1
|
Wedemeyer SA, Jones NE, Raza IGA, Green FM, Xiao Y, Semwal MK, Garza AK, Archuleta KS, Wimberly KL, Venables T, Holländer GA, Griffith AV. Paracrine FGF21 dynamically modulates mTOR signaling to regulate thymus function across the lifespan. NATURE AGING 2025; 5:588-606. [PMID: 39972173 PMCID: PMC12003089 DOI: 10.1038/s43587-024-00801-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Consequences of age-associated thymic atrophy include declining T-cell responsiveness to pathogens and vaccines and diminished T-cell self-tolerance. Cortical thymic epithelial cells (cTECs) are primary targets of thymic aging, and recent studies suggested that their maintenance requires mTOR signaling downstream of medullary TEC (mTEC)-derived growth factors. Here, to test this hypothesis, we generated a knock-in mouse model in which FGF21 and mCherry are expressed by most mTECs. We find that mTEC-derived FGF21 promotes temporally distinct patterns of mTORC1 and mTORC2 signaling in cTECs, promotes thymus and individual cTEC growth and maintenance, increases T-cell responsiveness to viral infection, and diminishes indicators of peripheral autoimmunity in older mice. The effects of FGF21 overexpression on thymus size and mTOR signaling were abrogated by treatment with the mTOR inhibitor rapamycin. These results reveal a mechanism by which paracrine FGF21 signaling regulates thymus size and function throughout the lifespan, as well as potential therapeutic targets for improving T-cell function and tolerance in aging.
Collapse
Affiliation(s)
- Sarah A Wedemeyer
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas E Jones
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Iwan G A Raza
- Medical Sciences Division, University of Oxford, Oxford, UK
| | - Freedom M Green
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yangming Xiao
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Manpreet K Semwal
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA
- Department of Math and Science, Our Lady of the Lake University, San Antonio, TX, USA
| | - Aaron K Garza
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kahealani S Archuleta
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Kymberly L Wimberly
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Thomas Venables
- Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, USA
| | - Georg A Holländer
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital, Basel, Switzerland
- Developmental Immunology, Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
| | - Ann V Griffith
- Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA.
- Sam and Ann Barshop Institute for Aging and Longevity Studies, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Zhang M, Lin X, Yang Z, Li X, Zhou Z, Love PE, Huang J, Zhao B. Metabolic regulation of T cell development. Front Immunol 2022; 13:946119. [PMID: 35958585 PMCID: PMC9357944 DOI: 10.3389/fimmu.2022.946119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
T cell development in the thymus is tightly controlled by complex regulatory mechanisms at multiple checkpoints. Currently, many studies have focused on the transcriptional and posttranslational control of the intrathymic journey of T-cell precursors. However, over the last few years, compelling evidence has highlighted cell metabolism as a critical regulator in this process. Different thymocyte subsets are directed by distinct metabolic pathways and signaling networks to match the specific functional requirements of the stage. Here, we epitomize these metabolic alterations during the development of a T cell and review several recent works that provide insights into equilibrating metabolic quiescence and activation programs. Ultimately, understanding the interplay between cellular metabolism and T cell developmental programs may offer an opportunity to selectively regulate T cell subset functions and to provide potential novel therapeutic approaches to modulate autoimmunity.
Collapse
Affiliation(s)
- Mengdi Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxi Lin
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhou Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;;
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Bin Zhao, ; ; Jiaqi Huang, ;;
| |
Collapse
|
3
|
Wang HX, Zhang Q, Zhang J, Luan R, Liang Z, Tan L, Xu Y, Zhang P, Zheng L, Zhao Y, Qiu YR. CD74 regulates cellularity and maturation of medullary thymic epithelial cells partially by activating the canonical NF-κB signaling pathway. FASEB J 2021; 35:e21535. [PMID: 33817835 DOI: 10.1096/fj.202100139r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/11/2022]
Abstract
Thymic epithelial cells (TECs) are indispensable for T cell development, T cell receptor (TCR) repertoire selection, and specific lineage differentiation. Medullary thymic epithelial cells (mTECs), which account for the majority of TECs in adults, are critical for thymocyte selection and self-tolerance. CD74 is a nonpolymorphic transmembrane glycoprotein of major histocompatibility complex class II (MHCII) that is expressed in TECs. However, the exact role of CD74 in regulating the development of mTEC is poorly defined. In this research, we found that loss of CD74 resulted in a significant diminution in the medulla, a selective reduction in the cell number of mature mTECs expressing CD80 molecules, which eventually led to impaired thymic CD4+ T cell development. Moreover, RNA-sequence analysis showed that CD74 deficiency obviously downregulated the canonical nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in mTECs. Our results suggest that CD74 positively controls mTEC cellularity and maturation partially by activating the canonical NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiayu Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Rong Luan
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanan Xu
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhao
- Transplantation Biology Research Division, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Liang Z, Zhang Q, Dong X, Zhang Z, Wang H, Zhang J, Zhao Y. mTORC2 negatively controls the maturation process of medullary thymic epithelial cells by inhibiting the LTβR/RANK-NF-κB axis. J Cell Physiol 2021; 236:4725-4737. [PMID: 33269476 DOI: 10.1002/jcp.30192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/06/2020] [Accepted: 11/20/2020] [Indexed: 01/01/2023]
Abstract
The differentiation of mature medullary thymic epithelial cells (mTECs) is critical for the induction of central immune tolerance. Although the critical effect of mechanistic target of rapamycin complex 1 (mTORC1) in shaping mTEC differentiation has been studied, the regulatory role of mTORC2 in the differentiation and maturation of mTECs is poorly understood. We herein reported that TEC-specific ablation of a rapamycin-insensitive companion of mTOR (RICTOR), a key component of mTORC2, significantly decreased the thymus size and weight, the total cell number of TECs, and the cell number of mTECs with a smaller degree of reduced cortical thymic epithelial cells. Interestingly, RICTOR deficiency significantly accelerated the mTEC maturation process, as indicated by the increased ratios of mature mTECs (MHCIIhi , CD80+ , and Aire+ ) to immature mTECs (MHCIIlo , CD80- , and Aire- ) in Rictor-deficient mice. The RNA-sequencing assays showed that the upregulated nuclear factor-κB (NF-κB) signaling pathway in Rictor-deficient mTECs was one of the obviously altered pathways compared with wild-type mTECs. Our studies further showed that Rictor-deficient mTECs exhibited upregulated expression of receptor activator of NF-κB (RANK) and lymphotoxin β receptor (LTβR), as well as increased activity of canonical and noncanonical NF-κB signaling pathways as determined by ImageStream and Simple Western. Finally, our results showed that inhibition of NF-κB signaling pathways could partially reverse the accelerated maturation of mTECs in Rictor conditional KO mice. Thus, mTORC2 negatively controls the kinetics of the mTEC maturation process by inhibiting the LTβR/RANK-NF-κB signal axis.
Collapse
Affiliation(s)
- Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Dong
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqi Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongxia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiayu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Semwal MK, Jones NE, Griffith AV. Metabolic Regulation of Thymic Epithelial Cell Function. Front Immunol 2021; 12:636072. [PMID: 33746975 PMCID: PMC7968369 DOI: 10.3389/fimmu.2021.636072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
The thymus is the primary site of T lymphocyte development, where mutually inductive signaling between lymphoid progenitors and thymic stromal cells directs the progenitors along a well-characterized program of differentiation. Although thymic stromal cells, including thymic epithelial cells (TECs) are critical for the development of T cell-mediated immunity, many aspects of their basic biology have been difficult to resolve because they represent a small fraction of thymus cellularity, and because their isolation requires enzymatic digestion that induces broad physiological changes. These obstacles are especially relevant to the study of metabolic regulation of cell function, since isolation procedures necessarily disrupt metabolic homeostasis. In contrast to the well-characterized relationships between metabolism and intracellular signaling in T cell function during an immune response, metabolic regulation of thymic stromal cell function represents an emerging area of study. Here, we review recent advances in three distinct, but interconnected areas: regulation of mTOR signaling, reactive oxygen species (ROS), and autophagy, with respect to their roles in the establishment and maintenance of the thymic stromal microenvironment.
Collapse
Affiliation(s)
- Manpreet K Semwal
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | - Nicholas E Jones
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| | - Ann V Griffith
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Joe R. and Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
6
|
Tao H, Li L, Liao NS, Schluns KS, Luckhart S, Sleasman JW, Zhong XP. Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Front Immunol 2021; 12:623280. [PMID: 33732245 PMCID: PMC7957058 DOI: 10.3389/fimmu.2021.623280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/10/2021] [Indexed: 12/20/2022] Open
Abstract
Expression of tissue-restricted antigens (TRAs) in thymic epithelial cells (TECs) ensures negative selection of highly self-reactive T cells to establish central tolerance. Whether some of these TRAs could exert their canonical biological functions to shape thymic environment to regulate T cell development is unclear. Analyses of publicly available databases have revealed expression of transcripts at various levels of many cytokines and cytokine receptors such as IL-15, IL-15Rα, IL-13, and IL-23a in both human and mouse TECs. Ablation of either IL-15 or IL-15Rα in TECs selectively impairs type 1 innate like T cell, such as iNKT1 and γδT1 cell, development in the thymus, indicating that TECs not only serve as an important source of IL-15 but also trans-present IL-15 to ensure type 1 innate like T cell development. Because type 1 innate like T cells are proinflammatory, our data suggest the possibility that TEC may intrinsically control thymic inflammatory innate like T cells to influence thymic environment.
Collapse
Affiliation(s)
- Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kimberly S Schluns
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - John W Sleasman
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC, United States.,Department of Immunology, Duke University Medical Center, Durham, NC, United States.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
7
|
Wang HX, Pan W, Zheng L, Zhong XP, Tan L, Liang Z, He J, Feng P, Zhao Y, Qiu YR. Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell Development. Front Immunol 2020; 10:3099. [PMID: 32082299 PMCID: PMC7005006 DOI: 10.3389/fimmu.2019.03099] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The thymus is the primary lymphoid organ responsible for the generation and maturation of T cells. Thymic epithelial cells (TECs) account for the majority of thymic stromal components. They are further divided into cortical and medullary TECs based on their localization within the thymus and are involved in positive and negative selection, respectively. Establishment of self-tolerance in the thymus depends on promiscuous gene expression (pGE) of tissue-restricted antigens (TRAs) by TECs. Such pGE is co-controlled by the autoimmune regulator (Aire) and forebrain embryonic zinc fingerlike protein 2 (Fezf2). Over the past two decades, research has found that TECs contribute greatly to thymopoiesis and T cell development. In turn, signals from T cells regulate the differentiation and maturation of TECs. Several signaling pathways essential for the development and maturation of TECs have been discovered. New technology and animal models have provided important observations on TEC differentiation, development, and thymopoiesis. In this review, we will discuss recent advances in classification, development, and maintenance of TECs and mechanisms that control TEC functions during thymic involution and central tolerance.
Collapse
Affiliation(s)
- Hong-Xia Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenrong Pan
- Department of General Surgery, Taihe Branch of Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Liang Tan
- Department of Urological Organ Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing He
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pingfeng Feng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Luan R, Liang Z, Zhang Q, Sun L, Zhao Y. Molecular regulatory networks of thymic epithelial cell differentiation. Differentiation 2019; 107:42-49. [PMID: 31238242 DOI: 10.1016/j.diff.2019.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 01/15/2023]
Abstract
Functional mature T cells are generated in the thymus. Thymic epithelial cells (TECs) provide the essential microenvironment for T cell development and maturation. According to their function and localization, TECs are roughly divided into cortical TECs (cTECs) and medullary TECs (mTECs), which are responsible for positive and negative selection, respectively. This review summarizes the current understanding of TEC biology, the identification of fetal and adult bipotent TEC progenitors, and the signaling pathways that control the development and maturation of TECs. The understanding of the ontogeny, differentiation, maturation and function of cTECs lags behind that of mTECs. Better understanding TEC biology will provide clues about TEC development and the applications of thymus engineering.
Collapse
Affiliation(s)
- Rong Luan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhanfeng Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Sun
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Malik N, Sansom OJ, Michie AM. The role of mTOR-mediated signals during haemopoiesis and lineage commitment. Biochem Soc Trans 2018; 46:1313-1324. [PMID: 30154096 PMCID: PMC6195642 DOI: 10.1042/bst20180141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase mechanistic target of rapamycin (mTOR) has been implicated in the regulation of an array of cellular functions including protein and lipid synthesis, proliferation, cell size and survival. Here, we describe the role of mTOR during haemopoiesis within the context of mTORC1 and mTORC2, the distinct complexes in which it functions. The use of conditional transgenic mouse models specifically targeting individual mTOR signalling components, together with selective inhibitors, have generated a significant body of research emphasising the critical roles played by mTOR, and individual mTOR complexes, in haemopoietic lineage commitment and development. This review will describe the profound role of mTOR in embryogenesis and haemopoiesis, underscoring the importance of mTORC1 at the early stages of haemopoietic cell development, through modulation of stem cell potentiation and self-renewal, and erythroid and B cell lineage commitment. Furthermore, the relatively discrete role of mTORC2 in haemopoiesis will be explored during T cell development and B cell maturation. Collectively, this review aims to highlight the functional diversity of mTOR signalling and underline the importance of this pathway in haemopoiesis.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, U.K
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K.
| |
Collapse
|
10
|
Liang Z, Zhang L, Su H, Luan R, Na N, Sun L, Zhao Y, Zhang X, Zhang Q, Li J, Zhang L, Zhao Y. MTOR signaling is essential for the development of thymic epithelial cells and the induction of central immune tolerance. Autophagy 2018; 14:505-517. [PMID: 29099279 DOI: 10.1080/15548627.2017.1376161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thymic epithelial cells (TECs) are critical for the establishment and maintenance of appropriate microenvironment for the positive and negative selection of thymocytes and the induction of central immune tolerance. Yet, little about the molecular regulatory network on TEC development and function is understood. Here, we demonstrate that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) is essential for proper development and functional maturation of TECs. Pharmacological inhibition of MTOR activity by rapamycin (RPM) causes severe thymic atrophy and reduction of TECs. TEC-specific deletion of Mtor causes the severe reduction of mTECs, the blockage of thymocyte differentiation and output, the reduced generation of thymic regulatory T (Treg) cells and the impaired expression of tissue-restricted antigens (TRAs) including Fabp2, Ins1, Tff3 and Chrna1 molecules. Importantly, specific deletion of Mtor in TECs causes autoimmune diseases characterized by enhanced tissue immune cell infiltration and the presence of autoreactive antibodies. Mechanistically, Mtor deletion causes overdegradation of CTNNB1/Beta-Catenin due to excessive autophagy and the attenuation of WNT (wingless-type MMTV integration site family) signaling in TECs. Selective inhibition of autophagy significantly rescued the poor mTEC development caused by Mtor deficiency. Altogether, MTOR is essential for TEC development and maturation by regulating proliferation and WNT signaling activity through autophagy. The present study also implies that long-term usage of RPM might increase the risk of autoimmunity by impairing TEC maturation and function.
Collapse
Affiliation(s)
- Zhanfeng Liang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Lianjun Zhang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Huiting Su
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Rong Luan
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Ning Na
- c Department of Kidney Transplantation , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , Guangdong , China
| | - Lina Sun
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China
| | - Yang Zhao
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Xiaodong Zhang
- d Department of Urology , Beijing Chaoyang Hospital, Capital Medical University , Chaoyang District, Beijing , China
| | - Qian Zhang
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Juan Li
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| | - Lianfeng Zhang
- e Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
| | - Yong Zhao
- a State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences , Beijing , China.,b College of Life Sciences, University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
11
|
Abstract
Intrathymic T cell development is a complex process that depends upon continuous guidance from thymus stromal cell microenvironments. The thymic epithelium within the thymic stroma comprises highly specialized cells with a high degree of anatomic, phenotypic, and functional heterogeneity. These properties are collectively required to bias thymocyte development toward production of self-tolerant and functionally competent T cells. The importance of thymic epithelial cells (TECs) is evidenced by clear links between their dysfunction and multiple diseases where autoimmunity and immunodeficiency are major components. Consequently, TECs are an attractive target for cell therapies to restore effective immune system function. The pathways and molecular regulators that control TEC development are becoming clearer, as are their influences on particular stages of T cell development. Here, we review both historical and the most recent advances in our understanding of the cellular and molecular mechanisms controlling TEC development, function, dysfunction, and regeneration.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom;
| |
Collapse
|
12
|
Lin X, Yang J, Wang J, Huang H, Wang HX, Chen P, Wang S, Pan Y, Qiu YR, Taylor GA, Vallance BA, Gao J, Zhong XP. mTOR is critical for intestinal T-cell homeostasis and resistance to Citrobacter rodentium. Sci Rep 2016; 6:34939. [PMID: 27731345 PMCID: PMC5059740 DOI: 10.1038/srep34939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022] Open
Abstract
T-cells play an important role in promoting mucosal immunity against pathogens, but the mechanistic basis for their homeostasis in the intestine is still poorly understood. We report here that T-cell-specific deletion of mTOR results in dramatically decreased CD4 and CD8 T-cell numbers in the lamina propria of both small and large intestines under both steady-state and inflammatory conditions. These defects result in defective host resistance against a murine enteropathogen, Citrobacter rodentium, leading to the death of the animals. We further demonstrated that mTOR deficiency reduces the generation of gut-homing effector T-cells in both mesenteric lymph nodes and Peyer’s patches without obviously affecting expression of gut-homing molecules on those effector T-cells. Using mice with T-cell-specific ablation of Raptor/mTORC1 or Rictor/mTORC2, we revealed that both mTORC1 and, to a lesser extent, mTORC2 contribute to both CD4 and CD8 T-cell accumulation in the gastrointestinal (GI) tract. Additionally, mTORC1 but not mTORC2 plays an important role regulating the proliferative renewal of both CD4 and CD8 T-cells in the intestines. Our data thus reveal that mTOR is crucial for T-cell accumulation in the GI tract and for establishing local adaptive immunity against pathogens.
Collapse
Affiliation(s)
- Xingguang Lin
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jialong Yang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jinli Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongxiang Huang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hong-Xia Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pengcheng Chen
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shang Wang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yun Pan
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yu-Rong Qiu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Gregory A Taylor
- Geriatric Research, Education, and Clinical Center, VA Medical Center, Durham, NC 27705, USA.,Department of Medicine, Division of Geriatrics, and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC 27710, USA.,Department of Molecular Genetics and Microbiology Duke University Medical Center, Durham NC 27710, USA
| | - Bruce A Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute and the University of British Columbia, Vancouver, British Columbia V6H 3V4, Canada
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Immunology, Medical Center, Durham, NC 27710, USA.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
13
|
Yang J, Lin X, Pan Y, Wang J, Chen P, Huang H, Xue HH, Gao J, Zhong XP. Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. eLife 2016; 5. [PMID: 27690224 PMCID: PMC5063587 DOI: 10.7554/elife.17936] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells play critical roles for germinal center responses and effective humoral immunity. We report here that mTOR in CD4 T cells is essential for Tfh differentiation. In Mtorf/f-Cd4Cre mice, both constitutive and inducible Tfh differentiation is severely impaired, leading to defective germinal center B cell formation and antibody production. Moreover, both mTORC1 and mTORC2 contribute to Tfh and GC B cell development but may do so via distinct mechanisms. mTORC1 mainly promotes CD4 T cell proliferation to reach the cell divisions necessary for Tfh differentiation, while Rictor/mTORC2 regulates Tfh differentiation by promoting Akt activation and TCF1 expression without grossly influencing T cell proliferation. Together, our results reveal crucial but distinct roles for mTORC1 and mTORC2 in CD4 T cells during Tfh differentiation and germinal center responses. DOI:http://dx.doi.org/10.7554/eLife.17936.001
Collapse
Affiliation(s)
- Jialong Yang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Xingguang Lin
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Yun Pan
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Jinli Wang
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Pengcheng Chen
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongxiang Huang
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa, United States
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Ping Zhong
- Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, United States.,Department of Immunology, Duke University Medical Center, Durham, United States.,Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical Center, Durham, United States
| |
Collapse
|