1
|
Mahmoudzadeh L, Abtahi Froushani SM, Hobbenaghi R, Mahmoudian A, Mohammadi V. Benefits of conditioned medium of nicotine-pulsed mesenchymal stem cells in experimental autoimmune hepatitis. Tissue Cell 2024; 88:102359. [PMID: 38521008 DOI: 10.1016/j.tice.2024.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Previous data indicated that nicotine could modulate the immune regulatory potential of mesenchymal stem cells (MSCs). Currently, we intend to assess the effects of a conditioned medium of nicotine-pulsed mesenchymal stem cells in the experimental model of autoimmune hepatitis (AIH). Bone marrow-derived MSCs pulsed with 0,.1,.5, or 1 μM nicotine until the cells reached 90% confluency. Correspondent to in vitro results, the least effective concentration of nicotine that led to an anti-inflammatory environment by the MSC-conditioned medium was 0.5 μM. The murine model of AIH induced by Intravenous injection Concanavalin A (ConA). Mice were allocated to pretreatment (Concomitant treatment with ConA administration) or treatment groups and received un-pulsed MSC-conditioned medium (CM) or conditioned medium of nicotine (0.5 µM)-pulsed MSCs (CMN). The levels of ALT, AST, MPO, TNF-α, IFN-γ, and IL-6 were the highest in the ConA group than in the other groups. Pretreatment or treatment with the CMN caused a significant reduction in hepatic enzymes and inflammatory cytokines compared to pretreatment or treatment with CM. Both CM or CMN significantly decreased the numbers of activated TCD4+ and TCD8+ in the blood. More importantly, pre-treatment or treatment with CMN caused a better improvement in the histopathological appearance than pre-treatment or treatment with CM. The results of this study show that CMN rapidly controls the AIH mouse model, and therefore it may be considered as a new therapeutic approach for the treatment of AIH patients.
Collapse
Affiliation(s)
- Leila Mahmoudzadeh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | | | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Mahmoudian
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Vahid Mohammadi
- Department of Internal diseases and clinical pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Yang M, Zhang CY. Interleukins in liver disease treatment. World J Hepatol 2024; 16:140-145. [PMID: 38495285 PMCID: PMC10941743 DOI: 10.4254/wjh.v16.i2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play pleiotropic roles in human health and disease by regulating both innate and adaptive immune responses. Interleukins (ILs), a large group of cytokines, can be divided into seven families, including IL-1, IL-2, IL-6, IL-8, IL-10, IL-12, and IL-17 families. Here, we review the functions of ILs in the pathogenesis and resolution of liver diseases, such as liver inflammation (e.g., IL-35), alcohol-related liver disease (e.g., IL-11), non-alcoholic steatohepatitis (e.g., IL-22), liver fibrosis (e.g., Il-17a), and liver cancer (e.g., IL-8). Overall, IL-1 family members are implicated in liver inflammation induced by different etiologies, such as alcohol consumption, high-fat diet, and hepatitis viruses. IL-2 family members mainly regulate T lymphocyte and NK cell proliferation and activation, and the differentiation of T cells. IL-6 family cytokines play important roles in acute phase response in liver infection, liver regeneration, and metabolic regulation, as well as lymphocyte activation. IL-8, also known as CXCL8, is activated in chronic liver diseases, which is associated with the accumulation of neutrophils and macrophages. IL-10 family members contribute key roles to liver immune tolerance and immunosuppression in liver disease. IL-12 family cytokines influence T-cell differentiation and play an essential role in autoimmune liver disease. IL-17 subfamilies contribute to infection defense, liver inflammation, and Th17 cell differentiation. ILs interact with different type I and type II cytokine receptors to regulate intracellular signaling pathways that mediate their functions. However, most clinical studies are only performed to evaluate IL-mediated therapies on alcohol and hepatitis virus infection-induced hepatitis. More pre-clinical and clinical studies are required to evaluate IL-mediated monotherapy and synergistic therapies.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States.
| | - Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
3
|
Zhang Y, Zhang D, Chen L, Zhou J, Ren B, Chen H. The progress of autoimmune hepatitis research and future challenges. Open Med (Wars) 2023; 18:20230823. [PMID: 38025543 PMCID: PMC10655690 DOI: 10.1515/med-2023-0823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease with various immune system manifestations, showing a global trend of increased prevalence. AIH is diagnosed through histological abnormalities, clinical manifestations, and biochemical indicators. The biochemical markers involve interfacial hepatitis, transaminase abnormalities, positive autoantibodies, etc. Although AIH pathogenesis is unclear, gene mutations and immunological factors could be the leading factors. AIH usually presents as a chronic liver disease and sometimes as acute hepatitis, making it challenging to distinguish it from drug-related hepatitis due to similar clinical symptoms. Normalizing transaminases and serum IgG levels is essential in assessing the remission status of AIH treatment. Glucocorticoids and azathioprine are the first-line AIH treatment, with lifelong maintenance therapy in some patients. The quality of life and survival can be improved after appropriate treatment. However, certain limitations jeopardize the quality of treatment, including long treatment cycles, side effects, poor patient compliance, and inability to inhibit liver fibrosis and cirrhosis. Accurate AIH animal models will help us understand the pathophysiology of the disease while providing fresh perspectives for avoiding and treating AIH. This review will help us understand AIH better, from the cellular and molecular causes to the clinical features, and will provide insight into new therapy techniques with fewer side effects.
Collapse
Affiliation(s)
- Yang Zhang
- Graduate Department of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dehe Zhang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ling Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jing Zhou
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Binbin Ren
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haijun Chen
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
4
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
5
|
Fujimori S, Chu PS, Teratani T, Harada Y, Suzuki T, Amiya T, Taniki N, Kasuga R, Mikami Y, Koda Y, Ichikawa M, Tabuchi T, Morikawa R, Yamataka K, Noguchi F, Tsujikawa H, Kurebayashi Y, Sakamoto M, Kanai T, Nakamoto N. IL-15-producing splenic B cells play pathogenic roles in the development of autoimmune hepatitis. JHEP Rep 2023; 5:100757. [PMID: 37305442 PMCID: PMC10251155 DOI: 10.1016/j.jhepr.2023.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 06/13/2023] Open
Abstract
Background & Aims B-cell depletion therapy with an anti-CD20 is an effective treatment strategy for patients with refractory autoimmune hepatitis (AIH). However, the mechanisms underlying B-cell action are unclear. Methods Herein, we used the adeno-associated virus IL-12 model, in which hepatic IL-12 expression triggers liver injuries characteristic of AIH. We also analysed the clinical samples of patients with AIH. Results B-cell depletion using anti-CD20 or splenectomy was found to improve liver functions and decrease the cytotoxic CD8+ T-cell (cytotoxic T lymphocyte [CTL]) count in the liver. This improvement was reversed by the adoptive transfer of splenic B cells derived from AAV IL-12-treated mice to splenectomised mice as it caused the hepatic CTL count to increase. RNA-sequencing analysis identified IL-15 as a key factor in pathogenic B cells, which promotes CTL expansion and subsequent migration to the liver via the CXCL9/CXCR3 axis. Indeed, IL-15 neutralisation ameliorated hepatitis by suppressing splenic and hepatic CTLs in vivo. The close distribution of B220+ B cells and CD8+ T cells in the spleen of AIH mice suggested mutual interactions. Mechanistically, IFNγ and CD40L/CD40 signalling were indispensable for the expression of IL-15 in B cells, and in vitro co-culture experiments revealed that splenic CD40L+CD8+ T cells promoted IL-15 production in B cells, which led to CTL expansion. In patients with AIH, high serum IL-15 concentration and IL-15+ B-cell counts, positively correlating with serum alanine aminotransferase levels, support translation and potential therapeutic targeting in human AIH. Conclusions This investigation elucidated the roles of IL-15-producing splenic B cells that occur in concert with pathogenic CD8+ T cells during the development of AIH. Impact and Implications IL-15-producing B cells were shown to exacerbate experimental AIH via cytotoxic T lymphocyte expansion. CD40L+CD8+ T cells promoted IL-15 expression in B cells, indicating the mutual interaction of both cells. High serum IL-15 concentrations, IL-15+ B-cell counts, and CD40L+IL-15Rα+CD8+ T-cell counts were confirmed in the blood of patients with AIH.
Collapse
Affiliation(s)
- Sota Fujimori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Po-Sung Chu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takeru Amiya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Nobuhito Taniki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Kasuga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuzo Koda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Masataka Ichikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takaya Tabuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Rei Morikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Karin Yamataka
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Fumie Noguchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hanako Tsujikawa
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development, AMED, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Hildreth AD, Padilla ET, Tafti RY, Legala AR, O'Sullivan TE. Sterile liver injury induces a protective tissue-resident cDC1-ILC1 circuit through cDC1-intrinsic cGAS-STING-dependent IL-12 production. Cell Rep 2023; 42:112141. [PMID: 36807146 PMCID: PMC10435668 DOI: 10.1016/j.celrep.2023.112141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Tissue-resident immune cells are critical to the initiation and potentiation of inflammation. However, the tissue-protective cellular communication networks initiated by resident immunity during sterile inflammation are not well understood. Using single-cell transcriptomic analysis, we show the liver-resident cell connectome and signalome during acute liver injury. These analyses identify Il12b as a central regulator of liver injury-associated changes in gene expression. Interleukin (IL)-12 produced by conventional type 1 dendritic cells (cDC1s) is required for protection during acute injury through activation of interferon (IFN)-γ production by liver-resident type 1 innate lymphoid cells (ILC1s). Using a targeted in vivo CRISPR-Cas9 screen of innate immune sensing pathways, we find that cDC1-intrinsic cGAS-STING signaling acts upstream of IL-12 production to initiate early protective immune responses. Our study identifies the core communication hubs initiated by tissue-resident innate immune cells during sterile inflammation in vivo and implicates cDC1-derived IL-12 as an important regulator of this process.
Collapse
Affiliation(s)
- Andrew D Hildreth
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Eddie T Padilla
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Rana Yakhshi Tafti
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Akshara R Legala
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Christen U, Hintermann E. Animal Models for Autoimmune Hepatitis: Are Current Models Good Enough? Front Immunol 2022; 13:898615. [PMID: 35903109 PMCID: PMC9315390 DOI: 10.3389/fimmu.2022.898615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune liver diseases like autoimmune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, and IgG4-related cholangitis are chronic inflammatory diseases of the liver with an autoimmune background. The therapy of autoimmune hepatitis targets the autoreactive immune system and is largely dependent on the use of glucocorticoids and cytostatic drugs. In contrast, the treatment of cholestatic autoimmune liver diseases is restricted to the use of secondary or semi-synthetic bile acids, like ursodeoxycholic acid or obeticholic acid. Although the management of the disease using such drugs works well for the majority of patients, many individuals do not respond to standard therapy. In addition, chronic treatment with glucocorticoids results in well-known side effects. Further, the use of bile acids is a symptomatic therapy that has no direct immunomodulatory effect. Thus, there is still a lot of room for improvement. The use of animal models has facilitated to elucidate the pathogenesis of autoimmune liver diseases and many potential target structures for immunomodulatory therapies have been identified. In this review, we will focus on autoimmune hepatitis for which the first animal models have been established five decades ago, but still a precise treatment for autoimmune hepatitis, as obtainable for other autoimmune diseases such as rheumatoid arthritis or multiple sclerosis has yet to be introduced. Thus, the question arises if our animal models are too far from the patient reality and thus findings from the models cannot be reliably translated to the patient. Several factors might be involved in this discrepancy. There is first and foremost the genetic background and the inbred status of the animals that is different from human patients. Here the use of humanized animals, such as transgenic mice, might reduce some of the differences. However, there are other factors, such as housing conditions, nutrition, and the microbiome that might also play an important role. This review will predominantly focus on the current status of animal models for autoimmune hepatitis and the possible ways to overcome discrepancies between model and patient.
Collapse
|
8
|
B cells in autoimmune hepatitis: bystanders or central players? Semin Immunopathol 2022; 44:411-427. [PMID: 35488094 PMCID: PMC9256567 DOI: 10.1007/s00281-022-00937-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
B cells are central for the adaptive immune system to mount successful immune responses not only as antibody producers but also as regulators of cellular immunity. These multifaceted features are also reflected in autoimmunity where autoreactive B cells can fuel disease by production of cytotoxic autoantibodies, presentation of autoantigens to autoreactive T cells, and secretion of cytokines and chemokines that either promote detrimental immune activation or impair regulatory T and B cells. The role of B cells and autoantibodies in autoimmune hepatitis (AIH) have been controversially discussed, with typical autoantibodies and hypergammaglobulinemia indicating a key role, while strong HLA class II association suggests T cells as key players. In this review, we summarize current knowledge on B cells in AIH and how different B cell subpopulations may drive AIH progression beyond autoantibodies. We also discuss recent findings of B cell-directed therapies in AIH.
Collapse
|
9
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. Autoimmmune hepatitis. Cell Mol Immunol 2022; 19:158-176. [PMID: 34580437 PMCID: PMC8475398 DOI: 10.1038/s41423-021-00768-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/29/2021] [Indexed: 02/06/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a T-cell mediated, inflammatory liver disease affecting all ages and characterized by female preponderance, elevated serum transaminase and immunoglobulin G levels, positive circulating autoantibodies, and presence of interface hepatitis at liver histology. AIH type 1, affecting both adults and children, is defined by positive anti-nuclear and/or anti-smooth muscle antibodies, while type 2 AIH, affecting mostly children, is defined by positive anti-liver-kidney microsomal type 1 and/or anti-liver cytosol type 1 antibody. While the autoantigens of type 2 AIH are well defined, being the cytochrome P4502D6 (CYP2D6) and the formiminotransferase cyclodeaminase (FTCD), in type 1 AIH they remain to be identified. AIH-1 predisposition is conferred by possession of the MHC class II HLA DRB1*03 at all ages, while DRB1*04 predisposes to late onset disease; AIH-2 is associated with possession of DRB1*07 and DRB1*03. The majority of patients responds well to standard immunosuppressive treatment, based on steroid and azathioprine; second- and third-line drugs should be considered in case of intolerance or insufficient response. This review offers a comprehensive overview of pathophysiological and clinical aspects of AIH.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino & Facoltà di Scienze Biomediche, Università della Svizzera Italiana, Lugano, Switzerland.
- Institute for Research in Biomedicine, Bellinzona, Switzerland.
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK.
| | - Giorgina Mieli-Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, UK
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| |
Collapse
|
10
|
Rey I, Effendi-Ys R. Association Between Serum IL-6, IL-10, IL-12, and IL-23 Levels and Severity of Liver Cirrhosis. Med Arch 2021; 75:199-203. [PMID: 34483450 PMCID: PMC8385729 DOI: 10.5455/medarh.2021.75.199-203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 11/03/2022] Open
Abstract
Background Liver cirrhosis contributes to high liver-related mortality globally. Systemic inflammation mediated by immune cells contributes to the progression of liver cirrhosis. Growing evidence shows that several pro- and anti-inflammatory cytokines might have an important role in liver cirrhosis. Objective To evaluate the association between serum IL-6, IL-10, IL-12, and IL-23 levels and severity of liver cirrhosis. Methods This observational study was carried out at the Department of Internal Medicine, Universitas Sumatera Utara, Indonesia from March 2018 to August 2019. The severity of liver cirrhosis was assessed by using the Child-Pugh score. IL-6, IL-10, IL-12, and IL-23 levels, hepatitis and renal function were measured in all study subjects. Independent t-test and Mann-Whitney tests were conducted to observe differences between groups. Results A total of 78 liver cirrhosis patients were enrolled, mean age was 50.6±11.4. Median serum IL-6, IL-10, IL-12, and IL-23 levels were 24.5(2.6-46.4)pg/ml, 2.1(0.4-9.3)pg/ml, 3.5(1.4-20.8)pg/ml and 20.3(9.2-218)pg/ml, respectively. A higher IL-6 level was associated with more severe liver cirrhosis (p=0.001) and the presence of hepatic encephalopathy (p=0.018). Higher IL-23 level was found in patients with no hepatic encephalopathy (p=0.049). There was no association between serum cytokines levels and hepatitis viral infection status. Conclusion IL-6 is associated with the severity of liver cirrhosis.
Collapse
Affiliation(s)
- Imelda Rey
- Division of Gastroenterohepatology, Department of Internal Medicine, Universitas Sumatera Utara, Medan, Indonesia.,Haji Adam Malik General Hospital, Medan Indonesia
| | - Rustam Effendi-Ys
- Division of Gastroenterohepatology, Department of Internal Medicine, Universitas Sumatera Utara, Medan, Indonesia.,"dr. Pirngadi" General Hospital, Medan Indonesia
| |
Collapse
|
11
|
Preti M, Schlott L, Lübbering D, Krzikalla D, Müller AL, Schuran FA, Poch T, Schakat M, Weidemann S, Lohse AW, Weiler-Normann C, Sebode M, Schwinge D, Schramm C, Carambia A, Herkel J. Failure of thymic deletion and instability of autoreactive Tregs drive autoimmunity in immune-privileged liver. JCI Insight 2021; 6:141462. [PMID: 33600378 PMCID: PMC8026180 DOI: 10.1172/jci.insight.141462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
The liver is an immune-privileged organ that can deactivate autoreactive T cells. Yet in autoimmune hepatitis (AIH), autoreactive T cells can defy hepatic control and attack the liver. To elucidate how tolerance to self-antigens is lost during AIH pathogenesis, we generated a spontaneous mouse model of AIH, based on recognition of an MHC class II–restricted model peptide in hepatocytes by autoreactive CD4+ T cells. We found that the hepatic peptide was not expressed in the thymus, leading to deficient thymic deletion and resulting in peripheral abundance of autoreactive CD4+ T cells. In the liver, autoreactive CD4+ effector T cells accumulated within portal ectopic lymphoid structures and maturated toward pathogenic IFN-γ and TNF coproducing cells. Expansion and pathogenic maturation of autoreactive effector T cells was enabled by a selective increase of plasticity and instability of autoantigen-specific Tregs but not of nonspecific Tregs. Indeed, antigen-specific Tregs were reduced in frequency and manifested increased IL-17 production, reduced epigenetic demethylation, and reduced expression of Foxp3. As a consequence, autoantigen-specific Tregs had a reduced suppressive capacity, as compared with that of nonspecific Tregs. In conclusion, loss of tolerance and the pathogenesis of AIH were enabled by combined failure of thymic deletion and peripheral regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Christoph Schramm
- Department of Medicine I.,Martin Zeitz Center for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
12
|
Nistal-Villán E, Argemi J, de Jaime-Soguero A, Ferrero R, di Scala M, Rodriguez-Garcia E, Coll A, Rius-Rocabert S, Prieto J, González-Aseguinolaza G, Aragón T. Linking the Expression of Therapeutic Genes to Unfolded Protein Response: A New Option for Anti-Hepatitis B Virus Gene Therapy. Hum Gene Ther 2021; 32:341-348. [PMID: 33213214 DOI: 10.1089/hum.2019.336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tight control of transgene expression is key to ensure the efficacy of a wide range of gene therapy interventions, in which the magnitude and duration of gene expression have to be adjusted to therapeutic needs, thereby limiting secondary effects. The development of upgraded strategies to link transgene expression to pathological stress episodes is an unmet need in gene therapy. Here, we propose an expression strategy that associates transgene expression to an intracellular stress coping mechanism, the unfolded protein response. Specifically, we harnessed the cis elements required to sustain the noncanonical splicing of X-box binding protein 1 (XBP1) messenger RNA (mRNA) in response to the dysfunction of the endoplasmic reticulum (ER), a situation commonly known as ER stress, to drive the expression of heterologous genes. Since ER stress features a wide variety of pathological conditions, including viral infections, cancer, or metabolic disorders, this new expression module stimulates the synthesis of therapeutic genes as a response to cellular damage, and ensures their expression only when necessary. Validation of this inducible expression system was performed in vitro and in vivo, and its potential to limit/inhibit viral infections has been shown in proof-of principle experiments.
Collapse
Affiliation(s)
- Estanislao Nistal-Villán
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Josepmaria Argemi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Anchel de Jaime-Soguero
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Roberto Ferrero
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Marianna di Scala
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Estefania Rodriguez-Garcia
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aniol Coll
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Sergio Rius-Rocabert
- Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Jesús Prieto
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
13
|
Wang H, Feng X, Yan W, Tian D. Regulatory T Cells in Autoimmune Hepatitis: Unveiling Their Roles in Mouse Models and Patients. Front Immunol 2020; 11:575572. [PMID: 33117375 PMCID: PMC7575771 DOI: 10.3389/fimmu.2020.575572] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a severe and chronic liver disease, and its incidence has increased worldwide in recent years. Research into the pathogenesis of AIH remains limited largely owing to the lack of suitable mouse models. The concanavalin A (ConA) mouse model is a typical and well-established model used to investigate T cell-dependent liver injury. However, ConA-induced hepatitis is acute and usually disappears after 48 h; thus, it does not mimic the pathogenesis of AIH in the human body. Several studies have explored various AIH mouse models, but as yet there is no widely accepted and valid mouse model for AIH. Immunosuppression is the standard clinical therapy for AIH, but patient side effects and recurrence limit its use. Regulatory T cells (Tregs) play critical roles in the maintenance of immune homeostasis and in the prevention of autoimmune diseases, which may provide a potential therapeutic target for AIH therapy. However, the role of Tregs in AIH has not yet been clarified, partly because of difficulties in diagnosing AIH and in collecting patient samples. In this review, we discuss the studies related to Treg in various AIH mouse models and patients with AIH and provide some novel insights for this research area.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinxia Feng
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Ronca V, Chen QB, Lygoura V, Ben-Mustapha I, Shums Z, Trifa M, Carbone M, Mancuso C, Milani C, Bernuzzi F, Ma X, Agrebi N, Norman GL, Chang C, Gershwin ME, Barbouche MR, Invernizzi P. Autoantibodies in patients with interleukin 12 receptor beta 1 deficiency. J Dig Dis 2019; 20:363-370. [PMID: 31111679 DOI: 10.1111/1751-2980.12790] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Interleukin 12 receptor beta 1 (IL-12Rβ1) deficiency is a primary immunodeficiency that exposes affected individuals to an augmented risk of intracellular pathogen-mediated infections. The paradoxical presence of autoimmune manifestations in immune-deficient patients has been recognized, but the basis of this phenomenon is unclear, with the role of frequent infections being a possible trigger to break tolerance. Our study aimed to analyze extensively a profile of autoantibodies in a clinically well-defined case series of patients with IL-12Rβ1 deficiency. METHODS Eight patients with IL-12Rβ1 deficiency referred to Children's Medical Center in Tunis, Tunisia, during 1995-2012 were enrolled in the study. Sixteen age- and gender-matched blood donors served as controls. Serum, liver-related autoantibodies immunoglobulin (Ig)G, IgM, IgA were tested by ELISA and by standard indirect immunofluorescence on Hep-2 cells. RESULTS We found a significant prevalence of liver autoantibodies in the study group. Regarding primary biliary cholangitis (PBC), two of eight patients were positive for MIT3 autoantibodies, both confirmed by immunofluorescence, and one patient was positive for PBC-specific antinuclear antibodies, sp100. Moreover, two patients had significantly increased gamma-glutamyltransferase levels and one had IgM levels twice the upper limit of normal. Intriguingly two patients were positive for anti-actin antibodies; a typical feature of autoimmune hepatitis type 1, along with a significant increase in IgG levels. CONCLUSIONS This is the first report of a serological analysis in patients with an IL-12Rβ1 deficiency. Despite the difficulty in interpreting the role of the IL-12, the evidence of liver-specific autoantibodies confirms the importance its signal in liver autoimmunity.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Qu Bo Chen
- Clinical Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guandong Province, China
| | - Vasiliky Lygoura
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Imen Ben-Mustapha
- Laboratory of Immunology, Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Zakera Shums
- Department of Research and Development, Inova Diagnostics, San Diego, California, USA
| | - Mehdi Trifa
- Department of Anesthesia and Intensive Care, Tunis and Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Marco Carbone
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Clara Mancuso
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Milani
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Francesca Bernuzzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Xiong Ma
- Key Laboratory of Gastroenterology and Hepatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nourhen Agrebi
- Laboratory of Immunology, Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Gary L Norman
- Department of Research and Development, Inova Diagnostics, San Diego, California, USA
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, California, USA.,Department of Medicine and Research Laboratory of Internal Medicine, University Hospital of Larissa, Larissa, Greece
| | - Mohamed-Ridha Barbouche
- Laboratory of Immunology, Institut Pasteur de Tunis and University Tunis El Manar, Tunis, Tunisia
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, San Gerardo Hospital, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
15
|
Webb GJ, Hirschfield GM, Krawitt EL, Gershwin ME. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 13:247-292. [PMID: 29140756 DOI: 10.1146/annurev-pathol-020117-043534] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autoimmune hepatitis is an uncommon idiopathic syndrome of immune-mediated destruction of hepatocytes, typically associated with autoantibodies. The disease etiology is incompletely understood but includes a clear association with human leukocyte antigen (HLA) variants and other non-HLA gene variants, female sex, and the environment. Pathologically, there is a CD4+ T cell-rich lymphocytic inflammatory infiltrate with variable hepatocyte necrosis and subsequent hepatic fibrosis. Attempts to understand pathogenesis are informed by several monogenetic syndromes that may include autoimmune liver injury, by several drug and environmental agents that have been identified as triggers in a minority of cases, by human studies that point toward a central role for CD4+ effector and regulatory T cells, and by animal models of the disease. Nonspecific immunosuppression is the current standard therapy. Further understanding of the disease's cellular and molecular mechanisms may assist in the design of better-targeted therapies, aid the limitation of adverse effects from therapy, and inform individualized risk assessment and prognostication.
Collapse
Affiliation(s)
- G J Webb
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - G M Hirschfield
- National Institute for Health Research Liver Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, United Kingdom; ,
| | - E L Krawitt
- Department of Medicine, University of Vermont, Burlington, Vermont 05405, USA; .,Department of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - M E Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California, Davis, California 95817, USA;
| |
Collapse
|
16
|
Pan Y, Long X, Yi R, Zhao X. Polyphenols in Liubao Tea Can Prevent CCl₄-Induced Hepatic Damage in Mice through Its Antioxidant Capacities. Nutrients 2018; 10:nu10091280. [PMID: 30201943 PMCID: PMC6163653 DOI: 10.3390/nu10091280] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/30/2023] Open
Abstract
The present study investigated the preventive effect of polyphenols in Liubao tea (PLT) on carbon tetrachloride (CCl4)-induced liver injury in mice. The mice were initially treated with PLT, followed by induction of liver injury using 10 mL/kg CCl4. Then liver and serum indices, as well as the expression levels of related messenger RNAs (mRNAs) and proteins in liver tissues were measured. The results showed that PLT reduces the liver quality and indices of mice with liver injury. PLT also downregulates aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglycerides (TGs), and malondialdehyde (MDA), and upregulates superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the sera of mice with liver injury. PLT also reduces serum levels of interleukin-6 (IL-6), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) cytokines in mice with liver injury. Pathological morphological observation also shows that PLT reduces CCl4-induced central venous differentiation of liver tissues and liver cell damage. Furthermore, qPCR and Western blot also confirm that PLT upregulates the mRNA and protein expressions of Gu/Zn-SOD, Mn-SOD, catalase (CAT), GSH-Px, and nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α (IκB-α) in liver tissues, and downregulates the expression of cyclooxygenase 2 (COX-2) and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB). Meanwhile, PLT also raised the phosphorylated (p)-NF-κB p65 and cytochrome P450 reductase protein expression in liver injury mice. The components of PLT include gallic acid, catechin, caffeine, epicatechin (EC), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), and epicatechin gallate (ECG), which possibly have a wide range of biological activities. Thus, PLT imparts preventive effects against CCl4-induced liver injury, which is similar to silymarin.
Collapse
Affiliation(s)
- Yanni Pan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xingyao Long
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
| |
Collapse
|
17
|
Böttcher K, Rombouts K, Saffioti F, Roccarina D, Rosselli M, Hall A, Luong T, Tsochatzis EA, Thorburn D, Pinzani M. MAIT cells are chronically activated in patients with autoimmune liver disease and promote profibrogenic hepatic stellate cell activation. Hepatology 2018; 68:172-186. [PMID: 29328499 DOI: 10.1002/hep.29782] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/13/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Autoimmune liver diseases (AILDs) are chronic liver pathologies characterized by fibrosis and cirrhosis due to immune-mediated liver damage. In this study, we addressed the question whether mucosal-associated invariant T (MAIT) cells, innate-like T cells, are functionally altered in patients with AILD and whether MAIT cells can promote liver fibrosis through activation of hepatic stellate cells (HSCs). We analyzed the phenotype and function of MAIT cells from AILD patients and healthy controls by multicolor flow cytometry and investigated the interaction between human MAIT cells and primary human hepatic stellate cells (hHSCs). We show that MAIT cells are significantly decreased in peripheral blood and liver tissue of patients with AILD. Notably, MAIT cell frequency tended to decrease with increasing fibrosis stage. MAIT cells from AILD patients showed signs of exhaustion, such as impaired interferon-γ (IFN-γ) production and high ex vivo expression of the activation and exhaustion markers CD38, HLA-DR, and CTLA-4. Mechanistically, this exhausted state could be induced by repetitive stimulation of MAIT cells with the cytokines interleukin (IL)-12 and IL-18, leading to decreased IFN-γ and increased exhaustion marker expression. Of note, repetitive stimulation with IL-12 further resulted in expression of the profibrogenic cytokine IL-17A by otherwise exhausted MAIT cells. Accordingly, MAIT cells from both healthy controls and AILD patients were able to induce an activated, proinflammatory and profibrogenic phenotype in hHSCs in vitro that was partly mediated by IL-17. CONCLUSION Our data provide evidence that MAIT cells in AILD patients have evolved towards an exhausted, profibrogenic phenotype and can contribute to the development of HSC-mediated liver fibrosis. These findings reveal a cellular and molecular pathway for fibrosis development in AILD that could be exploited for antifibrotic therapy. (Hepatology 2018;68:172-186).
Collapse
Affiliation(s)
- Katrin Böttcher
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - Francesca Saffioti
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom.,Department of Clinical and Experimental Medicine, Division of Clinical and Molecular Hepatology, University Hospital of Messina, Messina, Italy
| | - Davide Roccarina
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Matteo Rosselli
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Andrew Hall
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom
| | - TuVinh Luong
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Emmanuel A Tsochatzis
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Douglas Thorburn
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| | - Massimo Pinzani
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus London, United Kingdom.,Sheila Sherlock Liver Centre, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
18
|
The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can J Gastroenterol Hepatol 2018; 2018:8197937. [PMID: 30046564 PMCID: PMC6038587 DOI: 10.1155/2018/8197937] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Abstract
Natural killer T (NKT) cells are a distinct lineage of T cells which express both the T cell receptor (TCR) and natural killer (NK) cell markers. Invariant NKT (iNKT) cells bear an invariant TCR and recognize a small variety of glycolipid antigens presented by CD1d (nonclassical MHC-I). CD1d-restricted iNKT cells are regulators of immune responses and produce cytokines that may be proinflammatory (such as interferon-gamma (IFN-γ)) or anti-inflammatory (such as IL-4). iNKT cells also appear to play a role in B cell regulation and antibody production. Alpha-galactosylceramide (α-GalCer), a derivative of the marine sponge, is a potent stimulator of iNKT cells and has been proposed as a therapeutic iNKT cell activator. Invariant NKT cells have been implicated in the development and perpetuation of several autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus (SLE). Animal models of SLE have shown abnormalities in iNKT cells numbers and function, and an inverse correlation between the frequency of NKT cells and IgG levels has also been observed. The role of iNKT cells in autoimmune liver disease (AiLD) has not been extensively studied. This review discusses the current data with regard to iNKT cells function in AiLD, in addition to providing an overview of iNKT cells function in other autoimmune conditions and animal models. We also discuss data regarding the immunomodulatory effects of vitamin D on iNKT cells, which may serve as a potential therapeutic target, given that deficiencies in vitamin D have been reported in various autoimmune disorders.
Collapse
|
19
|
Christen U. Animal models of autoimmune hepatitis. Biochim Biophys Acta Mol Basis Dis 2018; 1865:970-981. [PMID: 29857050 DOI: 10.1016/j.bbadis.2018.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023]
Abstract
Many animal models for autoimmune hepatitis (AIH) have been described in the past. Most models had to deal with the relative immunosuppressive environment of the liver. Therefore, some models used a combination of several triggering factors often on a susceptible background to generate an aggressive immune response that targets the liver. In addition, in order to be able to track the immune response the models used specific model autoantigens as targets that are either not present or have not been identified as a natural autoantigen in AIH patients. Thereby the feasibility of such models is somewhat questionable. Although many historic approaches included challenges of experimental animals with liver homogenates it was only in the last decade that natural occurring liver autoantigens have been used in animal models. This article reflects on the requirements for breaking liver tolerance and on how an ideal experimental model for AIH would look like. In addition, it discusses historic as well as recent animal models in the context of feasibility of induction, similarity of the clinical outcome to human AIH, and gain of knowledge for possible future therapies.
Collapse
Affiliation(s)
- Urs Christen
- Pharmazentrum Frankfurt/ZAFES, Goethe University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
20
|
Li S, Yang D, Peng T, Wu Y, Tian Z, Ni B. Innate lymphoid cell-derived cytokines in autoimmune diseases. J Autoimmun 2017; 83:62-72. [PMID: 28479212 DOI: 10.1016/j.jaut.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
The most recently recognized types of immune cells, the innate lymphoid cells (ILCs), have been sub-divided according to respective distinct expression profiles of regulatory factors or/and cytokines. ILCs have also been shown to participate in a variety of beneficial immune responses, including participation in attack against pathogens and mediation of the pre-inflammatory and inflammatory responses through their production of pro-inflammatory cytokines. As such, while the ILCs exert protective effects they may also become detrimental upon dysregulation. Indeed, recent studies of the ILCs have revealed a strong association with the advent and pathogenesis of several common autoimmune diseases, including psoriasis, inflammatory bowel disease (IBD) and multiple sclerosis (MS). Though the ILCs belong to lineage negative cells that are distinctive from the Th cells, the profiles of secreted cytokines from the ILCs overlap with those of the corresponding Th subsets. Nevertheless, considering that the ILCs belong to the innate immune system and the Th cells belong to the adaptive immune system, it is expected that the ILCs should function at the early stage of diseases and the Th cells should exert predominant effects at the late stage of diseases. Therefore, it is intriguing to consider targeting of ILCs for therapy by targeting the corresponding cytokines at the early stage of diseases, with the late stage cytokine targeting mainly influencing the Th cells' function. Here, we review the knowledge to date on the roles of ILCs in various autoimmune diseases and discuss their potential as new therapeutic targets.
Collapse
Affiliation(s)
- Sirui Li
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Tingwei Peng
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
21
|
Identification of pro-inflammatory CD205 + macrophages in livers of hepatitis B virus transgenic mice and patients with chronic hepatitis B. Sci Rep 2017; 7:46765. [PMID: 28436459 PMCID: PMC5402278 DOI: 10.1038/srep46765] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatic macrophages play a central role in disease pathogenesis during hepatitis B virus (HBV) infection. Our previous study found that CD205+ macrophages in the liver of hepatitis B surface antigen transgenic (HBs-Tg) mice increased significantly compared with those in wild-type mice, and these increased CD205+ macrophages were involved in CpG-oligodeoxynucleotide-induced liver injury in HBs-Tg mice. Here, we analysed the phenotype and function of CD205+ macrophages derived from the liver of HBs-Tg mice and patients with chronic hepatitis B (CHB). We found that HBs-Tg mice-derived hepatic macrophages produced larger amounts of pro-inflammatory cytokines, including IL-6, IL-12, TNF-α, and of the anti-inflammatory cytokine IL-10 after stimulation with CpG-oligodeoxynucleotides or commensal bacteria DNA than B6 mice-derived hepatic macrophages. Furthermore, hepatic CD205+ macrophages from HBs-Tg mice showed an activated phenotype and expressed higher levels of inflammatory cytokine genes, chemokine genes, and phagocytosis-related genes than hepatic CD205− macrophages. In addition, CD205+ macrophages displayed an inflammatory phenotype and were increased in the liver of patients with CHB compared with those in healthy controls. Our data suggest that hepatic CD205+ macrophages are a unique pro-inflammatory subset observed during HBV infection. Thus, development of intervention targeting these cells is warranted for immunotherapy of HBV-induced liver diseases.
Collapse
|
22
|
Schwinge D, von Haxthausen F, Quaas A, Carambia A, Otto B, Glaser F, Höh B, Thiele N, Schoknecht T, Huber S, Steffens N, Lohse AW, Herkel J, Schramm C. Dysfunction of hepatic regulatory T cells in experimental sclerosing cholangitis is related to IL-12 signaling. J Hepatol 2017; 66:798-805. [PMID: 27965154 DOI: 10.1016/j.jhep.2016.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Reduced numbers of regulatory T cells (Treg) have been reported in patients with primary sclerosing cholangitis (PSC); therefore, Treg expansion might serve as a therapeutic approach. Here, we explored whether treatment with IL-2/IL-2 monoclonal antibody complex (IL-2/IL-2Ab complex) could provide in vivo Treg expansion and treatment of experimental sclerosing cholangitis. METHODS Treg were expanded by repeated injection of IL-2/IL-2Ab complex in mouse models of cholangitis (Mdr2-/-, DDC) or colitis (dextran sulfate sodium [DSS]) as control. In vitro suppressive capacity and gene expression were analyzed in isolated hepatic and splenic Treg. RESULTS In vivo expansion resulted in a 5-fold increase in hepatic Treg, which localized within the inflamed portal tracts. However, although Treg expansion was associated with reduced pro-inflammatory IL-17 and increased anti-inflammatory IL-10 production by hepatic lymphocytes, the severity of cholangitis was not reduced. In contrast, DSS-induced colitis could be improved by Treg expansion, suggesting a selectively reduced functionality of intrahepatic Treg. Indeed, hepatic Treg manifested reduced Foxp3 expression and reduced suppressive capacity compared to splenic Treg. Hepatic Treg dysfunction could be linked to increased IL-12 signaling due to an upregulation of the IL-12 receptor. Accordingly, IL-12 receptor beta 2 knockout mice (IL-12rb2-/-) were able to maintain hepatic Treg functionality. CONCLUSIONS Hepatic Treg expanded in vivo failed to improve the course of cholangitis, which was related to the effects of hepatic IL-12 on Treg. Therefore, neutralization of IL-12 should be considered as part of treatment strategies targeting Treg in sclerosing cholangitis. LAY SUMMARY Primary sclerosing cholangitis (PSC) is associated with a paucity of regulatory T cells (Treg) that have a particular ability to control immune responses; therefore, in vivo expansion of Treg might serve as a treatment of cholangitis. However, in a mouse model of PSC, we show that Treg enrichment in the liver was not sufficient to provide effective control of cholangitis, as the suppressive functionality of hepatic Treg was significantly limited by IL-12 signals. Thus, neutralization of IL-12 should be considered as part of treatment strategies to improve the efficacy of Treg-based treatments for liver diseases. Data accession number: GSE 87898.
Collapse
Affiliation(s)
- Dorothee Schwinge
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Alexander Quaas
- Department of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department for Pathology, University of Cologne, Cologne, Germany
| | - Antonella Carambia
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Otto
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Glaser
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Höh
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Thiele
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Schoknecht
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niklas Steffens
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Herkel
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Department of Medicine I., University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|