1
|
Eckhardt E, Schinköthe J, Gischke M, Sehl-Ewert J, Corleis B, Dorhoi A, Teifke J, Albrecht D, Geluk A, Gilleron M, Bastian M. Phosphatidylinositolmannoside vaccination induces lipid-specific Th1-responses and partially protects guinea pigs from Mycobacterium tuberculosis challenge. Sci Rep 2023; 13:18613. [PMID: 37903877 PMCID: PMC10616071 DOI: 10.1038/s41598-023-45898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
The concept of donor-unrestricted T cells (DURTs) comprises a heterogeneity of lymphoid cells that respond to an abundance of unconventional epitopes in a non-MHC-restricted manner. Vaccinologists strive to harness this so far underexplored branch of the immune system for new vaccines against tuberculosis. A particular division of DURTs are T cells that recognize their cognate lipid antigen in the context of CD1-molecules. Mycobacteria are characterized by a particular lipid-rich cell wall. Several of these lipids have been shown to be presented to T cells via CD1b-molecules. Guinea pigs functionally express CD1b and are hence an appropriate small animal model to study the role of CD1b-restricted, lipid-specific immune responses. In the current study, guinea pigs were vaccinated with BCG or highly-purified, liposome-formulated phosphatidylinositol-hexa-mannoside (PIM6) to assess the effect of CD1-restricted DURTs on the course of infection after virulent Mycobacterium tuberculosis (Mtb) challenge. Robust PIM6-specific T cell-responses were observed both after BCG- and PIM6-vaccination. The cellular response was significantly reduced in the presence of monoclonal, CD1b-blocking antibodies, indicating that a predominant part of this reactivity was CD1b-restricted. When animals were challenged with Mtb, BCG- and PIM6-vaccinated animals showed significantly reduced pathology, smaller necrotic granulomas in lymph node and spleen and reduced bacterial loads. While BCG conferred an almost sterile protection in this setting, compared to control animals' lesions were reduced roughly by two thirds in PIM6-vaccinated. Comprehensive histological and transcriptional analyses in the draining lymph node revealed that protected animals showed reduced transcription-levels of inflammatory cyto- and chemokines and higher levels of CD1b-expression on professional antigen cells compared to controls. Although BCG as a comparator induced by far stronger effects, our observations in the guinea pig model suggest that CD1b-restricted, PIM6-reactive DURTs contribute to immune-mediated containment of virulent Mtb.
Collapse
Affiliation(s)
- Emmelie Eckhardt
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Marcel Gischke
- Institute of Microbiology, Greifswald University, Greifswald, Germany
| | - Julia Sehl-Ewert
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Björn Corleis
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Jens Teifke
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Greifswald University, Greifswald, Germany
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine Gilleron
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Max Bastian
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany.
| |
Collapse
|
2
|
Zhang Y, Xu JC, Hu ZD, Fan XY. Advances in protein subunit vaccines against tuberculosis. Front Immunol 2023; 14:1238586. [PMID: 37654500 PMCID: PMC10465801 DOI: 10.3389/fimmu.2023.1238586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 09/02/2023] Open
Abstract
Tuberculosis (TB), also known as the "White Plague", is caused by Mycobacterium tuberculosis (Mtb). Before the COVID-19 epidemic, TB had the highest mortality rate of any single infectious disease. Vaccination is considered one of the most effective strategies for controlling TB. Despite the limitations of the Bacille Calmette-Guérin (BCG) vaccine in terms of protection against TB among adults, it is currently the only licensed TB vaccine. Recently, with the evolution of bioinformatics and structural biology techniques to screen and optimize protective antigens of Mtb, the tremendous potential of protein subunit vaccines is being exploited. Multistage subunit vaccines obtained by fusing immunodominant antigens from different stages of TB infection are being used both to prevent and to treat TB. Additionally, the development of novel adjuvants is compensating for weaknesses of immunogenicity, which is conducive to the flourishing of subunit vaccines. With advances in the development of animal models, preclinical vaccine protection assessments are becoming increasingly accurate. This review summarizes progress in the research of protein subunit TB vaccines during the past decades to facilitate the further optimization of protein subunit vaccines that may eradicate TB.
Collapse
Affiliation(s)
- Ying Zhang
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jin-chuan Xu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhi-dong Hu
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| | - Xiao-yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- TB Center, Shanghai Emerging and Re-emerging Infectious Disease Institute, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Khandelia P, Yadav S, Singh P. An overview of the BCG vaccine and its future scope. Indian J Tuberc 2023; 70 Suppl 1:S14-S23. [PMID: 38110255 DOI: 10.1016/j.ijtb.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/15/2023] [Indexed: 12/20/2023]
Abstract
Despite intense elimination efforts, tuberculosis (TB) still poses a threat to world health, disproportionately affecting less developed and poorer countries. The Bacillus Calmette-Guérin (BCG) vaccine, the only anti-TB authorized vaccine can partially stop TB infection and transmission, however, its effectiveness ranges from 0 to 80%. As a result, there is an urgent need for a more potent TB vaccination given the widespread incidence of the disease. Enhancing BCG's effectiveness is also important due to the lack of other licensed vaccinations. Recently, fascinating research into BCG revaccination techniques by modulating its mode of action i.e., intravenous (IV) BCG delivery has yielded good clinical outcomes showing it still has a place in current vaccination regimens. We must thus go over the recent evidence that suggests trained immunity, and BCG vaccination techniques and describe how the vaccination confers protection against bacteria that cause both TB and non-tuberculosis. This review of the literature offers an updated summary and viewpoints on BCG-based TB immunization regimens (how it affects granulocytes at the epigenetic and hematopoietic stem cell levels which may be related to its efficacy), and also examines how the existing vaccine is being modified to be more effective, which may serve as an inspiration for future studies on the development of TB vaccines.
Collapse
Affiliation(s)
- Pallavi Khandelia
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pratichi Singh
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
4
|
Qu M, Zhou X, Li H. BCG vaccination strategies against tuberculosis: updates and perspectives. Hum Vaccin Immunother 2021; 17:5284-5295. [PMID: 34856853 DOI: 10.1080/21645515.2021.2007711] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB). However, BCG has variable efficacy and cannot completely prevent TB infection and transmission. Therefore, the worldwide prevalence of TB calls for urgent development of a more effective TB vaccine. In the absence of other approved vaccines, it is also necessary to improve the efficacy of BCG itself. Intravenous (IV) BCG administration and BCG revaccination strategies have recently shown promising results for clinical usage. Therefore, it is necessary for us to revisit the BCG vaccination strategies and summarize the current research updates related to BCG vaccination. This literature review provides an updated overview and perspectives of the immunization strategies against TB using BCG, which may inspire the following research on TB vaccine development.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Animal models for human group 1 CD1 protein function. Mol Immunol 2020; 130:159-163. [PMID: 33384157 DOI: 10.1016/j.molimm.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022]
Abstract
The CD1 antigen presenting system is evolutionary conserved and found in mammals, birds and reptiles. Humans express five isoforms, of which CD1a, CD1b and CD1c represent the group 1 CD1-molecules. They are recognized by T cells that express diverse αβ-T cell receptors. Investigation of the role of group 1 CD1 function has been hampered by the fact that CD1a, CD1b and CD1c are not expressed by mice. However, other animals, such as guinea pigs or cattle, serve as alternative models and have established basic aspects of CD1-dependent, antimicrobial immune functions. Group 1 CD1 transgenic mouse models became available about ten years ago. In a series of seminal studies these mouse models coined the mechanistical understanding of the role of the corresponding CD1 restricted T cell responses. This review gives a short overview of available animal studies and the lessons that have been and still can be learned.
Collapse
|
6
|
Benedictus L, Steinbach S, Holder T, Bakker D, Vrettou C, Morrison WI, Vordermeier M, Connelley T. Hydrophobic Mycobacterial Antigens Elicit Polyfunctional T Cells in Mycobacterium bovis Immunized Cattle: Association With Protection Against Challenge? Front Immunol 2020; 11:588180. [PMID: 33281817 PMCID: PMC7688591 DOI: 10.3389/fimmu.2020.588180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic disease of cattle with a detrimental impact on food quality and production. Research on bTB vaccines has predominantly been focused on proteinaceous antigens. However, mycobacteria have a thick and intricate lipid outer layer and lipids as well as lipopeptides are important for immune-evasion and virulence. In humans, lipid extracts of M. tuberculosis have been shown to elicit immune responses effective against M. tuberculosis in vitro. Chloroform-methanol extraction (CME) was applied to M. bovis BCG to obtain a hydrophobic antigen extract (CMEbcg) containing lipids and lipopeptides. CMEbcg stimulated IFN-γ+IL-2+ and IL-17A+IL-22+ polyfunctional T cells and elicited T cell responses with a Th1 and Th17 cytokine release profile in both M. bovis BCG vaccinated and M. bovis challenged calves. Lipopeptides were shown to be the immunodominant antigens in CMEbcg, stimulating CD4 T cells via MHC class II. CMEbcg expanded T cells killed CMEbcg loaded monocytes and the CMEbcg-specific CD3 T cell proliferative response following M. bovis BCG vaccination was the best predictor for reduced pathology following challenge with M. bovis. Although the high predictive value of CMEbcg-specific immune responses does not confirm a causal relationship with protection against M. bovis challenge, when taking into account the in vitro antimycobacterial phenotype of CMEbcg-specific T cells (e.g. Th1/Th17 cytokine profile), it is indicative that CMEbcg-specific immune responses could play a functional role in immunity against M. bovis. Based on these findings we conclude that lipopeptides of M. bovis are potential novel subunit vaccine candidates and that further studies into the functional characterization of lipopeptide-specific immune responses together with their role in protection against bovine tuberculosis are warranted.
Collapse
Affiliation(s)
- Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Sabine Steinbach
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Thomas Holder
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Douwe Bakker
- Independent Researcher and Technical Consultant, Lelystad, Netherlands
| | - Christina Vrettou
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - W Ivan Morrison
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| | - Martin Vordermeier
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom.,Centre for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, University of Aberystwyth, Aberystwyth, United Kingdom
| | - Timothy Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom
| |
Collapse
|
7
|
Bucsan AN, Mehra S, Khader SA, Kaushal D. The current state of animal models and genomic approaches towards identifying and validating molecular determinants of Mycobacterium tuberculosis infection and tuberculosis disease. Pathog Dis 2020; 77:5543892. [PMID: 31381766 PMCID: PMC6687098 DOI: 10.1093/femspd/ftz037] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Animal models are important in understanding both the pathogenesis of and immunity to tuberculosis (TB). Unfortunately, we are beginning to understand that no animal model perfectly recapitulates the human TB syndrome, which encompasses numerous different stages. Furthermore, Mycobacterium tuberculosis infection is a very heterogeneous event at both the levels of pathogenesis and immunity. This review seeks to establish the current understanding of TB pathogenesis and immunity, as validated in the animal models of TB in active use today. We especially focus on the use of modern genomic approaches in these models to determine the mechanism and the role of specific molecular pathways. Animal models have significantly enhanced our understanding of TB. Incorporation of contemporary technologies such as single cell transcriptomics, high-parameter flow cytometric immune profiling, proteomics, proteomic flow cytometry and immunocytometry into the animal models in use will further enhance our understanding of TB and facilitate the development of treatment and vaccination strategies.
Collapse
Affiliation(s)
- Allison N Bucsan
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Deepak Kaushal
- Tulane Center for Tuberculosis Research, Covington, LA, USA.,Tulane National Primate Research Center, Covington, LA, USA.,Southwest National Primate Research Center, San Antonio, TX, USA.,Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
8
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Ji N, Mukherjee N, Morales EE, Tomasini ME, Hurez V, Curiel TJ, Abate G, Hoft DF, Zhao XR, Gelfond J, Maiti S, Cooper LJ, Svatek RS. Percutaneous BCG enhances innate effector antitumor cytotoxicity during treatment of bladder cancer: a translational clinical trial. Oncoimmunology 2019; 8:1614857. [PMID: 31413921 PMCID: PMC6682354 DOI: 10.1080/2162402x.2019.1614857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 01/14/2023] Open
Abstract
Background: Intravesical bacillus Calmette-Guérin (BCG) is the gold standard immunologic agent for treating patients with high-grade non-muscle invasive bladder cancer (NMIBC). Nevertheless, relapse rates remain high and BCG unresponsive NMIBC often requires bladder removal. Preclinical data suggest that priming with percutaneous BCG vaccine could improve response to intravesical BCG. Methods: A single-arm trial (NCT02326168) was performed to study the safety, immunogenicity, and preliminary efficacy of priming. Percutaneous BCG was given 21 days prior to intravesical BCG instillation in patients (n = 13) with high-risk NMIBC. Immune responses were monitored and compared to a sequentially enrolled cohort of nine control patients receiving only intravesical BCG. The effect of BCG on natural killer (NK) and γδ T cell in vitro cytotoxicity was tested. γδ T cell subsets were determined by T cell receptor gene expression with NanoString. Results: Priming was well tolerated and caused no grade ≥3 adverse events. The 3-month disease-free rate for prime patients was 85% (target goal ≥ 75%). Priming boosted BCG-specific immunity at 3 months and increased the activation status of in vitro expanded circulating NK and γδ T cells and their cytotoxicity against bladder cancer cells through receptor NKG2D. BCG enhanced the cytotoxicity of NK and γδ T cells against K562, RT4, and UM-UC6 but not against T24, UM-UC-3, or UM-UC-14 cells. Infiltrating γδ T cell subsets identified in the bladder includes γ9δ2 and γ8δ2. Conclusions: BCG priming is safe and tolerable. Poor sensitivity to NK and γδ T cell cytotoxicity by some bladder tumors represents a potential BCG-resistance mechanism.
Collapse
Affiliation(s)
- Niannian Ji
- Department of Urology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Neelam Mukherjee
- Department of Urology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Edwin E. Morales
- Department of Urology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Maggie E. Tomasini
- Department of Urology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Vincent Hurez
- Department of Medicine/Hematology & Medical Oncology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Tyler J. Curiel
- Department of Medicine/Hematology & Medical Oncology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Getahun Abate
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University Edward A. Doisy Research Center, .St. Louis, MO, USA
| | - Dan F. Hoft
- Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University Edward A. Doisy Research Center, .St. Louis, MO, USA
| | - Xiang-Ru Zhao
- Department of Medicine/Hematology & Medical Oncology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Jon Gelfond
- Department of Epidemiology and Biostatistics, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | | | | | - Robert S. Svatek
- Department of Urology, School of Medicine, the University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
10
|
Xu Z, Xia A, Li X, Zhu Z, Shen Y, Jin S, Lan T, Xie Y, Wu H, Meng C, Sun L, Yin Y, Chen X, Jiao X. Rapid loss of early antigen-presenting activity of lymph node dendritic cells against Ag85A protein following Mycobacterium bovis BCG infection. BMC Immunol 2018; 19:19. [PMID: 29940854 PMCID: PMC6019797 DOI: 10.1186/s12865-018-0258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Control of Mycobacterium tuberculosis (Mtb) infection requires CD4+ T-cell responses and major histocompatibility complex class II (MHC II) presentation of Mtb antigens (Ags). Dendritic cells (DCs) are the most potent of the Ag-presenting cells and are central to the initiation of T-cell immune responses. Much research has indicated that DCs play an important role in anti-mycobacterial immune responses at early infection time points, but the kinetics of Ag presentation by these cells during these events are incompletely understood. Results In the present study, we evaluated in vivo dynamics of early Ag presentation by murine lymph-node (LN) DCs in response to Mycobacterium bovis bacillus Calmette–Guérin (BCG) Ag85A protein. Results showed that the early Ag-presenting activity of murine DCs induced by M. bovis BCG Ag85A protein in vivo was transient, appearing at 4 h and being barely detectable at 72 h. The transcription levels of CIITA, MHC II and the expression of MHC II molecule on the cell surface increased following BCG infection. Moreover, BCG was found to survive within the inguinal LN DC pool, representing a continuing source of mycobacterial Ag85A protein, with which LN DCs formed Ag85A peptide-MHCII complexes in vivo. Conclusions Our results demonstrate that a decrease in Ag85A peptide production as a result of the inhibition of Ag processing to is largely responsible for the short duration of Ag presentation by LN DCs during BCG infection in vivo.
Collapse
Affiliation(s)
- Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Aihong Xia
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xin Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Zhaocheng Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Yechi Shen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Shanshan Jin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Tian Lan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Yuqing Xie
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Yuelan Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
11
|
Geadas C, Stoszek SK, Sherman D, Andrade BB, Srinivasan S, Hamilton CD, Ellner J. Advances in basic and translational tuberculosis research. Tuberculosis (Edinb) 2017; 102:55-67. [DOI: 10.1016/j.tube.2016.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
|
12
|
Su H, Zhu S, Zhu L, Huang W, Wang H, Zhang Z, Xu Y. Recombinant Lipoprotein Rv1016c Derived from Mycobacterium tuberculosis Is a TLR-2 Ligand that Induces Macrophages Apoptosis and Inhibits MHC II Antigen Processing. Front Cell Infect Microbiol 2016; 6:147. [PMID: 27917375 PMCID: PMC5114242 DOI: 10.3389/fcimb.2016.00147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
TLR2-dependent cellular signaling in Mycobacterium tuberculosis-infected macrophages causes apoptosis and inhibits class II major histocompatibility complex (MHC-II) molecules antigen processing, leading to evasion of surveillance. Mycobacterium tuberculosis (MTB) lipoproteins are an important class of Toll-like receptor (TLR) ligand, and identified as specific components that mediate these effects. In this study, we identified and characterized MTB lipoprotein Rv1016c (lpqT) as a cell wall associated-protein that was exposed on the cell surface and enhanced the survival of recombinants M. smegmatis_Rv1016c under stress conditions. We found that Rv1016c lipoprotein was a novel TLR2 ligand and able to induce macrophage apoptosis in a both dose- and time-dependent manner. Additionally, apoptosis induced by Rv1016c was reserved in THP-1 cells blocked with anti-TLR-2 Abs or in TLR2−/− mouse macrophages, indicating that Rv1016c-induced apoptosis is dependent on TLR2. Moreover, we demonstrated that Rv1016c lipoprotein inhibited IFN-γ-induced MHC-II expression and processing of soluble antigens in a TLR2 dependent manner. Class II transactivator (CIITA) regulates MHC II expression. In this context, Rv1016c lipoprotein diminished IFN-γ-induced expression of CIITA IV through TLR2 and MAPK Signaling. TLR2-dependent apoptosis and inhibition of MHC-II Ag processing induced by Rv1016c during mycobacteria infection may promote the release of residual bacilli from apoptotic cells and decrease recognition by CD4+ T cells. These mechanisms may allow intracellular MTB to evade immune surveillance and maintain chronic infection.
Collapse
Affiliation(s)
- Haibo Su
- CAS Key Laboratory of Regenerative Biology, Joint of School of Life Science, Guangzhou Medical UniversityGuangzhou, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China; State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan UniversityShanghai, China; Department of Clinical Laboratory, Second People's Hospital of Guangdong ProvinceGuangzhou, China
| | - Shenglin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| | - Lin Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| | - Wei Huang
- CAS Key Laboratory of Regenerative Biology, Joint of School of Life Science, Guangzhou Medical UniversityGuangzhou, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhou, China
| | - Honghai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| | - Zhi Zhang
- Department of Clinical Laboratory, Second People's Hospital of Guangdong Province Guangzhou, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University Shanghai, China
| |
Collapse
|
13
|
Becker K, Sander P. Mycobacterium tuberculosis lipoproteins in virulence and immunity - fighting with a double-edged sword. FEBS Lett 2016; 590:3800-3819. [PMID: 27350117 DOI: 10.1002/1873-3468.12273] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/06/2016] [Accepted: 06/26/2016] [Indexed: 02/06/2023]
Abstract
Bacterial lipoproteins are secreted membrane-anchored proteins characterized by a lipobox motif. This lipobox motif directs post-translational modifications at the conserved cysteine through the consecutive action of three enzymes: Lgt, LspA and Lnt, which results in di- or triacylated forms. Lipoproteins are abundant in all bacteria including Mycobacterium tuberculosis and often involved in virulence and immunoregulatory processes. On the one hand, disruption of the biosynthesis pathway of lipoproteins leads to attenuation of M. tuberculosis in vivo, and mycobacteria deficient for certain lipoproteins have been assessed as attenuated live vaccine candidates. On the other hand, several mycobacterial lipoproteins form immunodominant antigens which promote an immune response. Some of these have been explored in DNA or subunit vaccination approaches against tuberculosis. The immune recognition of specific lipoproteins, however, might also benefit long-term survival of M. tuberculosis through immune modulation, while others induce protective responses. Exploiting lipoproteins as vaccines is thus a complex matter which requires deliberative investigation. The dual role of lipoproteins in the immunity to and pathogenicity of mycobacteria is discussed here.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Switzerland
| |
Collapse
|