found that in contrast to WT mice, diabetic 4E-BP1/2-deficient mice did not exhibit enhanced retinal Cd40 mRNA translation and failed to up-regulate expression of the inflammatory marker nitric-oxide synthase 2. These findings support a model wherein diabetes-induced O-GlcNAcylation of 4E-BP1 promotes Cd40 mRNA translation in Müller glia.
Collapse
Affiliation(s)
- Sadie K Dierschke
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - William P Miller
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA .,Department of Ophthalmology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
43
|
Ramirez DH, Aonbangkhen C, Wu HY, Naftaly JA, Tang S, O’Meara TR, Woo CM. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. ACS Chem Biol 2020; 15:1059-1066. [PMID: 32119511 DOI: 10.1021/acschembio.0c00074] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a monosaccharide that plays an essential role in cellular signaling throughout the nucleocytoplasmic proteome of eukaryotic cells. Strategies for selectively increasing O-GlcNAc levels on a target protein in cells would accelerate studies of this essential modification. Here, we report a generalizable strategy for introducing O-GlcNAc into selected target proteins in cells using a nanobody as a proximity-directing agent fused to O-GlcNAc transferase (OGT). Fusion of a nanobody that recognizes GFP (nGFP) or a nanobody that recognizes the four-amino acid sequence EPEA (nEPEA) to OGT yielded nanobody-OGT constructs that selectively delivered O-GlcNAc to a series of tagged target proteins (e.g., JunB, cJun, and Nup62). Truncation of the tetratricopeptide repeat domain as in OGT(4) increased selectivity for the target protein through the nanobody by reducing global elevation of O-GlcNAc levels in the cell. Quantitative chemical proteomics confirmed the increase in O-GlcNAc to the target protein by nanobody-OGT(4). Glycoproteomics revealed that nanobody-OGT(4) or full-length OGT produced a similar glycosite profile on the target protein JunB and Nup62. Finally, we demonstrate the ability to selectively target endogenous α-synuclein for O-GlcNAcylation in HEK293T cells. These first proximity-directed OGT constructs provide a flexible strategy for targeting additional proteins and a template for further engineering of OGT and the O-GlcNAc proteome in the future. The use of a nanobody to redirect OGT substrate selection for glycosylation of desired proteins in cells may further constitute a generalizable strategy for controlling a broader array of post-translational modifications in cells.
Collapse
Affiliation(s)
- Daniel H. Ramirez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Chanat Aonbangkhen
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Jeffrey A. Naftaly
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Stephanie Tang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy R. O’Meara
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
44
|
Abstract
O-Linked N-acetyl glucosamine (O-GlcNAc) is a protein modification found on thousands of nuclear, cytosolic, and mitochondrial proteins. Many O-GlcNAc sites occur in proximity to protein sites that are likewise modified by phosphorylation. While several studies have uncovered crosstalk between these two signaling modifications on individual proteins and pathways, an understanding of the role of O-GlcNAc in regulating kinases, the enzymes that install the phosphate modification, is still emerging. Here we review recent methods to profile the O-GlcNAc modification on a global scale that have revealed more than 100 kinases are modified by O-GlcNAc and highlight existing studies about regulation of these kinases by O-GlcNAc. Continuing efforts to profile the O-GlcNAc proteome and understand the role of O-GlcNAc on kinases will reveal new mechanisms of regulation and potential avenues for manipulation of the signaling mechanisms at the intersection of O-GlcNAc and phosphorylation.
Collapse
Affiliation(s)
- Paul A. Schwein
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
45
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
46
|
ADP-dependent glucokinase regulates energy metabolism via ER-localized glucose sensing. Sci Rep 2019; 9:14248. [PMID: 31582762 PMCID: PMC6776650 DOI: 10.1038/s41598-019-50566-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Modulation of energy metabolism to a highly glycolytic phenotype, i.e. Warburg effect, is a common phenotype of cancer and activated immune cells allowing increased biomass-production for proliferation and cell division. Endoplasmic reticulum (ER)-localized ADP-dependent glucokinase (ADPGK) has been shown to play a critical role in T cell receptor activation-induced remodeling of energy metabolism, however the underlying mechanisms remain unclear. Therefore, we established and characterized in vitro and in vivo models for ADPGK-deficiency using Jurkat T cells and zebrafish. Upon activation, ADPGK knockout Jurkat T cells displayed increased cell death and ER stress. The increase in cell death resulted from a metabolic catastrophe and knockout cells displayed severely disturbed energy metabolism hindering induction of Warburg phenotype. ADPGK knockdown in zebrafish embryos led to short, dorsalized body axis induced by elevated apoptosis. ADPGK hypomorphic zebrafish further displayed dysfunctional glucose metabolism. In both model systems loss of ADPGK function led to defective N- and O-glycosylation. Overall, our data illustrate that ADPGK is part of a glucose sensing system in the ER modulating metabolism via regulation of N- and O-glycosylation.
Collapse
|
47
|
Blocked O-GlcNAc cycling disrupts mouse hematopoeitic stem cell maintenance and early T cell development. Sci Rep 2019; 9:12569. [PMID: 31467334 PMCID: PMC6715813 DOI: 10.1038/s41598-019-48991-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Small numbers of hematopoietic stem cells (HSCs) balance self-renewal and differentiation to produce the diversity and abundance of cell types that make up the blood system. How nutrients are recruited to support this massive differentiation and proliferation process remains largely unknown. The unique metabolism of adult HSCs, which rely on glycolysis and glutaminolysis, suggests a potential role for the post-translational modification O-GlcNAc as a critical nutrient signal in these cells. Glutamine, glucose, and other metabolites drive the hexosamine biosynthetic pathway (HBP) ultimately leading to the O-GlcNAc modification of critical intracellular targets. Here, we used a conditional targeted genetic deletion of the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), to determine the consequences of blocked O-GlcNAc cycling on HSCs. Oga deletion in mouse HSCs resulted in greatly diminished progenitor pools, impaired stem cell self-renewal and nearly complete loss of competitive repopulation capacity. Further, early T cell specification was particularly sensitive to Oga deletion. Loss of Oga resulted in a doubling of apoptotic cells within the bone marrow and transcriptional deregulation of key genes involved in adult stem cell maintenance and lineage specification. These findings suggest that O-GlcNAc cycling plays a critical role in supporting HSC homeostasis and early thymocyte development.
Collapse
|
48
|
Li Y, Xie M, Men L, Du J. O-GlcNAcylation in immunity and inflammation: An intricate system (Review). Int J Mol Med 2019; 44:363-374. [PMID: 31198979 PMCID: PMC6605495 DOI: 10.3892/ijmm.2019.4238] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic, low‑grade inflammation associated with obesity and diabetes result from the infiltration of adipose and vascular tissue by immune cells and contributes to cardiovascular complications. Despite an incomplete understanding of the mechanistic underpinnings of immune cell differentiation and inflammation, O‑GlcNAcylation, the addition of O‑linked N‑acetylglucosamine (O‑GlcNAc) to cytoplasmic, nuclear and mitochondrial proteins by the two cycling enzymes, the O‑linked N‑acetylglucosamine transferase (OGT) and the O‑GlcNAcase (OGA), may contribute to fine‑tune immunity and inflammation in both physiological and pathological conditions. Early studies have indicated that O‑GlcNAcylation of proteins play a pro‑inflammatory role in diabetes and insulin resistance, whereas subsequent studies have demonstrated that this post‑translational modification could also be protective against acute injuries. These studies suggest that diverse types of insults result in dynamic changes to O‑GlcNAcylation patterns, which fluctuate with cellular metabolism to promote or inhibit inflammation. In this review, the current understanding of O‑GlcNAcylation and its adaptive modulation in immune and inflammatory responses is summarized.
Collapse
Affiliation(s)
- Yu Li
- Department of Endocrinology
| | - Mingzheng Xie
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | | | - Jianling Du
- Department of Endocrinology
- Correspondence to: Dr Jianling Du, Department of Endocrinology, The First Affiliated Hospital of Dalian Medical University, 193 Lianhe Road, Dalian, Liaoning 116011, P.R. China, E-mail:
| |
Collapse
|
49
|
Akella NM, Ciraku L, Reginato MJ. Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer. BMC Biol 2019; 17:52. [PMID: 31272438 PMCID: PMC6610925 DOI: 10.1186/s12915-019-0671-3] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Altered metabolism and deregulated cellular energetics are now considered a hallmark of all cancers. Glucose, glutamine, fatty acids, and amino acids are the primary drivers of tumor growth and act as substrates for the hexosamine biosynthetic pathway (HBP). The HBP culminates in the production of an amino sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that, along with other charged nucleotide sugars, serves as the basis for biosynthesis of glycoproteins and other glycoconjugates. These nutrient-driven post-translational modifications are highly altered in cancer and regulate protein functions in various cancer-associated processes. In this review, we discuss recent progress in understanding the mechanistic relationship between the HBP and cancer.
Collapse
Affiliation(s)
- Neha M Akella
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Lorela Ciraku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
50
|
Machacek M, Saunders H, Zhang Z, Tan EP, Li J, Li T, Villar MT, Artigues A, Lydic T, Cork G, Slawson C, Fields PE. Elevated O-GlcNAcylation enhances pro-inflammatory Th17 function by altering the intracellular lipid microenvironment. J Biol Chem 2019; 294:8973-8990. [PMID: 31010828 PMCID: PMC6552434 DOI: 10.1074/jbc.ra119.008373] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/11/2019] [Indexed: 01/09/2023] Open
Abstract
Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.
Collapse
Affiliation(s)
- Miranda Machacek
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | - Harmony Saunders
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | | | | | - Jibiao Li
- Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 and
| | - Tiangang Li
- Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160 and
| | | | | | - Todd Lydic
- the Department of Physiology, Collaborative Mass Spectrometry Core, Michigan State University, East Lansing, Michigan 48824
| | - Gentry Cork
- From the Departments of Pathology and Laboratory Medicine.,Biochemistry and Molecular Biology, and
| | | | | |
Collapse
|